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We investigate Bose-Einstein condensates �BEC� containing a large number of bosonic atoms interacting via
a finite-range semirealistic interatomic interaction. Ground state properties for an increasing number of atoms
in the condensate have been calculated using a modification of the potential harmonic expansion method
�including a short range correlation function in the expansion basis� to solve the many-body Schrödinger
equation. An improved numerical algorithm for the calculation of the potential matrix elements permits us to
have up to 14 000 atoms in the condensate. Although our approach is approximate and justified for dilute
condensates, our results agree well with available diffusion Monte Carlo results for the same case. The ground
state energies also agree well with those by the Gross-Pitaevskii equation method for up to 100 particles in the
trap and become gradually larger than the latter �up to 5% for 14 000 atoms�. The difference is attributed to the
effects of finite range interatomic interaction and two-body correlations. Our approach presents a clear physical
picture of the condensate, being computationally economical at the same time.
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I. INTRODUCTION

The theoretical investigation of Bose-Einstein conden-
sates �BEC� has been a topic of increasing interest since the
first experimental observation in supercooled trapped alkali
atoms �1–3�. This constitutes a very difficult many-body
problem. The ability to deal theoretically with a large collec-
tion of interacting particles is necessary for further progress.
The number of interacting atoms in a typical experimentally
achieved BEC is of the order of 103–106 �4�. An ab initio
many-body approach to solve the Schrödinger equation for
such a large number of interacting particles faces difficulties
arising from too many degrees of freedom and too many
pair-interaction bonds. Standard few body methods like hy-
perspherical harmonics method �HHM� �5�, Faddeev �6� or
Yakubovsky �7� equation methods are practical only for a
few particles. An essentially exact result can be obtained by
methods based on quantum Monte Carlo �QMC� procedure,
viz., diffusion Monte Carlo �DMC� �8�, variational Monte
Carlo �VMC� �9�, and Green’s function Monte Carlo �10�
methods. Although quite accurate solutions are possible,
these methods demand a great deal of computation. More-
over, the computational requirements increase very rapidly
as the number of atoms �A� increases. For this reason, the
calculation by the DMC method has been reported in the
literature only up to about A=50 �11�. More recently Pur-
wanto and Zhang calculated column density up to 1000
trapped bosons by the ground state auxiliary-field quantum
Monte Carlo method, while detailed properties were calcu-
lated for 100 trapped bosons �12�. Alternative procedures are
thus important. For an ab initio but computationally simpler
treatment of BEC, we have utilized the potential harmonic
�PH� expansion method �13�, which was originally proposed
by Fabre �14� for nuclear systems. The PH expansion method
�PHEM� is an approximate form of HHM where the princi-
pal assumption is the absence of higher-than-two-body cor-

relations in the many-body wave function. Typical BEC,
where the atomic cloud is required to be extremely dilute to
avoid three- and higher-body collisions leading to recombi-
nation and consequent depletion of the condensate �4�, is
thus an ideal system for which this assumption is manifestly
valid. In our earlier studies �15,16� we found that the PHEM
results compare very well with DMC results even for
strongly interacting BEC for A�50. However, numerical
difficulties did not allow the method to be applied to more
than about 50 particles. The main difficulty was the evalua-
tion of the potential matrix element

VKK��r� = �hK
��hK�

���−1/2�
−1

+1

PK
���z�V�r�1 + z

2
�

�PK�
���z�wl�z�dz , �1�

where V�rij� is the two-body potential for the relative sepa-
ration rij�=r�1+z

2
� of the interacting ijth pair, PK

���z� is a Ja-
cobi polynomial and its weight function and norm are wl�z�
= �1−z���1+z�� and hK

��, respectively �17�. Now ��=�3A
−8� /2� increases rapidly with A, while �= l+1/2 �l being the
orbital angular momentum of the system� remains constant.
For large A, wl�z� increases very rapidly from zero at z=−1
to a maximum of the order of 2� at zm= �−�

�+� ; then within a
small range of z-values it decreases rapidly and becomes
vanishingly small for larger values of z. Although the factor
2� cancels with the normalization factor �hK

��hK�
���−1/2, the

major contribution to VKK��r� comes from a very narrow re-
gion near the lower limit of integration. This region shrinks
rapidly as A �and hence �� increases. Then VKK��r� for a
short range potential practically vanishes �for relevant values
of r� when evaluated numerically using any standard quadra-
ture. This is so because the narrow contributing region is not
well-represented unless an extremely large number of points
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is used in the quadrature, which increases the CPU time
enormously. Furthermore, the cumulative rounding off error
also increases with the number of quadrature points. Thus
using standard quadratures, VKK��r� practically vanishes for
A�50. Consequently the effect of two-body interaction is
totally lost and the results reflect only the external confining
potential. We have solved this difficulty �18� by splitting the
integral in Eq. �1� into n subintegrals of gradually increasing
intervals, h0, ah0, a2h0 , . . ., an−1h0 and using a 32-point
Gauss-Legendre quadrature �19� for each subintegral. The
first subinterval h0 can be made desirably small by choosing
a fairly large. We have demonstrated �18� that VKK��r� con-
verges rapidly as n or a increases. With a=5 and n=20, one
gets sufficiently converged �up to nine significant digits� re-
sults even for A=15 000. With this method the PHEM can be
used for systems containing quite large values of A. We have
succeeded in calculating the properties of the condensate
containing up to 14 000 trapped interacting bosons by the
PHEM. The number is at least one order of magnitude larger
than that reported in the literature by the QMC methods.
Furthermore, we can include a realistic two-body interaction,
e.g., van der Waals interaction �with a hard core� or Lennard-
Jones interatomic potentials. The zero energy two-body wave
function generated by such a potential is used as a short
range correlation function in the potential harmonic expan-
sion to enhance the rate of convergence of the PH expansion.
While the computational requirements for an accurate calcu-
lation by the QMC methods are considerably costly, those for
our procedure are very moderate. Even though the PHEM is
an approximate solution of the many-body problem, the fact
that our results compare quite well with the essentially exact
QMC results indicates that the basic assumption, viz., ab-
sence of more-than-two-body correlations in the many-body
wave function is well-justified, even for a strongly interact-
ing BEC. In this paper, we present the results of our calcu-
lation for condensates containing up to 14 000 trapped 87Rb
and 23Na atoms interacting via a short range repulsive poten-
tial and compare them with DMC and Gross-Pitaevskii �GP�
results.

The paper is organized as follows: In Sec. II we briefly
recapitulate the potential harmonics expansion method in-
cluding a short range two-body correlation function. In Sec.
III we present our numerical procedure, while the results
appear in Sec. IV. Finally we draw our conclusions in Sec. V.

II. THEORETICAL FRAMEWORK

A. Expansion in potential harmonics basis

The mathematical details of the potential harmonics ex-
pansion method can be found in Ref. �14�. We briefly reca-
pitulate it here. The Schrödinger equation for a system of A
identical bosons �each of mass m�, confined by an externally
applied trapping potential Vtrap and interacting via a two-
body potential V�x�i−x� j�, is

	−
�2

2m


i=1

A

�i
2 + 


i=1

A

Vtrap�x�i� + 

ij�i

A

V�x�i − x� j� − E�
���x�1, . . . ,x�A� = 0, �2�

where x�i is the position coordinate of the ith particle. With
the introduction of N�=A−1� Jacobi vectors

��i =� 2i

i + 1
�x�i+1 −

1

i


j=1

i

x� j� �i = 1, . . . ,N� �3�

and the center of mass vector �R� �, the center of mass motion
is separated and the relative motion is described by

	−
�2

m


i=1

N

��i

2 + Vtrap + 

ij�i

N

Vij − ER�����1, . . . ,��N� = 0,

�4�

where ER is the energy of the relative motion. Note that the
labeling of the particle indices �and hence the Jacobi vectors�
is arbitrary. A particular choice is obtained by renaming the

relative separation �r�ij� of the �ij�-interacting pair as ��N,
whose polar coordinates are �	 ,
�. We next define the hy-
perradius �r� of the set of A particles through �20�

r2 = 

i=1

N

�i
2 =

2

A



i,j�i

A

rij
2 = 2


i=1

A

ri
2, �5�

where r�i is the coordinate of the ith particle from the center
of mass of the system. The hyper-radius of the �A−2� non-
interacting particles is

�ij = 	

i=1

N−1

�i
2�1/2

�6�

so that r2=�ij
2 +rij

2 . We introduce the hyperangle � such that
rij =r cos � and �ij =r sin �. Besides r, �, 	, and 
, the re-

maining �3N−4� variables of ���1 , . . . ,��N−1� are collectively
denoted by N−1

�ij� and are called hyperangles in 3�N−1� di-

mensional space when ��N=r�ij. These are constituted by

2�N−1� polar angles associated with ���1 , . . . ,��N−1 and �N
−2� angles defining their relative lengths. The Laplace op-
erator associated with the full set of N Jacobi vectors �which
is proportional to the kinetic energy operator of the relative
motion� is �20�

�2 � 

i=1

N

��i

2 =
�2

�r2 +
3A − 4

r

�

�r
+

L2�N�
r2 , �7�

where L2�N� is the grand orbital operator in
3N-dimensional hyperangular space and has the form

L2�N� = 4�1 − z2�
�2

�z2 + 6�2 − N�1 + z��
�

�z
+ 2

l2��ij�
1 + z

+ 2
L2�N−1

�ij� �
1 − z

, �8�

where z=cos 2�, �ij ��	 ,
�, and L2�N−1
�ij� � is the grand or-

bital operator in 3�N−1� dimensional space.
Splitting � of Eq. �4� in Faddeev components

� = 

ij�i

A

�ij , �9�

Eq. �4� can be written as
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�T + Vtrap − ER��ij = − V�rij� 

kl�k

A

�kl, �10�

where T=− �2

m 
i=1
N ��i

2 . Applying 
ij�i
A on both sides of Eq.

�10�, one gets back Eq. �4�. The assumption that correlations
higher than two-body ones in � are negligible, and that the
angular and hyperangular momenta of the system are con-
tributed by the interacting pair only, makes the Faddeev com-
ponent �ij independent of the coordinates of all the particles
other than the interacting pair �13,14�, i.e., �ij =�ij�r�ij ,r�.
With this assumption, �ij�r�ij ,r� can be expanded in the sub-
set of hyperspherical harmonics necessary for the expansion
of V�r�ij�. This subset of HH is called potential harmonics and
is denoted by �P2K+l

lm �N
�ij��. Note that P2K+l

lm �N
�ij�� depends

only on r�ij, i.e., ��N and is independent of ���1 , . . . ,��N−1�. Thus

�ij�r�ij,r� = r−��3N−1�/2�

K

P2K+l
lm �N

�ij��uK
l �r� . �11�

Here N
�ij� denotes the full set of hyperangles in

3N-dimensional space for the choice ��N=r�ij. The orbital an-
gular momenta of the condensate and its projection are de-
noted by l and m, respectively. Since P2K+l

lm �N
�ij�� is indepen-

dent of ���1 , . . . ,��N−1�, it corresponds to zero eigenvalue of
L2�N−1

�ij� �. Closed analytic expression for P2K+l
lm �N

�ij�� can be
found in Ref. �14�. Substitution of Eq. �11� in Eq. �10� and
projection on a particular PH gives

	−
�2

m

d2

dr2 + Vtrap +
�2

m

LK�LK + 1�
r2 − ER�uK

l �r�

+ 

K�

fK�l
2 VKK��r�uK�

l �r� = 0, �12�

where

LK = 2K + l +
3N − 3

2
,

fKl
2 = 


k,l�k

�P2K+l
lm �N

�ij���P2K+l
lm �N

�kl��� . �13�

An analytic expression for fKl
2 is given in Ref. �13�. In the

present work, we take Vtrap as a spherically symmetric har-
monic oscillator potential, Vtrap=
i=1

A 1
2m�2ri

2= 1
4m�2r2. This

is hypercentral and is very simple to include in Eq. �12�.
However, most experimental setups have axially symmetric
harmonic traps. In recent experiments rotating traps have
been used �21� for which asymmetric or anharmonic confin-
ing potential is important. For an arbitrary fully asymmetric
trap, Eq. �5� cannot be used and the present choice of Jacobi
coordinates is not profitable. For a harmonic trap with differ-
ent confinement frequencies in the three Cartesian directions,
one can take Cartesian components of Eq. �3� and introduce
three unphysical variables through rk

2=
i=1
N �ik

2 , �ik being the

kth Cartesian component �k=x ,y ,z� of ��i. The above proce-
dure will then result in an equation similar to Eq. �12�, but
much more difficult to handle. For simplicity and to study
the basic properties, we restrict ourselves to spherical traps.

The potential matrix element is

VKK��r� =� P2K+l
lm* �N

�ij��V�rij�P2K�+l
lm �N

�ij��dN
�ij�

= �hK
��hK�

���−1/2�
−1

+1

PK
���z�V�r�1 + z

2
�

�PK�
���z�wl�z�dz , �14�

Eq. �12� can be put in a symmetric form by multiplying it by
the constant fKl �13�,

	−
�2

m

d2

dr2 + Vtrap +
�2

mr2 �L�L + 1� + 4K�K + � + � + 1�

− ER�UKl�r� + 

K�

V̄KK��r�UK�l�r� = 0, �15�

where L= l+ �3A−6� /2 and

V̄KK��r� = fKlVKK��r�fK�l,

UKl�r� = fKluK
l �r� . �16�

We solve Eq. �15� numerically to obtain the energy and wave
function of the condensate.

B. Incorporation of s-wave scattering length for a finite range
interatomic potential

In a typical BEC achieved in laboratories, the average
interparticle separation is much larger than the range of two-
body interaction. This is necessary to prevent three- and
higher-body collisions, which would give rise to molecule
formation and eventual depletion of the BEC. Under these
conditions, the two-body interaction can be represented by
the s-wave scattering length �as�. Assumption of a contact
interaction �valid only in a dilute BEC, where the range of
two-body interaction is negligible compared to the average
interparticle separation� gives rise to the mean-field Gross-
Pitaevskii �GP� equation �4�. In the original BEC with 87Rb
�3� and 23Na atoms �22�, as had positive values representing
repulsive effective interaction. However, a realistic inter-
atomic interaction is always attractive at larger separations.
An attractive potential normally gives negative as; it can give
a positive as if the zero energy two-body wave function in
this potential has one or more nodes. The asymptotic part of
the zero energy two-body wave function ��rij�, for the po-
tential V�rij�, has the form �c1rij +c2� and the corresponding

scattering length is given by as=−
c2

c1
. Relatively small

changes in the short range part of V�rij� can introduce one or
more nodes near the origin in ��rij�. This in turn drastically
alters the asymptotic linear part. Consequently the value of
as can change enormously. In the laboratory, the scattering
length can be tuned using Feshbach resonances �23�. The
energy scale for the kinetic energy of the interacting pair is
the oscillator energy ���� scale. In laboratory BECs this is
extremely small ��10−13 eV� compared to atomic energy
scale ��1 eV�. Thus for the Faddeev component �ij of the
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condensate wave function, the kinetic energy of the interact-
ing pair is negligibly small compared to atomic interaction
V�rij� and for rij→0, �ij is well-represented by ��rij�. Thus
��rij� is an accurate representation of the two-body pair cor-
relation for interatomic separations at the atomic length
scale. Since the potential harmonic P2K+l

lm �N
�ij�� is finite for

rij→0, the rate of convergence of the PH expansion of Eq.
�11� will be very slow. To enhance the rate of convergence,
we use ��rij� as a short-range correlation function �corre-
sponding to the appropriate scattering length� in the PH ex-
pansion and replace Eq. �11� by

�ij�r�ij,r� = r−��3N−1�/2�

K

P2K+l
lm �N

�ij����rij�uK
l �r� . �17�

Inclusion of ��rij�, in effect, constrains the motion of indi-
vidual atoms to follow the dictate of a particular scattering
length. In practice, we solve the zero energy two-body wave
function ��rij� in the chosen two-body potential V�rij� such
that as has the desired value. The correlation function is cho-
sen to satisfy the appropriate healing condition, viz., ap-
proaching unity for large rij as in Ref. �24�. Inclusion of
��rij� introduces correction terms in Eq. �15�. However, such
correction terms are quite negligible for a typical laboratory
BEC. This is because the relevant value of r �which is the
position of the minimum of the effective potential in which
the condensate moves� is typically �10–100 oscillator units
�o.u.� and is much larger than the healing distance ��range
of two-body interaction�. This ��rij� is then used in Eq. �17�.
As a result the potential matrix element becomes

VKK��r� = �hK
��hK�

���−1/2�
−1

+1

PK
���z�V�r�1 + z

2
�PK�

���z�

���r�1 + z

2
�wl�z�dz . �18�

Thus even an attractive V�rij� can contribute positively to
VKK��r� if ��rij� is also negative over a significant interval of
rij. Inclusion of ��rij� has the additional advantage of en-
hancing the rate of convergence of the PH expansion, since it
correctly reproduces the short separation two-body correla-
tion of the many-body wave function.

III. NUMERICAL PROCEDURE

A. Accurate evaluation of VKK�„r…

Although the procedure outlined in Sec. II A is, in prin-
ciple, appropriate for a dilute BEC, there are certain difficul-
ties. The basic length scale for a harmonic oscillator trap of
circular frequency � is aho=� �

m� , which for a typical experi-
mental setup, is of the order of 104 Bohr. The effective po-
tential in hyperradial space due to the hypercentrifugal repul-
sion together with the harmonic oscillator trap has a
minimum at about �3Aaho. Thus minimum of the effective
potential for a dilute condensate, with A�104 will be at
�106 Bohr, which is �105 times larger than the typical
range of the interatomic interaction. This means that almost
the entire contribution to VKK��r� from the integral in Eq.

�18�, for such a typical case, comes from a very narrow in-
terval ��10−10� of z near the lower limit of integration. Fur-
thermore, wl�z� shoots up from zero at z=−1 to a maximum
�2� at zm= �−�

�+� and then decreases rapidly reaching a value
of about 10−10 of the peak value at z�−1+0.003. Although
the peak value 2� is extremely large for large A, it cancels
with the same factor in �hK

��hK�
���−1/2 �see Ref. �17��. Thus for

large A, not only is the contributing interval of z very narrow,
but also the integrand varies enormously within this narrow
interval. Any standard quadrature to evaluate the integrand in
Eq. �18� thus gives practically zero for A�50, since very
few points will be within this critical range, unless an ex-
tremely large-point quadrature is used, which would require
an enormously large CPU time. This was the reason why we
could not go beyond A=50 in our earlier attempts �13,15,16�.
We have solved this problem by splitting the interval
�−1,1� of integration into n gradually increasing subintervals
�18�: h0, ah0, a2h0 , . . . ,an−1h0, such that

h0 + ah0 + a2h0 + ¯ + an−1h0 = 2. �19�

From this we have

h0 =
2�a − 1�
�an − 1�

�20�

and the integral in Eq. �18� is replaced by a sum of n subin-
tegrals

�
−1

1

= �
−1

−1+h0

+ �
−1+h0

−1+h0+ah0

+ ¯ + �
1−an−1h0

1

. �21�

Each subintegral is evaluated by a 32-point Gauss-Legendre
quadrature �19�. With an appropriate choice of a, the first
subinterval h0 can be made desirably small, even for a rela-
tively small value of n. For example, if we fix n=20, then for
a=2, h0�2�10−6 while for a=5, h0 becomes �10−14. Thus
the integral can be evaluated accurately without appreciable
increase in CPU time. We have shown �18� that the choice
n=20, a=5 is sufficient to evaluate VKK��r� for A up to
15 000 with an accuracy of one part in 109.

B. Solution of coupled differential equation

Restricting the K-sum in Eq. �17� to an upper limit of
Kmax �which is determined from the requirement of conver-
gence�, we solve the set of coupled differential equations
�CDE�, Eq. �15�, by hyperspherical adiabatic approximation
�HAA� �25�. Assuming that the hyperradial motion is slow
compared to the hyperangular motion, the latter is separated
adiabatically and solved for a fixed value of r. This is
achieved by diagonalizing the potential matrix �VKK��r�� plus
the diagonal hypercentrifugal term of Eq. �15� for a fixed
value of r. The lowest eigenvalue, �0�r�, gives the effective
potential �as a parametric function of r� in which the conden-
sate moves �13�. In the uncoupled adiabatic approximation,
an overbinding correction term is also included with �0�r�
�25�:
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	−
�2

m

d2

dr2 + �0�r� + 

K=0

Kmax �d�K0�r�
dr

�2

− ER��0�r� = 0,

�22�

where �K0�r� is the Kth element of the column vector corre-
sponding to the lowest eigenvalue �0�r�. Equation �22� is
solved by the standard Runga-Kutta algorithm �19�, subject
to appropriate boundary conditions for r→0 and r→�, for
the relative energy ER and the wave function �0�r�. The total
energy E of the condensate is obtained by adding the center
of mass energy to ER. The partial wave UKl�r� is given in
HAA by �25�

UKl�r� � �0�r��K0�r� . �23�

Although Eq. �15� can be solved by an exact numerical al-
gorithm, e.g., the renormalized Numerov method �26�, we
prefer HAA for reasons of computational economy. Earlier
works demonstrated that the HAA results agree very well
with exact ones for both atomic �27–29� and nuclear �30,31�
cases.

IV. RESULTS AND DISCUSSIONS

A. Choice of potential

We choose a finite range semirealistic potential of the
form

V�rij� = V0 sech2� rij

r0
� , �24�

whose range �r0� and strength �V0� can be adjusted to give
the experimental s-wave scattering length �as�. The potential
is uniformly attractive or repulsive accordingly as V0 is nega-
tive or positive, respectively. The advantage of this choice is
that this potential is smooth and the range can be chosen to
be of the order of atomic interaction range. Since aho
�10−4 cm, we choose r0=10−3 o.u. Then the zero energy

two-body Schrödinger equation is solved to obtain the
asymptotic solution. This has the form c1rij +c2 in the poten-
tial free region, so that as=−

c2

c1
. The strength V0 is then ad-

justed to get the experimental value of as.

B. Results for 87Rb

As an example, we consider the BEC experiment with
87Rb atoms at the Joint Institute for Laboratory Astrophysics
�JILA� �3�, for which as=0.004 33 o.u. �11�. This gives V0
=1.818 47�109 o.u. for r0=10−3 o.u. Calculated ground
state energy �E� for several representative number of atoms
�A� in the trap are presented in the fifth column of Table I.
Our results agree fairly well with the energies calculated by
Blume and Greene �11� using the DMC method �also quoted
in Table I�, as also with our previous calculation �15�, for the
available A values. Since DMC results are not available for
A�20, we compare our results graphically with the GP re-
sults in Fig. 1, where ground state energy per particle of the
condensate calculated by the GP equation is plotted against A
�in log scale�. We use a logarithmic scale for A, in order that
points corresponding to smaller A values can be distin-

TABLE I. Results for 87Rb using V0 sech2 �rij /r0� potential for as=0.004 33. All results are given in
oscillator units �o.u.�.

A

Interaction
energy

�V�

Kinetic
energy

�T�

Trap
energy
�Vtrap�

Total ground state energy �E�

rav
�of PHEM�

rrms
GP

�of GP�PHEM
DMC

Ref. �11�

3 0.0010 3.0015 1.5077 4.5103 4.51037 1.003 1.228

5 0.0151 4.4888 3.0322 7.5360 7.53439 1.101 1.230

10 0.1257 8.1614 6.8619 15.1490 15.1539 1.171 1.235

20 0.5831 15.324 14.714 30.6209 30.639 1.213 1.245

50 3.6395 35.617 39.614 78.8704 1.259 1.272

100 13.492 66.285 85.130 164.907 1.305 1.311

500 220.00 245.23 574.85 1040.09 1.516 1.510

1000 660.02 404.05 1395.0 2459.11 1.670 1.654

5000 7260.6 1166.6 12068 20495.4 2.197 2.151

10000 19659 1798.1 31309 52765.2 2.502 2.440

14000 31751 2212.4 49868 83830.9 2.669 2.599
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FIG. 1. Comparison of ground state energy per particle by
PHEM and GP for 87Rb using V0 sech2�rij /r0� potential. Note the
logarithmic scale for the number of particles in the condensate.
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guished. Consequently the E /A versus A curve looks differ-
ent from the usual linear A plot. In Fig. 1 we also plot the
same quantity calculated by the PHEM method. One notices
that the agreement is quite good up to A=100. The difference
increases as A increases but remains within 5% even for A
=14 000. One can also notice that the PHEM energy is larger
than the GP energy. This indicates the effect of interatomic
interaction and correlations present in the PHEM. By con-
trast, the GP equation comes from the mean field theory
which includes no correlation and uses only two-body zero
range interaction. The effective potential in the PHEM has
contributions from the trapping potential, hypercentrifugal
repulsion �HCFR�, and the total two-body interaction
�TTBI�, which are, respectively, the second, third, and the
last term of Eq. �15�. While strength of Vtrap is independent
of A�= 1

4m�2r2�, strength of HCFR increases roughly as A2

for large A. Although V�rij� is independent of A, the number
of binary bonds also increases roughly as A2; hence TTBI
�which is repulsive in our present study� also increases
roughly as A2. Both HCFR and TTBI will push the particles
outwards, forcing them to climb the outer wall of Vtrap, the
effect increases as A increases. While Vtrap increases steadily

��r2� as r increases in the same manner for all A, both HCFR
and TTBI decrease with increasing r �the former as 1

r2 �, but
their strengths increase approximately as A2. Consequently
�0�r� is flatter near its minimum for smaller A. As A in-
creases, HCFR plus TTBI decrease more stiffly as r in-
creases. Hence �0�r� becomes less flat near its minimum
whose position shifts to larger r. This is shown in Fig. 2 for
three representative values of A �20, 500, and 1000�, in
which the ground state wave function ��0�r�� is also plotted.
Furthermore, the net effect of Vtrap, HCFR and TTBI in-
crease the ground state energy of the condensate rapidly as A
increases. This explains the gradual increase of the difference
of PHEM and GP energies as A increases.

In Table I, we also present calculated expectation values
of interaction ��V��, kinetic ��T��, and trap ��Vtrap�� energies
of all the particles in the spherically symmetric harmonic
trap in the second, third, and fourth columns, respectively.
The expectation value of the interaction energy is obtained as
the expectation value of �ij�i

A V�rij� in the ground state. Pur-
wanto and Zhang �12� presented detailed results by the
auxiliary-field quantum Monte Carlo method for A=100
only. Our choice of the experimental as corresponds to the
lowest value of the range of as values chosen by them. Al-

TABLE II. Results for 23Na using V0 sech2 �rij /r0� potential for as=0.002 84. All results are given in
oscillator units �o.u.�.

A

Interaction
energy

�V�

Kinetic
energy

�T�

Trap
energy
�Vtrap�

Total ground state
energy by PHEM

E
rav

�of PHEM�
rrms

GP

�of GP�

3 0.0005 3.0013 1.5047 4.50660 1.001 1.227

5 0.0099 4.4913 3.0235 7.52472 1.100 1.228

10 0.0831 8.1917 6.8233 15.0981 1.168 1.232

20 0.3884 15.466 14.556 30.4108 1.206 1.238

50 2.4743 36.448 38.665 77.5873 1.244 1.257

100 9.4186 69.030 81.660 160.109 1.278 1.285

500 167.67 270.60 520.60 958.863 1.443 1.440

1000 520.59 456.01 1235.4 2212.00 1.572 1.561

5000 6004.9 1358.1 10364 17726.8 2.036 1.997

10000 16413 2106.2 26724 45243.7 2.312 2.258

14000 26591 2596.7 42482 71670.0 2.463 2.402
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FIG. 2. Plot of wave function �0�r� �vertical peaks� and the
lowest eigenpotential �0�r� as a function of hyper-radius for 20,
500, and 1000 atoms of 87Rb. The actual value of �0�r� can be
obtained by multiplying the vertical scale by 4000.0. The peak of
the wave function occurs at the position of the minimum of lowest
eigenpotential.
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FIG. 3. Plot of �Vtrap�, �V�, and �T� per particle as a function of
the number of particles A for 87Rb �as=0.004 33 o.u.�. Note that the
calculated points are joined by lines to guide the eye.

DAS et al. PHYSICAL REVIEW A 75, 042705 �2007�

042705-6



though no numerical values were given, from Fig. 3 of Ref.
�12�, it appears that E /A, �V� /A, �Vtrap� /A, and �T� /A calcu-
lated by us agree fairly well with those calculated by Pur-
wanto and Zhang for the same value of as. One notices from
Table I that the interaction energy per binary bond
�2�V� /A�A−1�� is a slowly varying function of A. It in-
creases initially for small A, then attains a maximum at A
�20, then decreases very slowly for larger values of A. This
is in agreement with our expectation. We already noticed that
�V� increases with the number of bonds. Hence interaction
energy per bond may be expected to be approximately con-
stant. It is not exactly a constant, since the average interpar-
ticle separation changes with A. For very large values of A,
the interparticle separation faces a competition between two
opposing effects: more particles squeeze within the trap
�tending to reduce average separation� and the rapidly in-
creasing mutual repulsion �tending to increase average sepa-
ration�. Hence the number density in physical space in-
creases slowly with A �approximately as A2/5 for large A�, as
can be seen from the values of rav presented in Table I �see
below�. As a result, interaction energy per bond increases
initially, then changes very slowly for larger A. We plot
�V� /A, �Vtrap� /A, and �T� /A against A for 87Rb in Fig. 3. The
trap energy per particle increases gradually, since the increas-
ing mutual repulsion with increasing A pushes the particles
outward, forcing them to climb the hill of Vtrap. This is seen
in Fig. 3. Figure 3 also shows that �T� /A decreases gradually
as A increases. As A increases, the region of hyperspace
available for the motion of atoms increases. Consequently
kinetic energy per atom decreases, although the total kinetic
energy of all atoms in the trap increases slowly �Table I�.

In the last column of Table I, we present the rms separa-
tion from the center �rrms

GP� by the GP equation. By contrast
the rms hyper-radius by the PHEM has much larger values
�see Fig. 2�. This is understandable, since the hyper-radius is
a length variable in the hyperspace and is not directly related
to physical separations. From Eq. �5� one notices that the
hyper-radius increases rapidly as the number of particles in-
creases. However, Eq. �5� also shows that the average square
of distance of individual particles from the center of mass
�= 1

A
i=1
A ri

2� is directly related to the square of the hyper-
radius �= r2

2A
�. Hence we define an average physical size of the

condensate as

rav = 	 �r2�
2A

�1/2

.

One can expect that rav of PHEM should be comparable to
rrms

GP of the GP equation. In the seventh column of Table I we
present rav for the chosen values of A. It is seen that, al-
though rav is appreciably smaller than rrms

GP for A�20, the
difference decreases to a minimum for A in the range 100–
500, and for larger A, rav is larger than rrms

GP , the difference
being less than 3% even for A=14 000. One can calculate the
number density �nd�, assuming the particles to be distributed
over a sphere of radius rav in the physical space. Then one
can see from Table I that nd is approximately proportional to
A2/5 for A�1000, which agrees with the Thomas-Fermi ap-
proximation in the large A limit �4�. Note that the PHEM
wave function ��0�r�� is a function of the hyper-radius and
hence cannot be compared with the GP wave function in the
physical space. Thus we cannot compare the PHEM density
profile with that by the GP method. Still the average physical
size of the condensate and its number density agree fairly
well with corresponding physical quantities by the GP equa-
tion method or the Thomas-Fermi approximation for large A.

C. Results for 23Na

The results for 23Na atoms in the experimental trap �22�,
with as=4.9 nm �corresponding to 0.002 84 o.u.�, are pre-
sented in Table II. We tabulate the same quantities in the
various columns as in Table I �no DMC results are available
in this case�. The ground state energy per particle by the
PHEM method is compared with that by the GP equation
method in Fig. 4. Once again the general feature is similar to
that for 87Rb. However, one can notice that the difference is
larger for 87Rb than for 23Na. This is expected since as is
smaller for 23Na. In Fig. 5, we plot �V� /A, �Vtrap� /A, and
�T� /A for 23Na. We again notice the same qualitative features
as in the case of 87Rb but less pronounced, as expected.

V. CONCLUSIONS

We have demonstrated that the correlated potential har-
monics expansion method �which assumes that correlations
higher than two-body ones are negligible in a dilute BEC�,
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FIG. 4. Comparison of ground state energy per particle by
PHEM and GP equation for 23Na using V0 sech2�rij /r0� potential.
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FIG. 5. Plot of �Vtrap�, �V�, and �T� per particle as a function of
the number of particles A for 23Na �as=0.002 84 o.u.�. Note that the
calculated points are joined by lines to guide the eye.
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together with an improved algorithm for the evaluation of the
potential matrix elements, is a sufficiently accurate and com-
putationally economical method for the study of BEC. The
fact that the computed observables agree well with available
quantum Monte Carlo results shows that the basic assump-
tion is justified. The improved algorithm allows one to study
condensates containing up to 14 000 atoms. This is at least
an order of magnitude larger that the maximum number of
atoms in the condensate reported so far by the essentially
exact quantum Monte Carlo methods. We have calculated the
ground state energy of the condensate, together with expec-
tation values of kinetic, interaction, and trap energies. We
also define and evaluate an average physical size �rav� of the
condensate. We have further compared our results with those
by the GP equation method for the same value of the scat-
tering length. The ground state energy per particle by the
PHEM is very close to that by the GP equation for small A
and the difference increases with A, reaching about a 5%
increase for A=14 000 for 87Rb. The enhanced energy is due
to the finite range interatomic interactions and two-body cor-
relations. The rms radius of the condensate obtained by the
GP equation compares fairly well with rav calculated by
PHEM except for A�20, indicating that the physical size of

the condensate obtained by both the PHEM and GP equation
are comparable, even for A=14 000. Furthermore, the aver-
age interaction energy per binary bond is a slowly varying
function �decreasing slowly for large A� of the number of
atoms. This is understandable, since as more atoms are
squeezed into the condensate, they face a stronger mutual
repulsion and the number density increases approximately as
A2/5 for large A. As A increases, increased mutual repulsion
and also the hypercentrifugal repulsion forces the system to
climb the stiff walls of the confining potential. As a result,
the expectation value of the trap energy per particle increases
with A. Increase in available volume in the hyperspace re-
duces the average kinetic energy per particle, as A increases.
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