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Scattering of ultracold atoms by absorbing nanospheres
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We study elastic scattering of ultracold atoms by a conducting sphere. Loss of flux through inelastic reac-
tions and adsorption is described in an unambiguous and model-independent way by incoming boundary
conditions in the semiclassical region near the surface of the sphere. Differential cross sections are presented
for Na and metastable He(2 3S) atoms scattered by a nanosphere with radius 200 a.u. or 2000 a.u. Their
near-threshold behavior is determined by a small number of parameters which are properties of the potential
tail beyond the semiclassical regime, and it depends sensitively on the characterstic lengths B¢, B; which
describe the strength of the nonretarded van der Waals part and the highly retarded Casimir part of the
atom-sphere interaction, respectively. These lengths can be tuned to probe various regions of the atom-sphere
interaction by appropriate choice of the radius of the sphere.
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I. INTRODUCTION

Understanding the interaction of ultracold atoms with sur-
faces is a prerequisite for the design and construction of
atomic waveguides and other atom-optical devices [1]. When
an atom comes close to a conducting or dielectric surface,
within a dozen atomic units or less, the atom-surface inter-
action is generally quite complex and leads to inelastic reac-
tions and adsorption (“sticking”). Beyond this close region,
the interaction can be described by a local potential V(s)
depending on the distance s of the atom from the surface.
When the surface is flat, the potential behaves as a van der
Waals potential, V(s)=—C,/s>, for “small” distances s— 0,
which are however still beyond the close region where in-
elastic reactions and sticking occur. For large distances, re-
tardation effects become important, and the potential behaves
as V(s)=—C,/s* as first described by Casimir and Polder in
1948 [2]. The coefficients C; and C, depend on the polariz-
ability properties of the atom and on the dielectric properties
of the (flat) surface. For a conducting surface and an atom in
a spherical state |iy),
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where a, is the dipole polarizability of the atom and «y is
the fine-structure constant [3,4]. In the “transition zone” be-
tween the nonretarded van der Waals regime of small dis-
tances and the highly retarded regime of large s, the potential
undergoes a smooth transition from the —C5/s* behavior to
the —C,/s* behavior. The ratio

- 2)

is a typical length scale for this zone. If we visualize the
polarizability of the atom as essentially due to one “mean”
dipole transition matrix element {i|d|), then 27L ap-
proximately corresponds to the wavelength A; of this mean
transition. (Note, however, that the model of a two-level

1050-2947/2007/75(4)/042903(7)

042903-1

PACS number(s): 34.50.Dy, 03.65.Nk, 03.75.—b

atom in general does not satisfy oscillator strength sum rules
and is not very suitable for calculating atom-surface poten-
tials [3].)

At sufficiently low energies, atom-surface collisions are
strongly influenced by quantum effects, such as quantum re-
flection [5] by the nonclassical region in coordinate space,
sometimes called “badlands” [6,7], which is typically located
at distances of many hundreds or thousands of atomic units
in the purely attractive tail of the atom-surface potential.
Since the probability for quantum reflection tends to unity at
threshold, this effect is always important at sufficiently low
energy, and it has recently been studied intensely, both ex-
perimentally [8-14] and theoretically [7,15-20]. For most
realistic examples of an atom in front of a flat surface, quan-
tum reflection probabilities are essentially determined by the
asymptotic, highly retarded Casimir part of the atom-surface
potential, —C,/s*, and they are largely insensitive both to the
nonretarded van der Waals part of the potential at smaller
distances and to the shape of the potential in the transition
zone [7].

More flexible probing of atom-surface interactions can be
achieved in the scattering of atoms by a sphere. Observable
cross sections depend strongly not only on the modulus but
also on the phase of the scattering matrix. Moreover, the
radius of the sphere may be regarded as a tunable parameter
that can be adjusted to probe different regimes of the atom-
sphere potential. In this paper we describe the elastic scatter-
ing of polarizable atoms by a conducting sphere with a ra-
dius in the nanometer range. In Sec. II we discuss the general
structure of the atom-sphere potential and in Sec. III we de-
scribe the leading near-threshold contributions to the differ-
ential cross section. Concrete examples involving sodium
and metastable helium atoms are given in Sec. IV.

II. ATOM-SPHERE POTENTIAL

When the distance s of the atom from the surface of the
sphere is small compared to the radius R of the sphere—but
still beyond the “close” region of inelastic reactions and
adsorption—the potential can be expected to be as for an
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atom in front of a flat surface. Such an atom-surface potential
can be written as

G

Vflut(s) == S3U(_S:/L) >

3)
with L given by (2). The coefficients C; and C, are as de-
fined in (1), and v(x) is a factor defining the shape of the

potential in the transition zone. Its asymptotic properties are
defined by

v(x)N{l’ x—0, @

X, X— 0,

When the distance s of the atom from the surface of the
sphere is large compared to the radius R of the sphere, the
atom-sphere potential behaves as a nonretarded van der
Waals potential, V(s)=—Cq/s%, for “small” distances (still
larger than R) and as a highly retarded Casimir potential,
V(s)=—C5/s’, for large distances. Such a potential may be
written as

Cs
V. = 5
sphere(s) S6U (S/L,) ( )
where
C
== 6)
Cs

and v is again a shape factor obeying the boundary condi-
tions (4). The coefficients C4 and C; depend on the polariz-
ability properties of both the atom and the sphere. For a
conducting sphere with a frequency-independent dipole po-
larizability equal to R?, they are related to the corresponding
strengths C; [21] and C4 [22] in (1) by

Co=12R°C5, C;=LRC,. (7)

The length L' as defined in (6) is independent of R and close
in value to the length L defined in (2) for the case of a flat
surface,

’ 23
L' =1%L. (8)

Both L and L' are typical lengths in the transition zone be-
tween the nonretarded van der Waals part of the potential at
small distances and the highly retarded part at large dis-
tances.

An atom-surface potential obeying the correct boundary
conditions in all cases, i.e., depending on whether the dis-
tance s is small or large compared to the radius of the sphere
and whether it is small or large compared to distances char-
acteristic of the transition zone, can be constructed by com-
bining (3) and (5),

$3 ) s© s -l
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and we use one shape factor v for both terms in the square
bracket for simplicity. In order to appreciate the importance
of the various contributions to the atom-surface potential, it
is helpful to express the strength parameters C, in terms of
lengths S,,
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In these terms, we can rewrite Eq. (9) as
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and L, L' are given by

(B (B
Bs (Bo)*
For the explicit applications in Sec. IV we chose two differ-

ent versions of the potential (9) and (11) based on two shape
factors,

L , L (12)
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viX)=1+x, vy(x)=
The shape factor v; was used by Shimizu [8] to analyze the
probabilities he measured for metastable neon atoms being
quantum reflected from a flat silicon surface, and the shape
factor v, has been used by Holstein [23] to describe the
transition from the nonretarded to the highly retarded regime.
In the analysis of quantum reflection by flat surfaces in [7],
the shape factor v, appeared to describe a somewhat more
abrupt transition from the nonretarded regime to the highly
retarded regime than was seen in a more realistic atom-
surface potential, while the shape factor v, described a some-
what smoother transition. It seems reasonable to assume, that
the behavior of a realistic atom-surface potential lies in be-
tween that described by these two shape factors.

III. ELASTIC SCATTERING

The elastic scattering amplitude f(6) can be expanded in
partial waves,

20+ 1 .
A0 =3 fiPfcos ). fi=——(H0-1), (14)

1=0 2ik

and the scattering phase shifts J; are determined by solving
the radial Schrodinger equation with the effective potential

AU+ 1)
M P

Vegr(r) = V(s) + , r=s+R>R, (15)
for a radial wave function obeying the asymptotic boundary
condition u,(r) ~ sin(kr+ &—1/2),(r— ) [24]. Close to the
surface of the sphere, r— R, the attractive singular part V(s)
dominates in (15), motion becomes semiclassical, and we
can describe total absorption at the surface of the sphere by
imposing incoming WKB wave functions as the boundary
condition in this limit. Because of the loss of flux, the
S-matrix ¢*% is no longer unitary and the scattering phase
shifts &, are complex. In contrast to the widespread use of
complex potentials to describe absorption [25], the imple-
mentation of incoming WKB boundary conditions in the
semiclassical region near the surface of the sphere provides
an unambiguous and model-independent treatment of the
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TABLE I. Tail parameters Ay—R=a—ib and A and p-wave scat-
tering length A;(R—0) for homogeneous atom-surface potentials
V(s)=—C,/s* with @=6 or 7 in terms of the associated character-
istic length B, defined by (10).

a alB, blB, A(a-ib) A, (R—0)/(a—ib)
6 04779888  0.4779888 1 ~1.1687348
7 0.5388722 03915136  0.6496249 ~1.0678594

loss of flux through inelastic reactions and sticking.

For [=0, there is no centrifugal potential and the radial
equation is formally similar to the one-dimensional
Schrodinger equation describing quantum reflection by an
attractive potential diverging to large negative values at
r—R. The quantum reflection amplitude can be written as
—e%%, and for small energies E=#%>/(2M), the leading
near-threshold behavior of the complex phase shift §, is

8 ~ = (g — ib)k+ S(kA)?, k— 0. (16)

Here az—ib=A, is the complex s-wave scattering length.
The “threshold length” b determines the leading, linear de-
cline of the quantum reflection probability from unity for the
potential V(s). Because the radial Schrodinger equation is
defined in terms of r=s+R, the mean scattering length ay is
the sum of the mean scattering length a of the potential V(s)
and the radius R of the sphere,

Ay(R)=a+R-ib. (17)

Both @ and b are “tail parameters” of the potential V(s),
which can be derived from the threshold solutions of the
Schrodinger equation beyond the semiclassical region at
“small” distances [26]. A is a further tail parameter of V(s)
which follows from an adaptation of effective-range theory
to quantum reflection [27]. For any potential V(s) falling off
faster than —1/s° asymptotically, a, b, and A are well-defined
finite numbers which are characteristic of the potential tail
beyond the semiclassical region at small distances. For a
homogeneous potential, —C,/s“%, they are related to the
length paramater B, given by (10) via coefficients depending
in a simple analytic way on the power «, see [27] and Table
I. The tail parameters a, b, and A do not depend explicitly on
the radius R of the sphere, but they do depend implicitly on
R, because the atom-sphere potential V(s), e.g., as defined in
(9) and (11), depends on R through the R dependence of the
strength parameters Cq, C; o1 B¢, 37.

For /=1, the leading contribution to the near-threshold
behavior of the (complex) scattering phase shift is deter-
mined (for potentials falling off faster than 1/s°) by the com-
plex p-wave scattering length A,

8 ~ kAR, k—0. (18)

A, is related to the threshold behavior of the amplitude for
tunneling through the potential barrier formed by the cen-
trifugal potential and the singular attractive potential V(s),
and it depends in a nontrivial way on the radius R of the
sphere. Analytical expressions have been derived for the spe-
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cial case that V(s) homogeneous and R—0, see [28,29].
Note that A, is a real multiple of a—ib in this special case,
see Table I.

Up to and including order O(E), the differential cross sec-
tion is given by the s-wave contribution and the interference
term between s and p waves,

d
o =P (19)

~|Ao|*(1 = 2bk) + K*[F(I=0)

+F(=0,1)cos 0], k— 0. (20)

Here F is a well-defined function of 4, and A, while F also
depends on A;.

IV. APPLICATION

For concrete calculations in realistic examples we chose
two rather different types of atoms, viz. metastable He(2 >S)
atoms which are widely used in atom-optics experiments
[30], and ground-state sodium atoms, which have recently
been used in the study of quantum reflection of Bose-
Einstein condensates [11,14]. Accurate calculations of the
potential of metastable helium atoms in front of a flat surface
have been performed by Yan and Babb [31], and the strength
parameters describing the potential in the nonretarded and
highly retarded limits are given as C3=1.9009 a.u. and C,
=5163 a.u. for a conducting surface. For sodium atoms in
front of a flat conducting surface, Kharchenko er al. [32]
derived the parameters C;=1.889 a.u. and C4,=1417 a.u. via
an electric-dipole oscillator strength distribution constructed
from combinations of experimental and theoretical energy
levels, oscillator strengths and photoionization data, con-
strained by accurate values of oscillator strength sum rules.
Their result for Cs is consistent with more recent theoretical
calculations by Derevianko et al. [33] and Johnson er al. [34]
based on relativistic many-body perturbation theory.

The differential cross section up to order O(E) is deter-
mined by s- and p-wave contributions only, according to
(20), and the isotropic s-wave contribution can be filtered out
by looking in the direction perpendicular to incidence, where
the angle-dependent term proportional to cos 6 vanishes. Fig-
ure 1 shows the differential cross section (19) at 0=§ for
metastable He(2 3S) atoms (top panel) and for ground-state
Na atoms (bottom panel) elastically scattered by an absorb-
ing sphere of 200 a.u. radius for wave numbers k up to
5/ pm. This corresponds to temperatures up to 1 uK for he-
lium and 200 nK for sodium. The solid and dashed lines
show the results obtained with the shape factors v; and v,,
respectively [see (13)], in the potential (9) and (11). They are
quite close to the expectations for a homogeneous —Cgq/s®
potential (dotted-dashed lines) in the helium case, and to a
homogeneous —C-/s’ potential (dotted lines) in the sodium
case. The shape of the potential in the transition zone has
essentially no influence on the slope, which determines the
threshold length b, i.e., the imaginary part of the complex
scattering length, and a small effect on the threshold value of
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FIG. 1. Differential cross section (19) at 0:% for the elastic
scattering of He(2 3S) atoms (top panel) and ground-state sodium
atoms (bottom panel) by an absorbing sphere of radius R
=200 a.u. The parameters C,, 3, describing the potential strength
in the nonretarded van der Waals and the highly retarded Casimir
limits are as given in Table II [see also (7) and (21)]. The dotted-
dashed lines show the results for a homogeneous potential —C/s°,
corresponding to a nonretarded van der Waals potential, and the
dotted lines show the results for a homogeneous potential —C5/s’,
corresponding to a highly retarded Casimir potential. The solid and
dashed lines show the cross sections obtained with the realistic
atom-sphere potential (9) and (11) containing the two versions (13)
for the shape factor describing the transition from the nonretarded
to the highly retarded regime.

the cross section, which is simply (@+R)?>+b? according to
(20).

Although the cross sections in Fig. 1 show, at least up to
order O(E), only the s-wave contribution consisting of quan-
tum reflection in the nonclassical region of the potential tail
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or transmission (leading to absorption) through this region, it
offers more information than a corresponding measurement
of quantum reflection probabilities from a flat surface, be-
cause the leading terms are sensitive to both modulus and
phase of the scattering matrix. If we wanted to extract infor-
mation about the potential from elastic scattering cross sec-
tions, then fitting the 6-independent part of the expression
(20) to the leading near-threshold behavior of the cross sec-
tion at =7 would allow an easy determination of @ and b, as
well F(I1=0) which depends also on A. The important part of
the tail of the atom-sphere potential is due to the second term
in the square brackets in (9) and (11) describing the transi-
tion from —Cg4/s® to —C;/s’ at distances large compared to
the radius of the sphere. An effect of the flat-surface terms
—C;/s% and —C,/s*, which should be important closer to the
surface, was barely noticeable in our present calculations.
We checked this by dropping the contribution involving
s*v(s/L) in (9) and (11), so that the potential assumed the
form (5), and this only marginally affected the results. Note
that knowledge of the potential strengths Cyq and C; deter-
mining the nonretarded and retarded limits of the potential
between the atom and a conducting sphere for one given
radius R implies, via (7), knowledge of C¢ and C; for any
value of R, and of the corresponding R-independent potential
strengths C3 and C, determining the potential between the
same atom and a flat conducting surface.

The key to understanding the different results for meta-
stable helium and for ground-state sodium in Fig. 1 lies in an
appreciation of the magnitudes of the characteristic lengths
B, associated with the potential strengths C, according to
(10). The values of B, and B; depend on the R-independent
lengths B3, B, and the radius R of the sphere according to
(™),

(Be)* = 12R*By = Bs =R (128;)',

(B)°=BRB)*= B =R(VEB,)", (1)

and they are listed in Table II for R=200 a.u., and R
=2000 a.u. For R=200 a.u., both B4 and (3; are noticeably
smaller than the length L' in the helium case, which means
that the important characteristic lengths of the potential tail
lie short of the transition zone in the nonretarded van der
Waals regime, so the cross sections resemble the expecta-
tions for a pure nonretarded —Cg/s® potential tail. For so-
dium, on the other hand, both ¢ and 3, are noticeably larger
than L', and the cross section is closer to the expectations for
a highly retarded pure —C,/s’ potential.

TABLE II. Lengths (in a.u.) which follow from the potential strength parameters C3=1.9009 a.u., C4;=5163 a.u. for He(2 >S) [31] and
C3=1.889, C4=1417 for Na [32] according to (7) and (10) and characterize the nonretarded and retarded parts of the potential between an
atom and a flat conducting surface [ B3, 84] or a conducting sphere with radius R [ B¢(R),B7(R)]. L and L’ are R-independent lengths, (2), (6),
(8), and (12), which are characteristic of the transition zone between the nonretarded van der Waals regime of comparatively small distances

and the highly retarded regime at large distances.

Length Bs Ba L B5(200) 37(200) B6(2000) 7(2000) L'
He(2 3S) 27740 8680 2716 1277 1560 7184 6211 3470
Na 158300 10900 750 1974 1708 11100 6803 959
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FIG. 2. Same as Fig. 1, but for R=2000 a.u.

Such an interpretation is supported by a comparison of
differential cross sections (again at 6= %T) for the same atoms
in the same momentum range scattered by a conducting
sphere of radius 2000 a.u. as shown in Fig. 2. For sodium,
both B4 and B, are now much larger than L', the cross sec-
tion is even closer to the expectations for a highly retarded
pure —C,/s potential and essentially independent of the non-
retarded part of the potential and its shape in the transition
zone.

For helium and R=2000 a.u., both ¢ and ; are larger
than L', roughly by a factor of 2, similar to the case for
sodium at R=200 a.u. The cross sections up to k=1/um are
also similar to the results for sodium and R=200 a.u. in the
range up to k=5/um, which roughly corresponds to the
same ranges in k3¢ or kS3;. As for sodium and R=200 a.u.,
the slope of the cross sections near threshold is quite close to
the expectation for a highly retarded —C;/s’ potential, but
the limiting values at threshold are not as close. The helium
example shows, that increasing the radius of the sphere from
200 a.u. to 2000 a.u. raises the important characteristic
lengths B¢ and S5 to values in the distant part of the transi-
tion zone or beyond, so making the cross section less sensi-
tive to the nonretarded and more sensitive to the highly re-
tarded part of the atom-sphere potential.

The leading deviation from isotropy is determined by the
second term in the square brackets on the right-hand side of
(20), which can be studied by looking at the dimensionless
asymmetry,
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FIG. 3. Asymmetry (22) for the elastic scattering of He(2 S°)
atoms (top panel) and ground-state sodium atoms (bottom panel) by
an absorbing sphere of radius R=200 a.u. The parameters C,, 8,
describing the potential strength in the nonretarded van der Waals
and the highly retarded Casimir limits are as given in Table II [see
also (7) and (21)]. The dotted-dashed lines show the results for a
homogeneous potential —C¢/s°, corresponding to a nonretarded van
der Waals potential, and the dotted lines show the results for a
homogeneous potential —C5/s’, corresponding to a highly retarded
Casimir potential. The solid and dashed lines show the asymmetries
obtained with the realistic atom-sphere potential (9) and (11) con-
taining the two versions (13) for the shape factor describing the
transition from the nonretarded to the highly retarded regime

do do
defd_Q(az 0) - d—Q(t9= )
(k)=
do

do
E(9=O) + E((?: )

=2k*F(1=0,l=1)+ (higher-order terms). (22)

Figure 3 shows the asymmetry (22) for He(2>S) and Na
atoms scattered by an absorbing sphere with radius 200 a.u.
in the same momentum range as Figs. 1 and 2. The results
for helium (top panel) are very close to the expectation for a
nonretarded —Cq/s® potential (dotted-dashed line) and essen-
tially unaffected by the potential in the transition zone and
beyond. Even for sodium (bottom panel), the asymmetry is
closer to the expectations for a nonretarded —Cq/s® potential
than to the highly retarded —C;/s’ potential (dotted line) in
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He(23S) (Radius=2000 a.u.)
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FIG. 4. Same as Fig. 3, but for R=2000 a.u.

the near-threshold region up to k=2/um. The asymmetries
obtained with the larger radius R=2000 a.u. are shown in
Fig. 4. The results for sodium are now very close to the
expectation for a homogeneous —C,/s’ potential, even at
“higher” momenta beyond the range where the near-
threshold terms (20) determine the cross section. For helium
and R=2000 a.u., the asymmetry is reproduced neither by
the pure —Cg/s® potential, nor by the —C/s’ potential, al-
though the latter seems a better approximation for moderate
wave numbers near k=2/um. It is interesting to note, that

the parameter F in (22) vanishes for a homogeneous —Cg/s®
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potential with finite C4 and R—0 [29]. This explains why
the asymmetry is so much lower for the —Cq/s® potential
than for the —C/s” potential in the top panel of Fig. 3.

V. SUMMARY

We have calculated differential cross sections for the elas-
tic scattering of ultracold atoms by a sphere with radius in
the nanometer range. Loss of flux due to inelastic reactions
and adsorption is described in an unambiguous and model-
independent way by imposing incoming boundary conditions
in the semiclassical region near the surface of the sphere.
Parameters were chosen to correspond to metastable helium
(23S) atoms and ground-state sodium atoms scattered by a
sphere with radius R=200 a.u. or R=2000 a.u. Two different
shape functions (13) were used to describe the shape of the
atom-sphere potential in the transition zone between the non-
retarded van der Waals regime of comparatively small atom-
surface separations and the highly retarded Casimir regime at
large distances.

The leading near-threshold behavior of the differential
cross sections is governed by a small number of tail param-
eters characteristic of the attractive atom-sphere potential be-
yond the semiclassic region at small distances. The key to
understanding the results presented in Sec. IV is an apprecia-
tion of the magnitudes of the characteristic lengths B¢ and 3,
associated with the parameters Cg, C; defining the strength
of the atom-sphere potential in the nonretarded van der
Waals regime and the highly retarded regime, respectively.
These characteristic lengths depend on the lengths 85 and B,
of the flat-surface case and on the radius R of the sphere via
the very simple relation (21). By varying R, they can be
tuned to lie in the nonretarded van der Waals regime, in the
highly retarded Casimir regime, or in the transition zone in
between. Scattering of ultracold atoms by nanospheres thus
offers a transparent, sensitive and flexible possibility for
probing atom-surface interactions.
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