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In this paper we report electron yields and stopping power of protons colliding with surfaces of NaCl-type
insulators formed with the alkali-metal ions Li+, Na+, K+, and Rb+ and the halides F−, Cl−, Br−, and I−. We also
report fitted models for the static and dynamic polarization potentials of the eight ions of interest. The calcu-
lations are carried out within the shellwise local plasma approximation using the Levine-Louie response
function, instead of the usual Lindhard one, to account for the ionization energy.
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I. INTRODUCTION

When a fast proton impacts on a crystal surface with a
grazing angle, it excites target electrons to the continuum.
Two relevant quantities can be measured, viz.: the number of
emitted electrons, generally called the yield, and the energy
lost by the projectile or the stopping power �for comprehen-
sive reviews on the subject we refer to Refs. �1,2��. In more
detailed experiments, both measurements are taken in coin-
cidence �3,4�. We are particularly interested in calculating
the yield and stopping of protons colliding with NaCl-type
insulator surfaces.

The physics of the process is governed by two major as-
pects of the collision: the projectile trajectory and the differ-
ential probability of inelastic transition at every segment of
the collision.

In a previous article �5� we have used the shellwise local
plasma approximation �SLPA�, which let us evaluate not
only the probability but the polarization potentials. In that
article, we considered the LiF target and used the well-
known Lindhard dielectric function to describe the local
plasma. This choice has a setback: inelastic transitions are
permitted for energies below the ionization energies of the
ions composing the crystal. To fix this problem we could cut
off the forbidden energies and so violate the Kramers-Krönig
relation. In this paper, we resort instead to the more elaborate
Levine-Louie dielectric response function �6�. This response
can account for an energy gap without losing important prop-
erties such as the f-sum rule and the Kramers-Krönig rela-
tion. Accordingly, the polarization potentials as well as dif-
ferential probabilities are calculated on equal footing.

As in a previous paper, to describe the electronic density
of the ions forming the lattice we use a simple atomic model
called GII �grid of independent ions�, which allows us to use
the well-known Hartree-Fock wave functions.

In synthesis, the basic considerations we assume are as
follows:

�1� The insulator surface is considered to be composed by
an array of alkali-metal ion and halide ions at the places
given by the crystal parameters, and the local electronic den-
sity is described by the Hartree-Fock wave functions of the
isolated ions. This is what we call the grid of the independent
ion �GII� model.

�2� The polarization potentials as well as differential prob-
abilities are calculated accordingly using the Levine-Louie
response function where the gap, in accordance with the GII
model, is considered to be the ionization energy of the iso-
lated ion.

�3� The trajectory of the projectile is calculated classically
considering the interaction �static and dynamic polarization�
within the planar model.

�4� The stopping power and the electron yield are calcu-
lated at each segment of the collision along the classical
projectile trajectory.

In this paper we report a complete set of electron yields
and stopping power of protons colliding grazingly with six-
teen NaCl-type insulator surfaces built with the four alkali-
metal ions Li+, Na+, K+, and Rb+ and the four halides F−,
Cl−, Br−, and I−. Also, in Table I below, we report fittings for
the static and dynamic polarization potentials of the eight
ions of interest. In Sec. II, we calculate the polarization po-
tentials and in Sec. III we present the results. Atomic units
are used unless otherwise indicated.

II. PROJECTILE-ION POTENTIALS

We consider two different contributions to describe the
interactions of the projectile with each target ion: the static
and the polarization potentials, Vst and Vpol

LL below. The total
potential is simply the sum V=Vst+Vpol

LL . The superscript �
and � will be used to individualize the interaction with the
alkalide and halide, respectively.

A. Static potentials

The static potential is simply the potential created by ion
targets considering that the electronic cloud rests frozen. The
static potentials, Vst

+�r� and Vst
−�r� for alkali-metal ions and

halide, respectively, can be expressed as follows:

Vst
±�r� = ±

1

r
+

Z±�r�
r

, �1�

Z+ → �ZT
+ − 1, r → 0

0, r → � ,
� Z− → �ZT

− + 1, r → 0

0, r → � ,
�

�2�

where ZT
+ �ZT

−� is the target nuclear charge of the alkali-metal
ion �halide� and r is the position of the projectile with respect
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to one lattice ion. From basic definitions, the Hartree-Fock
approximation produces

Z±�r� = �
nl

r� dx
	�nl

± �x�	2

	r − x	
, �3�

where �nl
± are, in our case, the anion and cation wave func-

tions �7�. As in Ref. �5�, we have fitted Z±�r� as a combina-
tion of simple exponentials

Z±�r� 
 Zfit
± �r� = �

j=1

3

Zj
± exp�− � j

±r� . �4�

A list of the parameters Zj
± and � j

± for the eight ions are
displayed in Table I. For the fitting procedure we have started
with seed values for Zj and � j given by those of the Moliere
potential. These values are the best we can attain considering
the structure of Eq. �4�, and they replace the more general
ones given by Moliere or the Ziegler-Biersack-Littmark
�ZBL� expression �8�.

B. Polarization potential

First, let us start recalling the static polarization potential.
It is due to the distortion of the cloud induced by a charge at
rest. In its usual form �9,10�, it reads

Vsp�r� = −
�0

2�R0
2 + r2�2 , �5�

where �0 is the well-known static or electric-dipole
polarizability and R0 is a cutoff. It is generally related to the
radius of the shell R0

2= �r2�. In general, we define �ri�
=0.75�ri�np6 +0.25�ri�ns2. Values of �ri� for i=2 and 3 are dis-
played in Table I. The value of �0 has been calculated with a
high degree of precision for most of the neutral atoms and
ions. Polarizability values for the ions of interest can be
found in Refs. �11–14�.

For large velocities we can no longer consider the static
term but the dynamic polarizability, which depends on the
impact velocity v. To introduce the dynamic polarizability of
the target, we resort to the self-energy induced by a moving
charge in a free-electron gas. We first introduce the dynamic
self-induced potential as

VSLPA�r� = −
1

2�v�
nl
�

0

�

d��
w/v

�

dq Re�Wnl�q,�,r�� , �6�

Wnl�q,�,r� =
2ZP

2

�v

1

q

 1

	„q,�,kFnl�r�…
− 1� , �7�

where kFnl�r� is the space-dependent Fermi velocity,
kFnl�r�= �3�2
nl�r��1/3, 
nl�r� is the electron density of the nl
state 
nl�r�= 	�nl�r�	2, and �nl�r� are the bound-state wave
functions given in the tables of Ref. �7�. In Eq. �7�,
	�q ,� ,kFnl� is the dielectric response function.

In Ref. �5�, we have used the well-known Lindhard di-
electric function 	L�q ,� ,kFnl�. This choice has a setback:
inelastic transitions are permitted for energies below the ion-
ization energies corresponding to the corresponding elec-
tronic state. To cut off this forbidden region we resort to the
Levine-Louie dielectric-response function 	LL�q ,� ,kFnl� �6�
defined as follows:

Im 	LL�q,�,kFnl� = �Im 	L�q,�̃,kFnl� , � � �g

0, � 
 �g,
� �8�

where the energy shift �̃2=�2−�g
2 has been introduced. In

accordance with our independent ion model we consider
�g= 		nl	, but any other experimental value representing the
band gap could have been used. Accordingly, and this is a
very important point, in this case we would need to know the
corresponding state functions providing those gaps to be
used in the definition of the local Fermi velocity. In this
sense, our proposal is fully coherent: we use the proper func-
tion, which produces the ionization binding energy of the
isolated ion.

Once the imaginary part is obtained, the real part,
Re 	LL�q ,� ,kFnl�, is obtained through the Kramers-Krönig
relation. After some algebra we find that for ���g
Re 	LL�q ,� ,kFnl�=Re 	L�q , �̃ ,kFnl�, while for �
�g a
closed form can be obtained. �For details see Ref. �6�.�

Re 	LL�q,�,kFnl� = 1 +
2

�kF
�k2 +

D

2
k3A + B� , �9�

A = arctan
X+

D
+ arctan

X+

D
, X± =

2

k
±

1

k2 , �10�

TABLE I. Atomic coefficients for halide and alkalide ions.

Ion �r2� Ra
2 �r3� Rb N V�� ��� �Z1 ,Z2 ,Z3� ��1 ,�2 ,�3�

I− 7.79 8.273 27.86 3.20 6 158 250 �23.21, 26.10, 4.69� �1.443, 5.900, 26.66�
Br− 5.72 6.113 18.18 3.10 6 132 158 �9,889, 22.922, 3.189� �1.087, 4.103, 23.98�
Cl− 4.56 4.590 13.34 3.00 6 115 111 �10.167, 7.548, 0.2845� �1.199, 5.985, 44.40�
F− 1.98 1.898 4.41 2.70 6 68.5 35 �2.063, 7.023, 0.914� �1.824, 1.834, 16.05�
Rb+ 3.21 3.582 7.00 1.95 6 50.7 70 �10.579, 22.303, 3.118� �1.458, 4.487, 25.36�
K+ 2.28 2.610 4.315 1.78 6 41.7 48 �11.416, 6.172, 0.412� �1.765, 7.426, 26.56�
Na+ 0.795 0.713 0.977 1.40 5.5 22.2 10 �0.496,8,969,−0.535� �2.738, 2.784, 26.18�
Li+ 0.445 0.369 0.439 1.15 5 4.64 1.5 �−0.114,2.492,−0.378� �1.753, 3.711, 9.961�
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B = �D2

8
k5 +

1

2
k3 −

1

8
k�ln

D2 + X+
2

D2 + X−
2 , �11�

D =
�g

�F
�1 −

�2

�g
2 , k =

q

kF
, � =

1

2
kF

2 , �12�

and in our case �g= 		nl	. One can immediately prove that 	LL

satisfies the f-sum rule and for �
�g plasmon excitation
cannot take place. Replacing 	LL�q ,� ,kFnl� in Eqs. �7� and
�6�, we obtain the ionization-gap-corrected version of the
potential that we call Vpol

LL �v ,r�.
It will be important for the discussion below to define the

integrated value

�Vpol
LL � =� dr Vpol

LL �v,r� . �13�

From numerical calculation we observe that the following
limits hold:

�Vpol
LL � → �V�� /v for v → �

V0� for v → 0.
� �14�

Results for V�� are presented in Table I for the eight ions.
As in Ref. �5�, we found it convenient to use a fitting

Vfit
LL�v ,r� to describe Vpol

LL �v ,r�. The most suitable was

Vfit
LL�v,r� = −

���v�
2�R0

2 + r2 + �r/Rb�N�2 , R0
2 = Ra

2��v� . �15�

For most of the cases N=6 �except for anomalous cases
Na+ and Li+, where the best values are N=5.5 and 5, respec-
tively�. A list of the best values for Ra and Rb are shown in
the table. To find this set of values, two conditions were
imposed.

�i� The limv−��R0
2=Ra

2 �or limv−���=1�, and
�ii� �drVfit

LL�v ,r�= �Vpol
LL �v��.

In this way we determine Ra
2 and �. We can observe that

�r2�ns2 
Ra
2
 �r2�np6 and Ra

2 differs from �r2� in less than 10%
�see Table I�. � dependences on the velocity for the eight
ions are displayed in Fig. 1.

Note that for r
Rc=Rb
N/�N−2�, Vfit

LL�v ,r� has a structure
equal to the static polarization potential Vsp�r� given by Eq.
�5�. For r�Rc, Vfit

LL falls sharply as ���Rb /r�2N and it be-
comes independent from the product Ra

2�.
The limits of �� with the velocity were found to be

���v� → ���� /v for v → �

�0� for v → 0.
� �16�

Strength dependence on the inverse velocity value seems to
be very good for v�1 for all the cases, and for v�2 for the
anomalous cases �Na+ and Li+�. At small distances, Vpol

LL �v ,r�
cannot be well fitted, but in this case the static potential is
dominant and this flaw can be disregarded. Otherwise, the
fitting is quite accurate. All possible cases are shown in Fig.
2 where the polarization potentials are plotted for eight ions
and for several proton impact velocities.

C. Scrutinization of the polarization potentials

We have summed up the fitting to the dynamic polariza-
tion potential to the parameters, ��� , Ra

2, Rb, and N which can
be obtained from Table I, and ��v�, which can be extracted
from Fig. 1. We are now ready to test the reliability of our
model to describe the polarization.

First, according to Clausius Mossotti’s simple model, it is
well known that the polarizability is expected to be propor-
tional to the volume of the atom. The static polarizability �0
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FIG. 1. Parameter � as a function of the ion velocity for the
eight ions of interest.
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FIG. 2. Plots of the polarization potentials Vpol
LL and their fittings

Vfitt
LL as given by Eq. �15� for the eight ions of interest for different

velocities.

TOTAL ELECTRON YIELDS AND STOPPING POWER OF… PHYSICAL REVIEW A 75, 042904 �2007�

042904-3



is then expected to be roughly linearly proportional to �r3�.
Following this line, in Fig. 3 we plot the ratio ��� / �r3�, which
turns out to be nearly constant �except again for the Li+

anomalous case�. This encouraging finding seems to indicate
that the fitting procedure is appropriate.

Second, using the wake theory within the random-phase
approximation �RPA� dielectric response function of an elec-
tron gas one can prove that the self-induced potential at the
projectile position of a Coulomb at large velocities is given
by �see Eq. �9.9� of Ref. �15��

lim
r→0

�w = −
ZP�

4v
�p, �17�

where �p is the plasmon frequency. Available experimental
values of the plasmon energies �16� are displayed in Table II.
Within our approach, the total induced polarization could be
obtained by integrating all the possible target positions to
give Eq. �13�. The integrated value �Vpol

LL � should then be
compared with Eq. �17�. So, for proton impact, we can re-
write

�Vpol
LL � = lim

r→0
�w =

V��

v
= −

�

4v
�p� , �18�

and we can estimate �p� to give

�p� =
4v
�

�Vpol
LL � �

4���

�
. �19�

In Table II, we display the experimental values of the plas-
mon energy as compared with the prediction given by Eq.
�19�. The prediction seems to be reasonably good. The term
�p� is larger than the experimental value �p within the range
16–34 %. A similar estimation using the simple Lindhard
dielectric function �5� instead of the Levine-Louie estimation
gives a larger overestimation. The reason is based on the
contribution of the term given by Eq. �9� not present in the
Lindhard case.

III. RESULTS

A. Penetration angle

The calculation of the penetration angle is an important
application of the potentials proposed. In the planar model,
the critical angle �c is calculated assuming a surface density
of targets and describing the planar potential VZ

±�z�. It de-
pends on the distance z to the surface

VZ
±�v,z� =� dr V±�v,r����z2 + r2� , �20�

where � is the delta function. The total �central� potential
V±�r� includes the static plus polarization terms V±�v ,r�
=Vst

± �r�+Vpol
LL±�v ,r� and the total planar �potential� reads,

WZ�v ,z�=�s�VZ
−�v ,z�+VZ

+�v ,z��, where �s=�s
+=�s

− is the su-
perficial density of ions characterized by the corresponding
Miller indices �100�. The critical angle is determined when
the kinetic energy K equals the potential at the surface, i.e.,

WZ�v,0� = K =
1

2
MP�v sin �c�2. �21�

A list of planar critical angles as a function of the velocity is
displayed in Table II. For larger velocities, the inverse de-
pendence can be used, i.e., �c�1/v. The values are slightly
smaller than the ones given by the Moliere potential due to
the polarization potential. In the planar model, the projectile
rebounds for incident angles �
�c and penetrates for
���c. For more elaborate models such as the punctual
model, it is more appropriate to introduce a percentage of

TABLE II. Experimental and theoretical plasmon values and
critical angles for different velocities.

Crystal

�p �eV� �c �deg�

exp �p� v=2 v=3 v=4.47 v=6.32

LiF 26 31.2 0.84 0.60 0.42 0.31

LiCl 18 24.6 0.97 0.67 0.47 0.34

LiBr 16.3 22.8 1.15 0.79 0.54 0.39

LiI 13.3 20.9 1.27 0.86 0.59 0.42

NaF 20.1 25.5 0.94 0.65 0.45 0.33

NaCl 15.7 21.2 1.00 0.69 0.48 0.34

NaBr 14.4 20.1 1.15 0.79 0.54 0.39

NaI 12.8 18.4 1.25 0.85 0.58 0.41

KF 16.8 19.9 1.02 0.70 0.49 0.35

KCl 13.3 17.4 1.04 0.72 0.49 0.36

KBr 12.4 16.7 1.16 0.79 0.52 0.39

KI 11.2 15.6 1.23 0.84 0.57 0.41

RbF 15 18.4 1.19 0.82 0.56 0.40

RbCl 12.4 16.1 1.15 0.79 0.54 0.39

RbBr 11.6 15.7 1.25 0.86 0.58 0.42

RbI 11 14.6 1.30 0.89 0.60 0.43
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FIG. 3. Plot of the polarization terms ��� / �r3� as a function of
�r3� for the eight ions of interest. Values for ��� and �r3� are given in
Table I.
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penetration, having a value of 50% near the critical angle �5�.
In Fig. 4, we plot proton trajectories colliding with LiF for
four velocities, 2, 3, 4, and 6 according to the planar chan-
neling model. The trajectories not only change when we use

our static potential—instead of Moliere—but also as we add
the polarization potential. The influence of the polarization
potential diminishes as we increase the velocity, but at inter-
mediate energies it produces substantial contributions.

B. Stopping and number of emitted electrons

To be coherent with the used potential we also use the
Levine-Louie dielectric function to calculate the moments of
the energy per unit path dl as well, i.e.,

d�� j��z�
dl

=� dr ���z2 + r2��
nl
�

�g

�

d� � j 1

v

��
w/v

�

dq Im�Wnl
LL�q,�,r�� , �22�

where with Wnl
LL we have explicitly indicated that the Louie-

Levine dielectric-response function is being used in Eq. �7�.
The first moment is simply the stopping; d��1� /dl=dS /dl.
The zero order means the inverse number of the mean free
path, or, what is equivalent, the number of electrons that
undergo inelastic transitions, i.e., d��0� /dl=d� /dl and � is
called the yield. According to our model an inelastic transi-
tion means the absorption of energy the electron requires to
be ionized. Thus all these electrons end up in a free state to
be counted by the detector. Usually, not all the electrons are
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FIG. 4. Proton trajectory on LiF �100� surfaces for four different
velocities. Dotted lines result using just the repulsive Moliere po-
tential, dashed lines result using our static potential, and solid lines
result using added static and polarization potentials, as done in this
paper.
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�see Table II� for different velocities and insulators as indicated.
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detected in the experimental set up but only those that escape
to the vacuum. The total electron production is obtained after
integrating along the trajectory,

� = 2v�
Z min

�

dz
d��0�z��/dl

�v2 sin2 �i −
2

Mp
WZ�v,z�

, �23�

and similarly for the stopping.
For F− and Na+ we have considered the K- and L-shell

contributions, for Cl− and K+ the L and M, for Br− and Rb+

the M and N, and for I− the N and O shells. The inner-shell
vacancies have been accounted twice to the electron produc-
tion to take into account the additional electron coming from
the postcollision autoionization. This contribution is notice-
able just at large penetration angles where the projectile
probes the inner shell.

With this approach based on the dielectric function of
Levine and Louie we tackle the collisions of protons on the
sixteen insulators. For a given velocity and incident angle,
their calculation requires a four-dimensional integral; three
in Eq. �22� and an additional one for the trajectory given by
Eq. �23�. In addition, the potential WZ�v ,z� requires a further
three-dimensional integral �Eqs. �6� and �20��. In Figs. 5 and
6, we plot total electron production and in Figs. 7 and 8 we

plot the total energy loss. The surfaces are considered per-
fectly plane along the direction �100�. In general, the total
number of electrons can be estimated in the range
�� �40,200� and total stopping, S� �30,150�. In this veloc-
ity region the numbers �in atomic units� are very roughly in
the same order of magnitude ��S, which seems to mean
that the projectile cedes something in the order of an atomic
unit of energy per electron ionized.

For the total � yield, all the curves follow approximately
the same pattern; � decreases with v and � /�c. The situation
is quite different for the stopping because it changes shape
with the velocity. The larger the velocity and incident angle,
the deeper does the projectile probe into shells and the more
inelastic collisions are expected to be.

C. Summary and future developments

We have calculated the total electron production and stop-
ping of protons colliding with sixteen ClNa-type insulator
surfaces. We expect that comparing these resulting values
with a large variety of experimental results will be of great
interest. The whole range of ClNa-type insulators were here
covered and in a wide scope of experimental activity. Be-
sides the shellwise local plasma approximation, which is the
central hypothesis in this paper, we estimate that in general
the electron yields presented here underestimate the data for
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locities and insulators as indicated.
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three reasons. First, the polarization potential is possibly
larger than expected in between 16% and 34%, as indicated.
The reason is surely that we considered isolated ions with an
atomic ionization gap. But had we introduced the crystal
Madelung potential, the wave function may have a larger
ionization potential �the gap would increase� and surely the
polarization potential, would diminish. We have observed
that the smaller the polarization potential, the larger the
yield, and so a corrected potential would increase the yields
slightly, especially at intermediate velocities.

Second, secondary electron emission has been disre-
garded. Thus primary electrons ejected from a direct colli-
sion with the projectile can subsequently collide with target
ions, thus producing new electrons, which are experimentally
counted, but not calculated here.

And third, the planar model should be improved to ac-
count for the punctual channeling, as we developed in Ref.

�5�. In all cases, we have observed that the yield and the
stopping notably increases, especially at larger incident
angles. The only obstacle is the huge computing time. To
calculate a total yield using the punctual channeling model,
for example, would require a computing time in the order of
105 longer than the planar model; an order of 103 azimuth
angles with respect to �100� direction and 50 initial or more
initial conditions are needed to randomize the starting point
of the projectile. We are currently optimizing the code to
cover the present system. In accordance with our experience
with LiF �5� we may expect an increase up to 20% in the
electron production near the critical angle.
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