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Time-dependent density-functional theory is used to calculate the energy loss of antiprotons and protons
traversing metal clusters of variable size. We find that the effective energy loss per unit path length inside the
cluster shows no significant cluster size effects over the wide range of projectile velocities studied. This allows
us to compare the calculated stopping power with the experimental values for a solid metal target. Excellent
agreement between the theoretical results and recent experimental data is found for velocities below the
inner-shell excitation threshold. We thus present a nonperturbative quantum-mechanical approach to obtain the
energy loss of charges in solids.
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I. INTRODUCTION

Charged particles penetrating solid media give rise to
electronic excitations in the target and thus lose kinetic en-
ergy. The slowing down of charged particles in matter is a
key phenomenon in applied materials science, in medical
physics, as well as being an important ingredient in many
experimental techniques used in fundamental research on
solids, surfaces, and nanostructures. However, and despite
numerous attempts, the complexity of the dynamic interac-
tion between charges and solids has made it difficult to apply
theoretical schemes at the level of accuracy achieved in other
condensed matter problems. For such accuracy, a detailed
description of electronic excitations, dynamic screening, and
possible charge transfer processes is required.

So far, self-consistent calculations for the slowing down
of ions in metal targets have been reported only in the low-
velocity limit. A combination of scattering theory with the
results of static density functional theory �DFT� can success-
fully describe the energy loss in this case �1–5�. For higher
projectile velocities, only model calculations based on
velocity-dependent screening �6,7� or perturbative expan-
sions in terms of screened higher-order response functions
�8� are available at present. There has been no quantal self-
consistent theoretical framework able to describe the stop-
ping power of solids for charged projectiles over a wide
range of velocities. Only theories based on classical mechan-
ics �9,10� have been applied. Particularly challenging is the
case in which the projectile velocity is similar to the Fermi
velocity vF of the target electrons. In this velocity range,
quasistatic or perturbative approximations break down even
for unit-charge projectiles.

The development of time-dependent methods in recent
years has opened new perspectives in the theoretical descrip-
tion of the slowing down of charged projectiles in matter. In
particular, time-dependent density functional theory
�TDDFT� provides a self-consistent, nonperturbative, time-

domain treatment of electron dynamics in many body sys-
tems. TDDFT has been successfully applied to the calcula-
tion of energy transfer in collisions between charged atomic
particles and small molecules and clusters in the gas phase
�11–14�. Two-dimensional targets of finite size �15� and
metal surfaces �16� have been addressed as well.

In this article, we develop a quantal method based on
TDDFT in order to obtain the contribution of the valence
band electrons to the slowing down of charges in solids over
a wide range of velocities. The stopping power of Al for
antiprotons is taken as an illustration to demonstrate the ca-
pabilities of the method. There are several reasons for this
choice. First, the valence electrons of Al are the paradigm of
a free-electron-like band, so that numerical effort can be
much reduced. Second, pointlike projectiles of negative
charge have often been under scrutiny since the pioneering
paper of Fermi and Teller �17�: The absence of charge ex-
change processes between the projectile and the target sim-
plifies the analysis in this case. Finally, accurate experimen-
tal data have recently been obtained for this system �18–20�.
It is worth mentioning that our method is not limited to free-
electron-like targets: The methodology is general and could
be in principle applied to any weakly correlated material.

The core of our method consists of TDDFT calculations
of the energy loss of projectiles traversing target clusters of
variable sizes. We then show that the energy loss per unit
path length inside the cluster is nearly independent of the
cluster size. This allows us to link this quantity to the stop-
ping power of an infinite system. Our theoretical results for
the stopping power of Al for antiprotons reproduce recent
experimental measurements �18–20� for the range of projec-
tile velocities below the inner-shell excitation threshold. Ex-
tension of the present approach to the stopping of Al for
protons agrees quantitatively with experimental data �19,20�
as well.

PHYSICAL REVIEW A 75, 042902 �2007�

1050-2947/2007/75�4�/042902�4� ©2007 The American Physical Society042902-1

http://dx.doi.org/10.1103/PhysRevA.75.042902


II. THEORETICAL APPROACH

To calculate the stopping power of a cluster of Al atoms,
a spherical jellium model is used to represent the valence
electrons. The contribution of inner-shell excitations to the
stopping is thus not included. The jellium positive back-
ground density is defined by n0

+�r�=n0
+��Rcl−r�. Here, Rcl is

the cluster radius and ��x� is the Heaviside function. The
electron density of the cluster is described by the density
parameter rs �4�rs

3 /3=1/n0�. The number of electrons in the
cluster Ne is Ne= �Rcl /rs�3.

The time evolution of the electron density in response to
the field of the moving projectile, n�r , t�, is calculated within
the Kohn-Sham �KS� scheme of TDDFT �Hartree atomic
units are used everywhere unless otherwise stated�:

i
�� j�r,t�

�t
= �T + Veff��n�,r,t��� j�r,t� , �1�

where � j�r , t� are the KS orbitals and T is the kinetic energy
operator. The effective KS potential, Veff��n� ,r , t� is a func-
tion of the electron density of the system: n�r , t�
=� j�occ�� j�r , t��2. Here, Veff is obtained as the sum of the
external potential Vext, the Hartree potential VH, and the ex-
change correlation potential Vxc: Veff=Vext+VH+Vxc. Vext is
the Coulomb potential created by a point charge Q moving
with constant velocity v along a straight trajectory that goes
through the geometrical center of the cluster. The initial po-
sition of the projectile is such that the projectile-cluster in-
teraction can be neglected. Vxc�r , t� is treated in a standard
adiabatic local density approximation �ALDA� with the
exchange-correlation functional of Ref. �21�.

The numerical procedure used is very similar to that of
Refs. �15,22�. For t=0, n�r ,0� is the electron density of the
unperturbed cluster. The KS wave functions � j�r ,0� are ex-
panded in a basis set of spherical harmonics. A radial mesh
of equidistant points is used, allowing the Fourier grid rep-
resentation of the Hamiltonian matrix �23�. The static KS
equations are then solved by direct diagonalization. After-
wards, the KS orbitals are projected onto a cylindrical grid,
r= �� ,� ,z�, with the z axis along the projectile trajectory.
The time propagation is performed by means of the split-
operator technique �24�.

III. RESULTS AND DISCUSSION

Figure 1 shows several snapshots of the change in elec-
tron density �n�r , t�=n�r , t�−n�r ,0� induced by an antipro-
ton �Q=−1� of velocity v=1.5 colliding with a cluster of
Ne=254, Rcl=12.7, and rs=2. This value of rs is close to that
describing the screening radius in bulk Al. The density is
plotted in a plane that contains the particle trajectory. A po-
larization effect is clearly visible before the antiproton
reaches the cluster surface. Once inside the cluster, a deple-
tion of charge develops in the vicinity of the antiproton. The
self-consistent dynamic rearrangement of charge in the vicin-
ity of the moving particle results in a wake potential similar
to that in bulk metal targets �25�. Our results show that the
collision of the antiproton with the cluster is followed by
electron emission from the cluster.

Figure 2 shows the force acting on the antiproton during
the collision process. It is directly obtained from the time-
dependent charge density, n0

+�r�−n�r , t�. Due to the cylindri-
cal symmetry of the problem, the only nonzero component of
the force is along the projectile trajectory �z axis�, Fz�t�.
When the antiproton is located outside the cluster, it is at-
tracted by the induced dipole. Crossing the surface into the
cluster results in a rapid rearrangement of electron density to
screen the projectile charge. Inside the cluster, Fz shows mi-
nor oscillations around a constant �mean� value.

The energy lost by the projectile during the collision is
given by

�E = v	
−�

�

Fz�t�dt . �2�

We have explicitly checked that ��E� calculated from Eq. �2�
corresponds to the increase of the total energy of the cluster.
However, the magnitude we are interested in is the effective
stopping power inside the cluster S. For this purpose, we

FIG. 1. �Color online� Contour plots for the antiproton-induced
change �n�r , t� in the electron density of the spherical cluster. The
cluster parameters are rs=2 and Ne=254. Results are shown in the
�x ,z� plane. The center of the cluster is at �0,0�. The projectile
trajectory is shown as a horizontal line in each plot. The projectile
velocity is v=1.5. Plots �a� to �d� correspond to antiproton positions
z=−12.7, 5.8, 12.6, and 42.5. Color codes are shown at the right
side of the figure.

FIG. 2. Force on an antiproton moving with v=1.5 as a function
of its position with respect to the center of the cluster. The cluster
parameters are rs=2, Ne=254, and Rcl=12.7.
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define S as the ratio of the energy loss to the trajectory length
inside the cluster, i.e., the diameter of the cluster: S
=�E / �2Rcl�.

Figure 3 shows S as a function of projectile speed for
antiprotons colliding with clusters of rs=2.07 and size rang-
ing from Ne=18 �Rcl=5.42� to Ne=556 �Rcl=17.02�. The va-
lence electrons of bulk Al can be well represented by this
value of rs. Size effects are only significant for the two
smallest clusters considered �Ne=18 and Ne=58�. For the
largest ones, the results merge roughly into a universal curve.
We estimate that deviations from this universal behavior for
larger clusters amount to a maximum of 
5%. The similarity
of the results for different clusters reflects important features
of the dynamics of the interaction within the studied velocity
range: �i� The contributions to �E from the ingoing and out-
going trajectory paths, as well as from the surface region, are
small. Most of the energy loss is suffered while moving in-
side the cluster. �ii� The size independence suggests that the
dynamic screening within the cluster is essentially that for a
homogeneous system in the velocity range considered. This
implies that the discreteness of electronic states in the cluster
does not play an important role in the screening process.

The independence of the value of S on the cluster size
allows us to consider S as representative of the stopping
power in an infinite free electron gas with the same electron
density parameter rs. In the inset of Fig. 3, we compare our
TDDFT results with other theoretical approximations for the
infinite system, which are known to be accurate under more
restricted conditions. The linear response theory �LRT� result
provides the high velocity limit. It is obtained using a Mer-
min linear response function �26� with an empirical damping
factor of �=1.35 eV. The DFT result �2� assumes a linear
dependence of S on v and provides the low-velocity limit.
Both the low-velocity limit and the high-velocity limit for
the infinite system are well-described by our calculation.

In Fig. 4, we compare our TDDFT results for the Ne
=556 cluster with experimental measurements recently re-
ported for bulk Al �18–20�. The TDDFT results quantita-

tively agree with the experimental data, up to velocities be-
yond the stopping power maximum. Deviations arise at v

1.8, when the excitation of the Al inner-shell electrons
starts to contribute to the projectile energy loss. This channel
is not included in our calculation. For low-velocity projec-
tiles, our results show a linear dependence of S on v, roughly
up to the maximum in S: deviations from the linear depen-
dence are smaller than 6% for velocities v	1.4.

The description of the interaction between negatively
charged atomic particles and metals is simplified by the ab-
sence of charge exchange. For positive ions, and particularly
for velocities lower than vF, electron capture and loss pro-
cesses come into play. In order to test the accuracy of the
TDDFT-ALDA model for positive ions, we have performed
additional calculations for the stopping of Al for protons
�Q= +1�. The procedure is identical to that used for antipro-
ton projectiles. The results are shown in Fig. 4. They are
compared with recent experimental measurements �19,20�.
Reference tabulations of stopping ranges in solids are shown
as well �27–29�. The agreement is good up to the velocity for
which the excitation of the Al inner shells starts to contrib-
ute. According to our TDDFT result, the difference between
the stopping power for protons and that for antiprotons due
to the excitation of the Al valence band is small �	10% � for
v
3, suggesting a small valence Barkas effect.

IV. SUMMARY AND CONCLUSIONS

In summary, we conclude that finite sized systems can be
used to study the energy loss of charged projectiles moving
inside metallic solids. The local character of the interaction
makes it possible to define an effective stopping power that
is shown to be comparable to that of an infinite target. The
specific example of the free-electron metal is treated here,
but the methodology developed in the present work is gen-

FIG. 3. �Color online� Stopping power S of antiprotons moving
inside clusters with rs=2.07 and of different sizes �see legend�, as a
function of velocity. Lines are drawn to guide the eye. The inset
compares the Ne=556 results with those of LRT and DFT.

FIG. 4. �Color online� TDDFT calculation of the stopping power
S of Al �rs=2.07� for protons �black empty squares� and antiprotons
�red empty circles� as a function of projectile velocity. Experimental
results for antiprotons �green filled circles �18–20�� and protons
�blue filled and empty triangles �20��, as well as tabulated stopping
powers for protons �blue crossed �27� and filled �28,29� squares� are
also shown.
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eral. It can be applied to any material for which the elec-
tronic structure can be well characterized within a DFT
framework. Further studies should be made to investigate
whether our conclusions are also applicable to semiconduc-
tors and insulators, where the adiabatic approximation for
correlations may also have limitations �30�.

Furthermore, we have shown that TDDFT is a promising
approach for the calculation of the mean energy loss of point
charges in matter. It is a quantal, nonperturbative method,
which is able to describe projectile-target energy transfer
over a wide range of projectile velocities. The support for
this statement is twofold: �a� Our TDDFT calculations repro-
duce stopping powers in the well-known limits of low- and
high-velocity projectiles and �b� they quantitatively agree
with recent data for the stopping power of Al for protons and

antiprotons. The agreement in the case of protons is particu-
lary interesting and worthy of more detailed analysis, as it
suggests that charge transfer processes are reasonably well
described within the ALDA.
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