Energy levels in the resonant photoionization of heliumlike Ne⁸⁺

N. A. B. Faye,* A. S. Ndao, A. Konté, M. Biaye, and A. Wague

Laboratory Atoms Lasers, Department of Physics, University Cheikh Anta Diop of Dakar, Sénégal

(Received 29 December 2006; published 23 April 2007)

The diagonalization approximation is applied to the photoionization process of Ne⁸⁺ to determine the energies of autoionizing states converging to the n=3,4,5 thresholds of the residual ion. The calculations are carried out for ^{1,3}P^o states. The results are compared with available results obtained by other theoretical approaches.

DOI: 10.1103/PhysRevA.75.042713

PACS number(s): 32.80.Fb, 32.80.Dz

INTRODUCTION

In the last two decades, interest in experimental and theoretical studies of resonant photoionization of heliumlike ions and properties of autoionizing states has been renewed [1-14] by the advent of high-energy resolution spectrometers using synchrotron radiation and the appearance of multiply charged ions sources like electron cyclotron resonance (ECR) or electron-beam ion source (EBIS) and by the various methods using different approaches of this problem. Now, investigations on autoionizing states receive a great deal of attention with the availability of new short-pulse lasers [15,16].

Like other heliumlike multiply charged ions, the experimental study of doubly excited states of Ne⁸⁺ ions is related to experimental investigations on capture processes after collision between Ne¹⁰⁺ and He or H₂ targets (Bordenave-Montesqueu et al. [17], Frémont et al. [18], Martin et al. [19]). Bordenave-Montesqueu et al. [17] observed the excitation of Ne⁸⁺(3lnl') ¹L Rydberg series by high resolution electron spectroscopy after double capture process at low collision velocity. They show that in the *n* range where the double capture process populates the symmetrical 4141' states (n > 9), an enhancement of the intensities of the 3lnl'Rydberg lines is observed. So the transfer of population from the 4l4' to the 3lnl' states is found to be favored against a direct autoionization into the n=2 continuum. In a more recent experimental study of single and double electron capture in low-energy Ne¹⁰⁺-He collisions, the total and differential cross sections for single-electron capture onto the levels n=3, 4, 5, and 6 of Ne⁹⁺ (nl) and double-electron capture onto a series of doubly excited states (3, n) and (4, n)with n=4, 5, and 6 of Ne⁸⁺ have been obtained by Fléchard et al. [20]. From the theoretical side, Sanchez and Bachau [21] have reported the positions and widths for ${}^{1}D^{e}(4,4)$ and (3, n=5-12) states of Ne⁸⁺ ions, on the basis of the Feshbach approach and L^2 discretization method. Doubly excited $^{1,3}F^{o}$ resonances in Ne⁸⁺ below the n=3 and 4 thresholds of the hydrogenic ion have been calculated by Bhatia and Ho [22] using the complex rotation method.

For ${}^{1,3}P^o$ resonant states of Ne⁸⁺ which are in our interest, any of the experimental results have been done with our knowledge and only a few theoretical results have been reported. Those are the calculations of Ho [23] using the complex rotation method, Bachau [24,25] using the truncated diagonalization method (TDM), Van der Hart [26] using the TDM with *B*-splines basis, and Merabet *et al.* [27] using the Hartree-Fock code by Cowan [28]. Whereas much theoretical work has been reported concerning doubly-excited states in highly-charged ions below the n=2 and n=3 thresholds, the 4lnl' states have been studied to a much lesser extent and the first more complete study was reported by Van der Hart *et al.* [26].

For resonant states lying under the n=4, Ho [23] and Bachau [25] reported only the energies of the lowest 4l4l' states. While, Van der Hart [26] extended the calculations to the energies of the 10 lowest 4lnl' states.

In the present work, we apply the diagonalization approximation to calculate the energies of the ${}^{1,3}P^o$ resonant states in Ne⁸⁺ below the n=3, n=4, and n=5 thresholds of the residual ion. This approximation has already been used with success for the description of autoionizing resonances in helium and heliumlike ([26,27]) and in our previous papers [11–14]. Extensive calculations have been done here, and we report a complete set of data for singlet and triplet states of the resonant 3lnl', 4lnl', and 5lnl' states.

CALCULATIONS

Basics formulas of the diagonalization approximation

In the diagonalization approximation, the final state of the ion plus photoelectron system is expanded in the subspaces of closed and open channels as follows:

$$\Psi_{Ej}(\mathbf{r}_1, \mathbf{r}_2) = \hat{A} \sum \Psi_k(\mathbf{r}_1) U_{kj}(E, \mathbf{r}_2) + \sum \Lambda_{\mu}(E) \Phi_{\mu}(\mathbf{r}_1, \mathbf{r}_2),$$
(1)

where \hat{A} is the operator of antisymmetrization, k represents a set of quantum numbers that characterize the ion plus photoelectron system in the subspace of open channels; $U_{kj}(E, \mathbf{r}_2)$ is an unknown function describing the motion of the photoelectron, $\Psi_k(\mathbf{r}_1)$ is the eigenfunction of the residual ion.

The determination of the function $\Psi_{Ej}(\mathbf{r}_1, \mathbf{r}_2)$ is equivalent to the calculation of the coefficients $\Lambda_{\mu}(E)$ and $U_{kj}(E, \mathbf{r}_2)$. Detailed calculations of these coefficients have been reported by [11,29,30]. The functions $\Phi_{\mu}(\mathbf{r}_1, \mathbf{r}_2)$ are obtained by unitary transformation of the Hamiltonian in the

^{*}Electronic address: arame@ucad.sn

TABLE I. Energies [-E(eV)] of the ${}^{1}P^{o}$ resonances of the Ne⁸⁺ ion associated with the n=3 hydrogenic threshold.

TABLE III. Energies [-E(a.u.)] of the ¹*P*^o resonances of the Ne⁸⁺ ion associated with the *n*=4 hydrogenic thresholds.

States	Present	Bachau [24,25]	Merabet [27]	Ho [23]
3s 3p	285.63	285.65		285.70
3p 3d	273.33	273.43		273.98
3s 4p	227.35	226.24	228.20	
4s 3p	223.93	224.12	224.77	
4p 3d	223.64	224	224.53	
3 <i>d</i> 4 <i>f</i>	216.77	217.56	217.85	
3p 4d	216.23	216.55	216.68	
3s 5p	198.76			
5p 3d	196.57			
5s 3p	196.39			
3 <i>d</i> 5 <i>f</i>	191.94			
3p 5d	191.14			

subspace of closed channels which are the autoionizing states,

$$\Phi_{\mu}(\boldsymbol{r}_{1},\boldsymbol{r}_{2}) = \hat{A} \sum_{kl} \alpha_{\mu}(k,l) \Phi_{k}(\boldsymbol{r}_{1}) \Phi_{l}(\boldsymbol{r}_{2}), \qquad (2)$$

with the diagonalization condition

$$\langle \Phi_{\mu}(\boldsymbol{r}_{1},\boldsymbol{r}_{2}) | \boldsymbol{H} | \Phi_{\nu}(\boldsymbol{r}_{1},\boldsymbol{r}_{2}) \rangle = E_{\mu} \delta_{\mu\nu}.$$
(3)

H is the Hamiltonian operator; the coefficients $\alpha_{\mu}(k,l)$ which are the statistical weight of the autoionizing states are found by solving the system of linear algebraic equations,

$$\sum_{\nu} \left[(E_{\mu} - E_0) \delta_{\mu\nu} - \langle \chi_{\mu} | V | \chi_{\nu} \rangle \right] \alpha_{\nu} = 0, \qquad (4)$$

where E_{μ} is the energy of the autoionizing level μ ; V is the operator of electrostatic interaction between electrons; E_0 is the energy eigenvalue of the zero-order Hamiltonian corresponding to the eigenfunctions defined by

TABLE II. Energies [-E(a.u.)] of the ${}^{3}P^{o}$ resonances of the Ne⁸⁺ ion associated with the n=3 hydrogenic thresholds. The states are ordered according to increasing energy in LS symmetry.

States	Present	Ho [23]
$3P^{o}(1)$	288.6927	288.6981
${}^{3}P^{o}(2)$	281.2588	281.4017
${}^{3}P^{o}(3)$	226.6868	
${}^{3}P^{o}(4)$	225.9300	
${}^{3}P^{o}(5)$	221.7424	
${}^{3}P^{o}(6)$	221.3397	
${}^{3}P^{o}(7)$	217.9575	
${}^{3}P^{o}(8)$	198.0861	
${}^{3}P^{o}(9)$	197.8902	
${}^{3}P^{o}(10)$	195.0603	
${}^{3}P^{o}(11)$	194.9270	
${}^{3}P^{o}(12)$	193.1883	

Levels	Present work	Ho [23]	Van der Hart [26]
4 <i>s</i> 4 <i>p</i>	5.9458	5.944	5.94335
4 <i>d</i> 4 <i>f</i>	5.8165	5.818	5.81411
4p4d	5.5561	5.576	5.57497
4 <i>s</i> 5 <i>p</i>	4.9355		4.93588
4 <i>p</i> 5 <i>d</i>	4.8842		4.88515
5 <i>p</i> 4 <i>d</i>	4.8729		4.87875
5d4f	4.8019		4.80500
5 <i>s</i> 4 <i>p</i>	4.7729		4.78504
4 <i>f</i> 5 <i>g</i>	4.6307		4.65718
4 <i>d</i> 5 <i>f</i>	4.6246		4.64246
4 <i>s</i> 6 <i>p</i>	4.3595		
6 <i>s</i> 4 <i>p</i>	4.3249		
6 <i>p</i> 4 <i>d</i>	4.3225		
6 <i>d</i> 4 <i>f</i>	4.2703		
4 <i>d</i> 6 <i>f</i>	4.2606		
4 <i>f</i> 6 <i>g</i>	4.1872		
4 <i>p</i> 6 <i>d</i>	4.1781		
4s7p	4.0162		
7 <i>s</i> 4 <i>p</i>	3.9883		
7p4d	3.9851		
7 <i>d</i> 4 <i>f</i>	3.9398		
4 <i>d</i> 7 <i>f</i>	3.9227		
4 <i>p</i> 7 <i>d</i>	3.8602		
4 <i>f</i> 7 <i>g</i>	3.8167		

$$\chi_{\nu} = A[\Phi_k(\boldsymbol{r}_1)\Phi_l(\boldsymbol{r}_2)].$$
⁽⁵⁾

The partial amplitude that describes the formation of the residual ion and photoelectron in a definite state has been defined by the following expression:

$$T_{j}(E) = \langle \varphi_{j}(E) | \mathbf{D} | \Psi_{i} \rangle + \frac{q+i}{\varepsilon - i} \langle \Phi_{\mu} | \mathbf{V} | \varphi_{j}(E) \rangle$$
$$\times \frac{\sum_{k} \langle \Phi_{\mu} | \mathbf{V} | \varphi_{k}(E) \rangle \langle \varphi_{k}(E) | \mathbf{D} | \Psi_{i} \rangle}{\sum_{k} |\langle \Phi_{\mu} | \mathbf{V} | \varphi_{k}(E) \rangle|^{2}}.$$
 (6)

In (6), $\varphi_j(E)$ is the wave function of the continuous spectrum in the channel *j*, without resonance interference; **D** is the dipole momentum operator; *q* is the profile index of the resonance; and ε is the relative deviation from the resonance and are defined by the following equations:

$$\varepsilon = (E - E_{\mu})/(1/2)\Gamma_{\mu}^{\text{tot}},\tag{7}$$

$$q = \frac{\langle \Phi_{\mu} | \boldsymbol{D} | \Psi_i \rangle}{\pi \sum_{k} |\langle \Phi_{\mu} | V | \varphi_k(E) \rangle|^2 \langle \varphi_k(E) | \boldsymbol{D} | \Psi_i \rangle}$$
(8)

with $\Gamma_{\mu}^{\text{tot}}$ the total width,

TABLE IV. Energies [-E(eV)] of the ${}^{1}P^{o}$ resonances of the Ne⁸⁺ ion associated with the configurations 4l4l'. The states are ordered according to increasing energy in *LS* symmetry.

States	Present work	Bachau [24]
${}^{1}P^{o}(1)$	161.78	161.79
$^{1}P^{o}(2)$	158.26	158.28
$^{1}P^{o}(3)$	151.20	151.37

$$\Gamma_{\mu}^{\text{tot}} = 2\pi \sum_{j} |\langle \Phi_{\mu} | V | \varphi_{j}(E) \rangle|^{2}.$$
(9)

RESULTS AND DISCUSSION

We have applied the diagonalization approximation described above to the calculation of energies for the autoionizing states corresponding to the configurations 3lnl' (with $l \le 2$, $l' \le 3$, and $3 \le n \le 5$), 4lnl' (with $l \le 3$, $l' \le 4$, and $4 \le n \le 7$) for Ne⁸⁺, and 5lnl' (with $l \le 5$, $l' \le 6$, and $5 \le n \le 8$). The excitation energies and associated wave functions are obtained by diagonalization of the matrix of electrostatic interaction in 12×12 , 24×24 or basis 31×31 basis. Configurations are described by antisymmetrized products Coulomb wave functions. The wave functions are given with the eigenvector compositions. The weight of the *sp*, *pd*, *df*, and *fg* components allowed us to classify the states according to the main eigenvector components.

Excitation energies for 3lnl' (${}^{1}P^{o}$) resonant states of Ne⁸⁺ are reported in Tables I and II In Table I, present energies of 3lnl' (${}^{1}P^{o}$) are given along with those of Ho [23], Bachau [24,25], and Merabet *et al.* [27]. For triplet 3lnl' (${}^{3}P^{o}$), energies are reported in Table II with the values of Ho [23], the only available one. Comparison between present results and the theoretical ones in Table I show a good agreement. In Table I, the low discrepancies between the present results and those of Merabet *et al.* [27] may be due to the configuration interactions of 3l4l' with 3lnl' ($n \ge 5$) and 4l4l'. So the mixing of these configurations should be included in the calculations, which is not the case in Merabet *et al.* [27] results because such calculations exceed the abilities of the Cowan code they used.

TABLE V. Energies [-E(eV)] of the ${}^{1}P^{o}$ resonances of the Ne⁸⁺ ion associated with the configurations 4l5l'. The states are ordered according to increasing energy in *LS* symmetry.

States	Present work	Van der Hart [26]	Merabet [27]
$^{1}P^{o}(1)$	134.2949	134.31	134.94
$^{1}P^{o}(2)$	132.8990	132.93	133.53
$^{1}P^{o}(3)$	132.5916	132.76	133.20
${}^{1}P^{o}(4)$	130.6597	130.75	131.28
$^{1}P^{o}(5)$	129.8706	130.21	130.34
$^{1}P^{o}(6)$	126.0013	127.54	127.10
${}^{1}P^{o}(7)$	125.8353	126.33	125.40

TABLE VI. Energies [-E(a.u.)] of the ${}^{3}P^{o}$ resonances of the Ne⁸⁺ ion associated with the n=4 hydrogenic thresholds.

States	Present work
4s 4p	5.9866
$4p \ 4d$	5.8909
$4d \ 4f$	5.7348
5s 4p	4.9153
4s 5p	4.9073
5 <i>d</i> 4 <i>f</i>	4.8531
4 <i>d</i> 5 <i>f</i>	4.8328
4f 5g	4.7502
5p 4d	4.7355
4p 5d	4.6660
4s 6p	4.3478
6s 4p	4.3446
4 <i>d</i> 6 <i>f</i>	4.3012
$6d \ 4f$	4.2996
4f 6g	4.2436
$6p \ 4d$	4.2382
4p 6d	4.2051
4s 7p	4.0081
7s 4p	4.0038
7 <i>d</i> 4 <i>f</i>	3.9663
7p $4d$	3.9657
4f 7g	3.9119
4 <i>d</i> 7 <i>f</i>	3.9086
4p 7d	3.8840

In Table III are reported the energies for 4lnl' ($^{1}P^{o}$) resonant states along with the theoretical calculations of Ho [23] using the complex rotation method and those of Van der Hart [26] using the TDM with *B*-splines basis. In this table, only the energies of the 4ln'l' (n'=4,5) for the three or 10 first states have been given by the others theoretical works. Here we have extended the calculations to 4ln'l' (n'=4-7) states and reported the energies for the 24 lowest autoionizing states. Quite good agreement has been found between our results and those of these authors. The small differences between the present results and those of Van der Hart [26] may be due also to the noninclusion of the interaction with 3lnl' series in their calculations. This can be seen by the fact that the difference is more pronounced for the highest states of 4l4l' lying close to the n=3 threshold than for the lowest

TABLE VII. Energies [-E(Ry)] of the three lowest ${}^{3}P^{o}$ resonances of the Ne⁸⁺ ion associated with the n=4 hydrogenic thresholds.

States	Present work	Но [23]
4s 4p	11.9732	11.971
4 <i>p</i> 4 <i>d</i>	11.7818	11.7785
4 <i>d</i> 4 <i>f</i>	11.4696	11.4790

TABLE VIII. Energies [-E(a.u.)] of the ¹*P*^o resonances of the Ne⁸⁺ ion associated with the *n*=5 hydrogenic thresholds.

TABLE	E IX. E	Energies	[- <i>E</i> (a.u	ı.)] of	the ³	P^{o}	resonances	of	the
Ne ⁸⁺ ion a	associat	ed with	the $n=5$	hydro	genic	th	resholds.		

States	Present work	States	Present work
5s 5p	3.81861900	5s 5p	3.8379
5d 5f	3.76356400	5p 5d	3.7938
5f 5g	3.67828900	5 <i>d</i> 5 <i>f</i>	3.7303
5p 5d	3.51035500	5f 5g	3.6297
5s 6p	3.26481600	5s 6p	3.2541
5 <i>d</i> 6 <i>f</i>	3.23899200	5 <i>d</i> 6 <i>f</i>	3.2481
6p 5d	3.23030100	6s 5p	3.2239
6f 5g	3.20169400	6 <i>d</i> 5 <i>f</i>	3.2088
6s 5p	3.18139800	6 <i>f</i> 5 <i>g</i>	3.1791
6 <i>d</i> 5 <i>f</i>	3.14389200	6 <i>p</i> 5 <i>d</i>	3.1580
5f 6g	3.11435300	5g 6h	3.1081
5g 6h	3.02600200	5 <i>f</i> 6 <i>g</i>	3.0953
5p 6d	3.02522700	5 <i>p</i> 6 <i>d</i>	3.0507
5s 7p	2.95064800	5s 7p	2.9223
7s 5p	2.91462600	5 <i>d</i> 7 <i>f</i>	2.9060
5d 7f	2.89417700	7s 5p	2.8841
7p 5d	2.88582900	7 <i>d</i> 5 <i>f</i>	2.8825
7d 5f	2.86637400	7f 5g	2.8502
5s 8p	2.84979100	7p 5d	2.8470
7f 5g	2.82877900	5g 7h	2.8099
5g 7h	2.81457700	5f 7g	2.8052
5p 7d	2.77038000	5s 8p	2.8025
5f 7g	2.75688100	5p 7d	2.7822
5p 8d	2.69242100	5p 8d	2.6934
8s 5p	2.68933500	8p 5d	2.6820
8p 5d	2.67161900	5f 8g	2.6611
5 <i>d</i> 8 <i>f</i>	2.64617300	8 <i>d</i> 5 <i>f</i>	2.6397
8f 5g	2.62402000	8f 5g	2.6304
8 <i>d</i> 5 <i>f</i>	2.61041500	8s 5p	2.5950
5g 8h	2.55715400	5g 8h	2.5894
5f 8g	2.53763700	5 <i>d</i> 8 <i>f</i>	2.5688

4/4/l' states. In Tables IV and V are shown the 4ln'l' (¹ P^o) energies. For the lowest states of 4l4l', the present results reported in Table IV, are in very good agreement with the Bachau [24]. In Tables VI and VII, are reported energies for ${}^{3}P^{o}$ resonances of the Ne⁸⁺ ion associated with n=4 hydrogenic thresholds. In Table VII, we compare our results with the only available theoretical results of Ho [23] who report only the three lowest members of the series for which both electrons occupy the same shell. Tables VIII and IX show the present results for the 31 lowest singlet and triplet states lying under the n=5 hydrogenic threshold.

CONCLUSION

In this work, the diagonalization approximation applied to the photoionization process of Ne⁸⁺, has been used to do extensive calculations of the energies of singlet and triplet autoionizing states converging to the n=3, 4, 5 thresholds of the residual ion. Quite good agreement was found between present results and those previously obtained with the use of the complex rotation method by Ho [23], truncated diagonalization method (TDM) by Bachau [25], and TDM with *B*-splines basis by Van der Hart [26]. The present results are as expected more close to those calculations using the configuration interaction method with hydrogenic functions as basis orbitals. We present the energies for 5lnl' ($^{1}P^{o}$, $^{3}P^{o}$).

ACKNOWLEDGMENTS

The authors would like to thank the Third World Academy of Sciences (TWAS) and the Abdus Salam International Centre of Theoretical Physics for their financial support. The authors also express thanks to Professor Denardo. The authors are grateful to Nicole Feautrier at the Department of Fundamental Astrophysics (DAMAP) in Meudon.

- A. Bordenave-Montesquieu, P. Benoit Cattin, A. Gleizes, A. I. Marrakchi, S. Dousson, and D. Hitz, J. Phys. B 17, L127 (1984).
- P. Benoit-Cattin, A. Bordenave-Montesquieu, M. Boudjema, A. Gleizes, A. I. Marrakchi, S. Dousson, and D. Hitz, J. Phys. B 21, 3387 (1988).
- [3] P. Moretto-Capelle, P. Benoit Cattin, A. Bordenave-Montesquieu, and A. Gleizes, Z. Phys. D: At., Mol. Clusters 21, S283 (1991).
- [4] M. Domke, G. Remmers, and G. Kaindl, Phys. Rev. Lett. 69, 1171 (1992).
- [5] M. Domke, K. Schulz, G. Remmers, G. Kaindl, and D. Wintgen, Phys. Rev. A 53, 1424 (1996).
- [6] Y. K. Ho, Phys. Rev. A 23, 2137 (1981).
- [7] Y. K. Ho, Phys. Rev. A 35, 2035 (1987).
- [8] Y. K. Ho, Phys. Rev. A 45, 148 (1992).
- [9] D. H. Oza, Phys. Rev. A 33, 824 (1986).
- [10] W. H. Hugo and E. H. Jorgen, J. Phys. B 25, 2267 (1992).
- [11] A. Wagué, Z. Phys. D: At., Mol. Clusters 6, 337 (1987).
- [12] N. A. B. Faye and A. Wagué, Z. Phys. D: At., Mol. Clusters 31, 37 (1994).
- [13] N. A. B. Faye and A. Wagué, J. Phys. B 28, 1735 (1995).
- [14] A. S. Ndao, A. Wagué, N. A. B. Faye, and A. Konté, Eur. Phys. J. D 5, 327 (1999).
- [15] H. N. Ereifej and J. G. Story, Phys. Rev. A 60, 3947 (1999).
- [16] H. N. Ereifej and J. G. Story, Phys. Rev. A 62, 033405 (2000).

- [17] A. Bordenave-Montesqueu, P. Moretto-Capelle, A. Gonzalez, M. Benhenni, H. Bachau, and I. Sanchez, J. Phys. B 27, 4243 (1994).
- [18] F. Frémont, H. Mérabet, J. Y. Chesnel, X. Husson, A. Lepoutre, D. Lecler, G. Rieger, and N. Stolterfoht, Phys. Rev. A 50, 3117 (1994).
- [19] S. Martin, J. Bernard, A. Denis, J. Desesquelles, L. Chen, and Y. Ouerdane, Phys. Rev. A 50, 2322 (1994).
- [20] X. Fléchard, C. Harel, H. Jouin, B. Pons, L. Adoui, F. Frémont, A. Cassimi, and D. Hennecart, J. Phys. B 34, 2759 (2001).
- [21] I. Sanchez and H. Bachau, J. Phys. B 28, 795 (1995).
- [22] A. K. Bhathia and Y. K. Ho, J. Phys. B **31**, 3307 (1998).
- [23] Y. K. Ho, J. Phys. B 12, 387 (1979).
- [24] H. Bachau, J. Phys. B 17, 1771 (1984).
- [25] H. Bachau, F. Martin, A. Riera, and M. Yanez, At. Data Nucl. Data Tables 48, 167 (1991).
- [26] H. Wan der Hart, N. Vaeck, and J. E. Hansen, J. Phys. B 28, 5207 (1995).
- [27] H. Merabet, G. Cremer, F. Frémont, J.-Y. Chesnel, and N. Stolterfoht, Phys. Rev. A 54, 372 (1996).
- [28] R. D. Cowan, *The Theory of Atomic Structure and Spectra* (University of California Press, Berkeley, 1981).
- [29] V. V. Balashov, S. I. Grihanova, I. M. Kruglova, and V. S. Senashenko, Opt. Spectrosc. **T28**, 858 (1970).
- [30] V. S. Senashenko and A. Wagué, J. Phys. B 12, L269 (1979).