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We construct a tridiagonal matrix representation for the three-dimensional Dirac-Coulomb Hamiltonian that
provides for a simple and straightforward relativistic extension of the complex scaling method. Besides the
Coulomb interaction, additional vector, scalar, and pseudoscalar coupling to short-range potentials are also
included in the same representation. Using that, we are able to obtain highly accurate values for the relativistic
bound states and resonance energies. A simple program code is developed to perform the calculation for a
given charge, angular momentum, and potential configuration. The resonance structure in the complex relativ-
istic energy plane is also shown graphically. [llustrative examples are given and we verify that in the nonrel-
ativistic limit one obtains known results. As an additional advantage of this tridiagonal representation, we use
it to obtain highly accurate evaluation of the relativistic bound state energies for the Woods-Saxon potential (as

a model of nuclear interaction) with the nucleus treated as a solid sphere of uniform charge distribution.
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I. INTRODUCTION

Studying the properties of the resolvent operator (Green’s
function) associated with the scattering of a projectile by a
target is essential to the understanding of both the structure
of the target and the interaction of the projectile-target sys-
tem. For example, bound states and resonance energies are
identified with the poles of the Green’s function G(z)=(H
-2z)~! in the complex z-plane, where H is a “complexified”
version of the Hamiltonian of the system. Dismissing subtle
differences in perturbation theory between resonances and
eigenvalues for degenerate states [1], it becomes obvious that
the poles of G(z) are the complex eigenvalues of H in the
z-plane. Resonance states are boundlike states that are un-
stable and decay with a rate that increases with the value of
the imaginary part of the resonance energy.

In nonrelativistic quantum mechanics, the dynamical be-
havior of the state of the system in time is contained in the
exponential factor e~'%/, where E is the nonrelativistic energy.
For stable states, like the bound states, E is real. However,
for the decaying resonance states, E is complex with nega-
tive imaginary part. Systems with Hermitian Hamiltonians
have no states with positive imaginary part for E, which
would then blow up in time. Therefore, for systems with a
self-adjoint Hamiltonian, energy resonances are located in
the lower half of the complex energy plane. Sharp or “shal-
low” resonances are located below and close to the real en-
ergy axis in the complex E-plane. These are more stable.
They decay slowly and are easier to obtain than broad or
“deep” resonances that are located below, but far from, the
real energy axis [2]. Most of the algebraic methods used for
the study of resonances are applied directly in the complex
energy plane, whereas most of the analytic investigations are
done in the complex angular momentum plane [3]. The en-
ergy spectrum is the set of poles of the Green’s function in
the complex energy plane, which consists generally, for one-
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particle (single channel) Hamiltonian, of three parts.

(1) Discrete set of real points on the negative energy axis
corresponding to the bound states.

(2) Discontinuity of the Green’s function along the real
positive energy line (a branch cut), which corresponds to the
continuum scattering states.

(3) Discrete set of points in the lower half of the complex
energy plane corresponding to the resonance states.

The basic underlying principle in the various numerical
methods used in the study of resonances is that the position
of a resonance is stable against variation in all unphysical
computational parameters.

Consequently, resonance energies are the subset of the
poles of the Green’s function G(E), which are located in the
lower half of the complex energy plane. One way to uncover
these resonances, which are “hidden” below the real line in
the E-plane, is to use the complex scaling (also known as
complex rotation) method [4]. This method exposes the reso-
nance poles and makes their study easier and manipulation
simpler. It has been used successfully in the calculations of
resonances in nonrelativistic atomic, chemical, and nuclear
physics. In this method, the radial coordinate gets trans-
formed as r— re'’, where @ is a real angular parameter. The
effect of this transformation on the pole structure of G%(E)
=(H°-E)™" in the complex E-plane, where HY is the
complex-scaled Hamiltonian, consists of the following:

(1) The discrete bound state spectrum that lies on the
negative energy axis remains unchanged.

(2) The branch cut (discontinuity) along the real positive
energy axis rotates clockwise by the angle 26.

(3) Resonances in the lower half of the complex energy
plane located in the sector bound by the new rotated cut line

lGenerally, this part of the spectrum consists of a set of discon-
nected energy bands with forbidden energy gaps in between. Each
band consists of continuous scattering states with energies bounded
within that band.
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FIG. 1. Full effect of the complex scaling r— re'? on the bound
states (squares), continuum (solid line), and resonances (circles) in
the nonrelativistic complex energy plane.

and the positive energy axis get exposed and become
isolated.

Figure 1 is a graphical representation of this process.
However, due to the finite size of the basis set used in the
calculation, the matrix representation of the Hamiltonian is
finite resulting in a discrete set of eigenvalues (poles of the
Green’s function). Consequently, the rotated cut line gets re-
placed by a string of interleaved poles and zeros of the finite
Green’s function that tries to mimic the cut structure. Addi-
tionally, in this finite approximation the 26 cut line becomes
deformed in the neighborhood of resonances due to the effect
of localization in the finite L? bases in regions that are near to
the resonance energies. Figure 2 is a reproduction of Fig. 1
but with a finite basis set. Now, the subset of the eigenvalues
that corresponds to the bound states and resonance spectra
remain stable against variations in all computational param-
eters (including 6, as long as these poles are far enough from
the cut “line”). For multichannel scattering, on the other
hand, there are as many cut lines (branch cuts) as there are
channels. Complex scaling causes each cut line to rotate
about the corresponding channel’s threshold energy point
with an angle equal to 2 times the scaling angle of that chan-
nel [4].

The basis for the generalization of the complex scaling
method to the relativistic problem was first outlined by
Weder more than 30 years ago [5]. The mathematical details
of this generalization were given later by Seba [6]. Nonethe-
less, the implementation of the method on the relativistic
problem has been largely ignored in the physics literature for
a long time. We are aware of only two recent applications of
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FIG. 2. Showing the same as Fig. 1 but by means of a finite-
dimensional basis. The cut line is replaced by a string of dots (ei-
genvalues of the finite complex rotated Hamiltonian) which is
slightly deformed in the neighborhood of resonances.
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the method. One is by Ivanov and Ho for computing reso-
nances of hydrogenlike ions in the presence of a uniform
electric field [7]. The other is by Pestka et al. for obtaining
the bound states energies of two-electron atoms within a
variational Hylleraas-CI approach [8]. In this work, we
present a general and systematic development of an algebraic
extension of the complex scaling method to the relativistic
problem. The Hamiltonian of the system will be taken to be
the three-dimensional Dirac-Coulomb Hamiltonian with an
additional coupling to a finite range potential matrix. We
assume spherical symmetry and consider three different
types of coupling of the Dirac particle to the scattering po-
tential. These are the vector, scalar, and pseudoscalar cou-
plings. In the following section, we construct the spinor basis
that results in a tridiagonal matrix representation for the ref-
erence Dirac-Coulomb Hamiltonian. The matrix elements of
the scattering potential will be calculated in a finite subset of
the basis using Gauss quadrature approximation [9]. In Sec.
III, we show that this representation makes the application of
the complex scaling method to the relativistic problem very
simple and straightforward. The resonance structure in the
relativistic complex energy plane will be shown graphically.
Some potential examples are given and we show that in the
nonrelativistic limit we obtain known results. Moreover, we
calculate the relativistic bound states energies for the Woods-
Saxon potential (as a model for nuclear interaction) in the
presence of the Coulomb interaction for a given set of physi-
cal parameters and for three different kinds of coupling: vec-
tor, scalar, and pseudoscalar. In Sec. IV, we discuss our re-
sults and give some ideas about further developments to
improve the accuracy of the method. A simple program code
(RCS-07.1) was developed, using Mathcad®,” to implement
the relativistic extension of the complex scaling method and
produce all results given in this work. A copy of the code is
available upon request from the author.

II. THE TRIDIAGONAL SPINOR REPRESENTATION

In this work, we consider the three-dimensional relativis-
tic scattering problem of spin-% charged particle (of mass m)
with a massive target. The projectile-target system is de-
scribed by the time-independent Hamiltonian

H=Hy+V (2.1)

The reference Hamiltonian H,, is taken to be the three-
dimensional Dirac Hamiltonian that may include coupling to
an exactly solvable 4 X4 potential matrix V. It is permis-
sible for this “reference potential” to have long-range inter-
action (e.g., the Coulomb potential). However, the scattering
potential matrix V has finite range such that it is well repre-
sented by its matrix elements in a finite square integrable
spinor basis. In the units A=m=e=1, the Compton wave-
length is X=%/mc=1/c, which could be written for an elec-
tron projectile as X=aa,, where « is the fine structure con-
stant and a is the Bohr radius. In these units, the reference

*Mathcad® is a software package developed by Mathsoft for
general-purpose mathematical computations.
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Dirac Hamiltonian for the charged spinor with coupling to

the electromagnetic four-vector potential (Ay,cA) reads as
follows [10]:

+1+X%4,
H0= > >
—Xa- (iV+A)

where the Hamiltonian is written in units of mc?=x"2 and
{c} are the three 2 X 2 Hermitian Pauli spin matrices,

(01) <O—i> (10)
S5\ o) 2T\ o) BTN 1)

(2.3)

—X&-(iV+A)
. (22
-1+ X%A,

Our choice of atomic units (A=m=1) over the conventional
relativistic units (where A=c=1) is made to allow us to take
the nonrelativistic limit, c— (i.e., X—0), in a very simple,
intuitive, and straightforward manner which is not possible
in the latter units since c=1. Additionally, it is easier to com-
pare our results with those in atomic physics since the same
system of units is used. Moreover, mc?>— < is not a good
measure of the nonrelativistic limit for position-dependent
mass systems, which is an interesting problem that is becom-
ing the core of an active field of research. This is because
this limit could be violated in regions where the local mass
distribution is infinitesimal despite the fact that the system is
certainly nonrelativistic.

For the Coulomb interaction, where Ay=Z/r and Ii =0,
and for spherically symmetric potential V(r), the angular
components separate and the radial reference Dirac Hamil-

tonian becomes
Z (K d )
Xl —-—
r r o dr

+1+x%=
HZ s
0 Kk d ,Z
Al —+— —-1+A—
d r

r r

(2.4)

where Z is the dimensionless electric charge coupling and
where length is measured in units of 4meyfi’/me? (for an
electron this unit is ag). The spin-orbit quantum number «
=+1,+2,... and it is related to the orbital angular momen-
tum quantum number ¢ by k==(€ +%)—%. On the other
hand, the radial scattering potential matrix is

AV.(r)  W(r) )

Vi) =K< W) AV_(r)

(2.5)
where V,=V=+S. V(r) is the vector potential, S(r) is the sca-
lar potential, and W(r) is the pseudoscalar potential. The ref-
erence Dirac-Coulomb problem described by H, is exactly
solvable. One such solution is obtained (for all energies) as
an infinite sum of square integrable functions with expansion
coefficients that are orthogonal polynomials in the energy
[11]. However, the spinor basis in that solution is energy
dependent; a property which is not desirable from a numeri-
cal point of view. This is because any calculation in such a
basis must be repeated for all energies in the range of inter-
est. Nonetheless, we will use that solution only as a guide to
the construction of the spinor basis for the solution space of
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the present problem. We start by transforming the total radial
Hamiltonian using the following 2 X 2 unitary matrix

Ue) = exp(éwfz), (2.6)
where ¢ is a real angular parameter such that sin ¢
=+XZ/k and where —7 < @< +7 depending on the signs of
Z and k. The plus and/or minus sign in sin ¢ corresponds to
the positive and/or negative energy solutions. In what fol-
lows, we consider only the positive energy solutions, where
sin @=AZ/ k. One can easily show that the negative energy
solutions are obtained from the positive energy solutions by
exchanging the upper radial spinor component with the
lower and applying the following (CP) map

Z——27, and W(r) —-W(r). (2.7)

K— — K,

If we write the transformed Hamiltonian as H=UHU"", then
the wave equation reads

(H-¢)x(r,e)=0, (2.8)

where & is the relativistic energy in units of mc*>=X"2. For
bound states |g| < 1, whereas for scattering |&|> 1. The trans-
formed reference Hamiltonian becomes

Z d
Y oxe” 7((-— Z-—)
Hem UM = K r K r dr
Al-——+—-+— - =
K r dr K

(2.9)

where y=kcos ¢=k+1-(XZ/k)>. On the other hand, we
write the transformed scattering potential as

XU, U, )

2.10
U, XU 2.10)

U=UVU'= (
where

1 1 z
Uy==(V,+ V)£ 2=V, - V)= 2w, (2.11a)
2 K2 K

z1
U= IW-x2Z2(v, - V). (2.11b)
K K2

Now, we expand the solution of the wave equation (2.8) as
x(r,e)=2,C,(e)i,(r), and write the radial spinor compo-
nents as

() ) ) (2.12)

&,(r)

Contrary to the basis set used in Ref. [11], these basis ele-
ments are taken to be energy independent. The upper radial
spinor component reads as follows:

¢+( ) a;xy+le_X/2LZ+(X), k>0,
r)=
" ax Ve ZLZ_()C), k<0,

n

i, (r) = (

(2.13)

where x=wr, L}(x) are the associated Laguerre polynomials
of order n [12], and the normalization constants are a;
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= N/wF(n+ 1)/T'(n+v,+1). The basis parameters w and v,
are real such that >0, v,>-1. We are seeking a two-
component spinor basis that supports a tridiagonal matrix
representation for the reference Hamiltonian H,,. To that end,
the lower spinor component should be related to the upper by
the “kinetic balance” relation, which is suggested by the ref-
erence wave equation (Hy—¢&),=0. That is,

sn=2(-Ze by e
M\ Kk r dr
where w is another real basis parameter. In Ref. [11], exact
solvability requirement of the reference (Dirac-Coulomb)
problem resulted in the energy-dependent basis by dictating
that u=e+ v/ k. However, here we are interested only in an
approximate solution to the full problem that still includes an
arbitrary, but short-range, scattering potential V(r). There-
fore, for practical calculations we insist that the parameter
be energy independent. One can show that the spinor basis
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defined by Eq. (2.13) and Eq. (2.14) results in a tridiagonal
matrix representation for the reference Hamiltonian H, only
if v,=+(2y+1)=2|y|+1. Moreover, taking the limit X—0
of the matrix elements of H, gives the correct nonrelativistic
matrix elements of the Coulomb Hamiltonian only if u=2
[13]. Using the differential formula and recursion relations of
the Laguerre polynomials [12] in the Kinetic balance relation
(2.14) with u=2, we obtain the following:

X VA
¢, (r) = —wafx("t_l)/ze")‘/z[Z( y—-—2n+v,+ 1))in(x)
4 KW =

—o_(n+v L= (x) + o (n+ l)L,':jrl(x)} , (2.15)
corresponding to =x>0 and where o,=1x(2Z/kw). More-
over, using the known relations among Laguerre polynomials
of different indices, we can finally rewrite the L? spinor basis
as

(n+2y+ l)Liy(x) —(n+ 1)L,21L (x)

U, (r) = aixe™?| Xw

T[O‘_(Vl +2y+ 1)L,217(x) +o.(n+ 1)L,2111(x)] ’

k>0, (2.16a)

L;zy(x) - L)

,(r) = a;x_”e_“‘/2 Aw

T4

Using these and the orthogonality relation of the Laguerre
polynomials, we obtain the following tridiagonal basis-
overlap matrix (representation of the identity):

(Wl ={@n+ v+ DI1+ (Rel4)’p,] = RwZ(yI2K)}0,,
—[1 = (Xa/4)p_J{\Nn(n+ 1.) 8, s

+V(n+1)(n+ ve+ 18,1}, (2.17)

corresponding to +x>0 and where p,=1+(2Z/kw)?*. Addi-
tionally, the matrix elements of the tridiagonal reference
Hamiltonian is calculated for £x>0 as

(H())n,m = {(2’1 +rv.t+ ])|:Z + (7((1)/4)2(4 - Z)p+:|
K K
+2X%wZ(1 = YI2K)? [ S

- B - (xw/4)2<4 - {)p_}[vnm EPAL

+V(n+ 1)+ ve+ 1)8,,]. (2.18)

(0,1, () + 0_L,21(0)] |

n—1

k<0. (2.16b)

Now, since the scattering potential U(r) is short range, then
we can assume that it will be well represented by its matrix
elements in a finite N-dimensional subset of the basis,
{1//,!}1,:':_01, for some large enough integer N. Therefore, the ma-
trix elements of the potential U(r), which is still arbitrary,
can only be evaluated numerically. If we define the (n,m)
sampling element of a real square integrable (but not neces-
sarily differentiable) radial function F(r) by the Laguerre
polynomials as the value of the integral

FV_\/ T(n+ DI(m+1)
" NT(n+v+ D)l(m+v+1)

Xfoc x"e L, (x)F(x/w)L, (x)dx, (2.19)

0

Then, we obtain the following potential matrix elements, for
+k>0:

(nlUL| ) =R, (2.20a)
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(N + 100l = = 22 e 2+ 21

X (Uo)ilyzl - U:\'n:mx(UO)z‘yl

nxl,m=l1

27 —
+ m[vngmi +2|Y) (U2,

I
+\m(ng + 2| W) (U2, )

(2.20b)

@ 2
(SIU-I )= ("7) {2+ 20 me+ 2D (W

— AT
+ 0N nm (U e+ p D (m +2])

X(U_)2|7|  + \//m([]_)2|7| 11,

m,n+ n,m=l1

(2.20c)

where the radial function R(r) in Eq. (2.20a) is defined as
R(r)=(wr)U.(r) and n,=n+ 1;—1 Now, for an integer K larger
than the chosen size of the basis N, we can use Gauss
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FIG. 3. Effect of the transformation r— re’? on the spectrum of
the complex rotated Dirac Hamiltonian. Bound states are shown as
squares on the real energy & axis whereas scattering states are
shown as circles. The rotated positive and negative energy con-
tinuum are the two solid curves.

quadrature [9] to give the following approximate evaluation
for the integral (2.19):
K-1

F' = > A A’ F(pllo), (2.21)
k=0

nm mk

where {A”}*7) is the normalized eigenvector associated with
the eigenvalue 7, of the K X K tridiagonal symmetric matrix

TABLE I. A comparison of the relativistic energy of bound states for hydrogenlike ions obtained using the
tridiagonal representation in Eq. (2.18) against the exact formula (3.4). The energy variable & is related to &

by Eq. (3.2) and is measured in units of mc?. The basis size N=200.

Z j K State —-& (exact) -£ (RCS-07.1)
-1 1 -1 181 0.500000000000 0.50000000142
281 0.125001664149 0.12500166438

381 0.055556212996 0.05555621318

+1 2P 0.125001664149 0.12500166439

3Pip 0.055556212996 0.05555621314

4Py 0.031250312026 0.03125031215

3 -2 2Py, 0.125000000000 0.12500000002

3Py 0.055555719912 0.05555571993

4P 0.031250104007 0.03125010400

+2 3Ds) 0.055555719912 0.05555571992

4Dy 0.031250104007 0.03125010401

5Ds) 0.020000063902 0.02000006390

=2 % -1 181 2.000000000000 2.00000009073
281 0.500026628513 0.50002664403

381 0.222232742066 0.22223275140

+1 2P 0.500026628513 0.50002664402

3Py 0.222232742066 0.22223275140

4P 0.125004992779 0.12500500038

% -2 2P 0.500000000000 0.50000000141

3P3), 0.222224851984 0.22222485241

4P 0.125001664149 0.12500166439

+2 3D3p 0.222224851984 0.22222485242

4Ds)y 0.125001664149 0.12500166439

5Ds) 0.080001022452 0.08000102263
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of the quadrature associated with the Laguerre polynomials
{L}. That is, the matrix whose (n,m) elements are (2n+v
+1)8,,+\n(n+v)8, i +(n+D(n+v+1)6,,; for n,m
=0,1,2,...,K-1.

In the following section, we show that the representation
obtained above is compatible and, in fact, very useful in
obtaining the relativistic bound states and resonance energies
using the complex scaling method.

III. RELATIVISTIC BOUND STATES
AND RESONANCE ENERGIES

Bound states for the one-particle relativistic problem de-
scribed by the Hamiltonian (2.1) are for energies less than
the rest mass. That is the bound states energy spectrum is
confined to the real energy interval ¢ €[-1, +1]. Moreover,
the time dependence of the total spinor wave function for
positive (negative) energy, which is given by the exponential
factor e®" (e*®), implies that the imaginary part of reso-
nance energies associated with Hermitian Hamiltonians
should be negative (positive). Therefore, resonance energies
will be located in the second and fourth quarter of the com-
plex energy plane with [Re(g)|> 1. Consequently, there will
be two energy thresholds for relativistic scattering. These are
e=+1 and e=-1 for positive and negative energy, respec-
tively. Moreover, there will be two semi-infinite cut lines on
the real e axis corresponding to the continuum scattering
states. One for €>+1 and the other for e <-1. Thus, the
relativistic problem resembles a two-channel nonrelativistic
problem (but one with negative energy). Complex scaling
causes the two cut lines to rotate clockwise around the origin
(£=0) with an angle 6[5,6,8]. Therefore, these lines will be
deformed curving up (down) for energies near e=—1 (e=
+1). If we parametrize the two cut lines by a real parameter
& then the effect of the complex scaling transformation r
—re' on the continuous spectrum could be written as the
following set of complex numbers [6,8]:

e(§)= V& M4 1.

(3.1)

For energies close to e=+1 (i.e., in the nonrelativistic limit
where ¢ is small), these complex scaled curves slope by the
angle 26 as seen from Eq. (3.1). Figure 3 shows the effect of
the complex scaling transformation on the complete spec-
trum of H. Bound states are shown as squares on the real
energy axis whereas scattering states are designated by
circles. The two rotated cut “lines” are the solid curves. We
choose to write all energy values that will be given below in
terms of the relativistic energy variable

E(e) = (2 - 1)2X>%. (3.2)

Therefore, the continuous energy spectrum (the cut lines of
the relativistic Green’s function) in terms of this complex
variable is simply written as 5(5):% &/X)%e7%. This could
also be written as £= %kz, where k=(&/X)e™? is the complex
“relativistic wave number.” In the nonrelativistic limit (X
—0, e— 1+X%E) the energy variable £ will, in fact, be equal
to the nonrelativistic energy E.

Now, we show that the matrix representation of the
Hamiltonian (2.1) in the spinor basis obtained in the preced-
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FIG. 4. A snapshot of the video “RCS-07.1” [20] revealing reso-
nance poles in the complex £-plane associated with the potential
V(r)=7.5r%¢"", S(r)=W(r)=0 and for Z=1, k=—1. The snapshot is
taken at #=0.7 radians and the basis size N=100. Energy is mea-
sured in atomic units.

ing section results in a simple and straightforward scheme
for the implementation of the complex scaling method on the
relativistic problem. To that end, we write the matrix ele-
ments of the total Hamiltonian as

H= Ol 00 = (001 +2x2w§|¢;<x)>

- Xl g0 + xw<<¢;(x)| _ZY
K ® X

K
d d

- d—|¢;(X)> + (¢, ()| - Z T —|¢Z(X)>>
x Ko x dx

+ Xy (0) | U, (/@) | by, () + XX, ()| U_(x/ )
X | ¢, (X)) + A[( by ()| U (x/ )| ,,(x))
+{(¢,(0)|Up(x/w)| ¢y, (x))],

where x=wr. It is, thus, obvious that the effect of the trans-
formation r— re'’ on the differential matrix operator H(r) in
configuration space is equivalent to the transformation w
— we™'? of its matrix elements in the spinor representation
(2.16). Now, this latter transformation is very easy to imple-
ment on the matrix elements (2.17), (2.18), and (2.20) that
make up the representation (3.3). One may also note that the
Vo factor in the normalization constant a; together with the
integration measure dr cooperate to preserve the equivalence
between these two transformations by producing the integra-
tion measure dx.

We start with a consistency check of the results obtained
using the representation given in the preceding section
against known exact results. For that purpose we calculate
the relativistic energy of the bound states for hydrogenlike
ions (where X=aa, and V=0) and compare that with the
exact formula [10]

{ X7 27122

I
n+7+1

v, k>0

where T={_y_1’ K<0}. Throughout our calculation, we use the
following strategy. We search for a range of values of the

(3.3)

(3.4)
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basis scale parameter w that give stable results for a given
basis size N. We calculate the average result corresponding
to several values of w (preferably, from the middle of the
range) keeping only significant digits. Those are the digits
that do not change by changing N by, say, 5%. Table I shows
a good agreement relative to a basis size N=200 and with
calculation stability for a range of values of w=1 to 5 a.u.
Nonetheless, built on a general-purpose software package
and by an author with limited programming experience, the
code used in the calculation is not meant to achieve high
precision but to demonstrate the utility and applicability of
the extended method. Of course, higher precision could be
achieved with better computational routines to find, for ex-
ample, the generalized eigenvalues and eigenvectors for
large tridiagonal matrices. Moreover, since the relativistic
energy spectrum (for typical systems) clusters around &
==+1, then to reduce computational errors it is advisable in
some cases to calculate the eigenvalues g, + 1 instead of ¢,
respectively. This is also one of the reasons that we choose to
give our results in terms of the energy variable £ instead of
€. Moreover, in the following section we outline further de-
velopment that should result in a substantial improvement in
the accuracy of the calculation by taking into account the full
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contribution of the reference Dirac-Coulomb Hamiltonian
Ho.

To illustrate further the utility and accuracy of the
method, we implement it on an atomic model with known
nonrelativistic resonance structure. We choose the well-
established and frequently used model V(r)=7.5r%¢"
[14-19] and take S(r)=W(r)=0 in the potential matrix (2.5).
The video “RCS-07.1” [20] shows how the positive energy
resonances become exposed as the cut “line” sweeps the
lower half of the &-plane, while the angle 6 of the complex
scaling  transformation  gradually  increases  from
0.0 to 0.9 radians. Figure 4 is a snapshot from the same
video at #=0.7 radians. It should be clear that, just like in
nonrelativistic scattering, the cut line gets deformed near
resonances due to the localization effect. In Table II we com-
pare the nonrelativistic limit of our calculation of the reso-
nance energies associated with this model potential for x=
—1 (€=0) against known nonrelativistic results elsewhere. In
the calculation, the nonrelativistic limit was achieved by tak-
ing X/ay=a/100. That is, the fine structure constant was
effectively reduced by a factor of 100 or, equivalently, the
speed of light was ascribed a value 100 times larger. We took
a basis size N=100 and calculation stability is for a range of

TABLE II. The nonrelativistic limit of our calculation of the resonance energies, E,—érr, associated with
the model potential V(r)=7.5r%¢™", S(r)=W(r)=0, and for k=—1 (£=0) against known nonrelativistic results
elsewhere. We took a basis size N=100 and the nonrelativistic limit was achieved by scaling down the fine

structure constant 100 times.

V4 E, (au.) I, (au.) Reference
0 3.42639 0.025549 [14]
3.4257 0.0256 [15]
3.426 0.0256 [16]
3.426 0.0258 [17]
3.426390331 0.025548962 [18]
3.426390310 0.025548961 [19]

3.4263903 0.025549 This work
0 4.834806841 2.235753338 [18]
4.834806841 2.235753338 [19]

4.8348069 2.2357529 This work
0 5.277279780 6.778106356 [18]
5.277279864 6.778106591 [19]

5.2772798 6.7781065 This work
-1 1.7805 9.58 X 1073 [17]
1.780524536 9.5719X107? [18]
1.780524536 9.57194 % 107> [19]

1.780525 9.59X 107> This work
-1 4.101494946 1.157254428 [18]
4.101494946 1.157254428 [19]

4.101495 1.157254 This work
-1 4.663461099 5.366401539 [18]
4.663461097 5.366401540 [19]

4.663461 5.366402 This work
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TABLE III. A more comprehensive list of the relativistic energy resonances £,—iA,/2 for the same potential as in Table II, but for several
values of Z and «.

1 1
k=—1 (j=§,€=0) k=+1 j=§,€=1) k=2 (j=3/2,¢=1)
Z &, (au.) A, (a.u.) &, (au.) A, (a.u.) &, (au.) A, (a.u.)
0 2.9465842 23.06811 2.2170 25.8544 2.2170 25.8545
3.4266874221 0.0255518009 3.80129781 20.19320406 3.801256006 20.19329161
4.2687950416 17.439000786 4.647141064 0.6506112695 4.6471912798 0.6506993408
4.8354225415 2.2361196639 4.888143904 14.627813147 4.88811024012 14.627927250
5.0654945401 11.955326382 5.361234056 4.3953039551 5.36124186636 4.3954504642
5.2780344286 6.7796704926 5.428512321 9.283011964 5.42849401850 9.2831485326
-1 1.7805455986 0.0000957022 1.92025 24.5794 1.92010 24.5795
2.592623 21.393386 3.453842379 18.973863298 3.4537211666 18.974083056
3.8493853286 15.820609152 3.8482370611 0.2752972793 3.8483561762 0.2753948771
4.1018900840 1.1572503194 4.4767397212 13.480474062 4.47665785037 13.480735107
4.5617673176 10.415641527 4.7506422650 3.5058292798 4.75066932711 3.5061036576
4.6640968354 5.3671942790 49336803340 8.2353324063 4.93364679163 8.2356163021
+1 3.281076 24.715461 2.503217 27.12133 2.503265 27.12135
4.5950476252 0.25794882226 4.1363561854 21.403666589 4.136385087 21.403689968
4.6664918654 19.0235931997 5.2842961861 15.766367118 5.2843094425 15.766398357
5.54553715604 13.4562601372 5.3726029555 1.1464590251 5.3726223834 1.1465226325
5.57049606384 3.42295459433 5.9032040396 10.323528755 5.9032078368 10.323575489

5.86827722644

8.1611145838

5.9418167716

5.2816442304

5.9418208860

5.2817101553

values of w=5-30 a.u. Here again, we note the good agree-
ment despite the relatively small size of basis (compared to
other studies where five-fold to 10-fold larger sizes are typi-
cal) and limited programming power. It is worth noting that
computational errors increase substantially if one attempts to
obtain the nonrelativistic limit by reducing the value of X too
much (for example, by taking A/a,=10"*a). Table III gives a
more comprehensive list of the relativistic energy resonances
(E=&,—iA,/2) for the same potential as in Table II, but for
several values of Z and k.

As an additional advantage of the tridiagonal representa-
tion constructed in the preceding section, we use it in obtain-
ing highly accurate values of the relativistic bound states
energies for the Woods-Saxon potential as a model of nuclear
interaction. We consider a system consisting of a nucleon
and a heavy nucleus of mass number A>1 and atomic num-
ber Z. In addition to the Coulomb interaction between the
nucleon (proton) and the nucleus, we model the nuclear in-
teraction by the Woods-Saxon potential,

TABLE IV. The relativistic S-wave bound state energies (second column) of a neutron in a heavy nucleus
where the nuclear interaction is modeled by the Woods-Saxon potential in a vector coupling only and for
Vy=300 MeV, Ry=7.0 fm, and ry=0.5 fm. The nonrelativistic limit (third column) is compared with the
exact values (fourth column). We set the basis size N=100.

n -& (MeV) -£ (X—0) —E (exact)

0 248.09714552 294.14089 294.140931652
1 237.05488798 278.11419 278.114215979
2 220.19616375 253.94764 253.947661400
3 198.22742513 222.94965 222.949660882
4 171.69679031 186.18539 186.185386283
5 141.19339459 144.77473 144.774714174
6 107.47368313 100.15691 100.156894346
7 71.63686680 54.63639 54.636364679
8 35.60108366 13.50014 13.500142641
9 4.6544
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— V()
VWS(r) = 1 Ry)/ry’ (35)

+el

for a given set of parameters V,, R, and r,;, where ry<<R,
« A3 [21]. Additionally, for proton scattering, we model the
nucleus as a sphere of a uniform charge distribution Ze with
charge radius R... That is, we write the electrostatic potential
as

Z

s r=R,.,

Velr)=x° s ' 2 (3.6)
—{3—(—> ], r<R,.
2R, R,

Now, there are three different possibilities for the Woods-
Saxon potential coupling and combinations thereof. These
are the vector, scalar, and pseudoscalar couplings as shown
in Eq. (2.5). That is, for a given choice of dimensionless
coupling parameters {7;},ysw, we take V(r)=mnyVys(r),
S(r)=nsVws(r), and W(r)= 75y Vws(r). However, in the non-
relativistic limit the vector and scalar coupling produce the
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same results, which could also be verified numerically. We
start by calculating the bound states energy spectrum for
pure vector coupling and for a given choice of physical pa-
rameters. We also compare the nonrelativistic limit of our
calculation to the exact spectrum, which is known only for
Z=0 (e.g., for the neutron) and k=—1 (€=0) [22]. Table IV
lists these results for N=100 showing a good agreement (to
seven significant digits) with calculation stability relative to
variations in  in the range from 3 to 30 fm~!. The nonrela-
tivistic limit was achieved by reducing the value of X 1000
times. Table V gives a more comprehensive list of the rela-
tivistic bound state energies for the same potential param-
eters with Z=0 but for different values of « and for the three
types of coupling. In the pseudoscalar coupling case, it is
interesting to observe that (1) for k<0, there is only one
bound state for this configuration, and (2) for k=+2, one of
the bound state energies is greater then V{,. The last observa-
tion could be understood by noting that W(r) belongs to the
odd part of the Hamiltonian matrix whereas the energy e
belongs to the even part, consequently its contribution to the
energy is of the form W? and/or +W’ which could exceed V.
This is similar to the known properties of potentials in su-

TABLE V. A more comprehensive list of the relativistic bound state energies (—&, in MeV) for the same
potential parameters as in Table IV with Z=0 (the neutron) but for different values of angular momentum and

for the three types of coupling.

k=—1 k=+1 Kk=—2 K=+2

Vector coupling 248.09714552 244.07612732 244.05944671 239.11954166
237.05488798 229.93809634 229.89901505 222.01448951
220.19616375 210.41012018 210.34426731 199.90042987
198.22742513 186.06369707 185.96818538 173.25490727
171.69679031 157.43992621 157.31367275 142.63791463
141.19339459 125.18794962 125.03227433 108.78351319
107.47368313 90.19574478 90.01548066 72.75980580
71.63686680 53.85258438 53.65886815 36.40959785

35.60108366 18.99802008 18.82018769 4.6367

4.6544

Scalar coupling 247.08802455 242.00980035 242.03031833 235.73382171
233.17051614 224.09763124 224.14624112 213.98597667
211.78436837 199.22185488 199.30430140 185.74563306

Pseudoscalar coupling

183.79614007
149.98319301
111.38515070
69.69913447
28.33017949

24.96939116

168.12781475

131.67265604
91.14810050
48.85536144
10.3822863

209.82627993

106.89104987
69.11217961
61.62901889
36.89889862
13.7105454

168.24771957

131.83052980
91.33914821
49.06345008
10.549754

11.553984

151.69996208
112.84625319
70.83483040
28.95060786

313.82409795
209.82714254
146.52376221
109.19860821
93.03720230
67.10917125
36.34712447
6.957939
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TABLE VI. Similar to the results in Table V but for the proton where the Coulomb interaction, modeled
by the uniform charge sphere in Eq. (3.6), comes into play in addition to the Woods-Saxon potential. We took

V=300 MeV, Ry=7.0 fm, ry=0.5 fm, Z=50, and R,=1.2R,,

k=—1 k=+1 k=-2 K=+2
Vector coupling 239.563803170 235.622595549 235.607266173 230.691823560
228.427148185 221.250580826 221.212660865 213.257784117
211.338683118 201.429688194 201.364600016 190.794499205
189.054177508 176.728212555 176.633055235 163.758365131
162.150372138 147.708047152 147.581800246 132.72573538
131.24325714 115.04498776 114.88911600 98.4589242
97.1216445 79.6653740 79.4850046 62.075202
60.937643 43.036007 42.843025 25.54591
24.74935 8.29641 8.12416

Scalar coupling

238.556334402

233.544307761

233.569264591

227.275002469

224.495382012 215.329897357 215.383392390 205.114952428
202.804046574 190.075318001 190.163351087 176.431455638
174.410677933 158.53272069 158.65893774 141.90093621
140.13449560 121.59641534 121.76120939 102.55848693
101.0646524 80.6174386 80.8156537 60.132805
58.983495 38.029052 38.243362 18.14774
17.55533 0.10888 0.27041
Pseudoscalar coupling 15.66550 199.916335725 2.5290 305.924565954
95.557943017 200.016684061
59.234063046 135.940910601
50.5104651 98.78339687
25.936922 83.0367989
3.0903 56.444298
25.533513

persymmetric quantum mechanics [23]. Table VI shows
similar results to that in Table V but for the proton where the
Coulomb interaction (3.6) comes into play in addition to the
Woods-Saxon potential. We took R.=1.2R, and Z=50.

IV. DISCUSSION

In our calculation of bound states and resonance energies,
we used a finite N-dimensional basis. However, the matrix
representation of the reference Hamiltonian H,, is fully ac-
counted for as given by Eq. (2.18). It is only the potential
matrix ) that must be approximated by its elements in the
finite subset of the basis as given by Egs. (2.20a), (2.20b),
and (2.20c). Therefore, the matrix representation of the
Hamiltonian, which is available at our disposal, is the fol-
lowing:

(HO)nm + me n,m< N- 1,
Hnm = (4' 1 )

(HO)nms n,m >N-— 1 .
Consequently, if one could find the means of handling the
infinite tridiagonal tail of this matrix and thus account for the

full contribution of H, in the calculation, then one should
expect to obtain much more accurate results. In fact, such a
scheme does exist. The representation (4.1) is the fundamen-
tal underlying structure of the J-matrix method [24]. It is an
algebraic method of quantum scattering. The method takes
into account the full contribution of the reference Hamil-
tonian analytically. It is in our work plan to combine the
relativistic extension of the complex scaling method devel-
oped here and the relativistic version of the J-matrix method
[13,25] for achieving a substantial improvement on the ac-
curacy for calculating the relativistic energy of bound states
and resonances.
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