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In a quasiclassical framework, we formulate the double-energy-differential cross sections for the Coulomb
four-body problem. We present results for the triple photoionization from the Li ground state at 115, 50, and
3.8 eV excess energies. With the energy of one of the electrons kept fixed, the double-energy-differential cross
sections at 115 eV excess energy is found to be of “U-shape� �unequal energy sharing�, and in very good
agreement with ab initio results. At 50 eV, it seems that a transition starts taking place to more equal energy
sharing configurations. Close to threshold, at 3.8 eV excess energy, the equal energy sharing configurations are
the dominant ones.
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I. INTRODUCTION

Several theoretical approaches and experimental results,
in good agreement with each other, are available for the
single photon double ionization of the helium atom �Cou-
lomb three-body problem� �1�. At the same time the single
photon triple ionization of the lithium atom �Coulomb four-
body problem� is still largely unexplored.

Regarding the total triple photoionization cross section
from the ground state of Li the few existing theoretical re-
sults �2–4� are in good agreement with experiment �5,6�.
However, for differential cross sections of three escaping
electrons the theoretical studies are very limited with no ex-
perimental results currently available. The small number of
theoretical studies and the current lack of experimental ones
is partly due to the very small values of the differential cross
sections. With the highest value of the total triple photoion-
ization cross section for Li being a few barns, the differential
ones are even smaller since they sample only part of the
outgoing flux. However, there are recent experimental results
for differential cross sections of three outgoing electrons for
the electron-impact double ionization of helium. These ex-
periments measure the angular distribution of two ionized
electrons when the incoming electron is very fast �7–9� and
more recently measurements were obtained for incident elec-
trons of much lower energy �10�. The theoretical work on
differential cross sections for triple photoionization from the
Li ground state include: �a� A study of selection rules for
different electron-momenta configurations in the three elec-
tron escape �11�. In this work, various relative angular dis-
tributions of one of the outgoing electrons �for a given rela-
tive angle of the other two electrons� were presented using
correlated 6 C �Coulomb� final state wave functions. �b�
There is also a very recent study of energy-differential cross
sections for photon energies of 280, 300, and 320 eV for the
triple photoionization of Li using the nonperturbative time-
dependent close coupling method �12�. �c� Finally, in Ref.
�13� the angular correlation probability is evaluated in the
framework of classical mechanics. The angular correlation
depends only on the relative angle between any pair of ion-
ized electrons in the three electron escape.

In the current paper, we investigate double-energy-
differential cross sections for the triple photoionization from

the Li ground state. To our knowledge, it is the first time
double-energy differential cross sections are formulated clas-
sically. Energy differential cross sections for the complete
break-up of the Li atom are much more difficult to interpret
compared to those for the complete break-up of the He atom.
For two electron escape, for a given excess energy, there is
only one energy-differential cross section as a function of
one electron’s energy. For three electron escape, for a given
excess energy, a different double-energy-differential cross
section, as a function of one electron’s energy, is obtained for
each energy assigned to one of the electrons �see below
slices through differential cross sections�. Our results are ob-
tained using a quasiclassical formulation which has been out-
lined elsewhere �4� but we include it here as well, in Sec.
II A, for completeness of the paper. The classical nature of
our investigation results in three distinguishable escaping
electrons. In Sec. II B, we outline how starting from the
double-energy differential cross sections of the three distin-
guishable electrons we obtain fully symmetrized ones. Note
that, in an ab initio formulation the symmetry properties of
the differential cross section are a natural outcome of using a
fully antisymmetric wave function to describe the three elec-
tron state. In Sec. II C, we discuss how the double-energy
differential cross sections are computed numerically. In Sec.
III, we present the double-energy differential cross sections
for three different excess energies: for 115, 50, and 3.8 eV.
For the case of 115 eV we directly compare our results with
the ab initio double-energy differential cross sections in Ref.
�12� for a photon energy of 320 eV.

II. QUASICLASSICAL FORMULATION OF SINGLE
PHOTON MULTIPLE IONIZATION

A. Initial phase space density and its time evolution
for single photon triple ionization

The construction of the initial phase space density ���� in
our quasiclassical formulation of the triple photoionization of
Li has been detailed in �4�, here we give only a brief sum-
mary. We formulate the triple photoionization process from
the Li ground state �1s22s� as a two step process. First, one
electron absorbs the photon �photoelectron� at time t= tabs
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=0. Through electronic correlations, the energy gets redis-
tributed, resulting in three electrons escaping to the con-
tinuum. We express the above two step process as

�3+ = �absP
3+, �1�

where �abs is the total absorption cross section and P3+ is the
probability for triple ionization. In what follows, we use the
experimental data of Wehlitz �6� for �abs. Our formulation
accounts for the second step. We first assume that the photon
is absorbed by a 1s electron at the nucleus �r1=0�. This latter
approximation becomes exact in the limit of high photon
energy �14�. The cross section for photon absorption from a
1s orbital is much larger than from a 2s orbital �15�. Hence,
we can safely assume that the photoelectron is a 1s electron
which significantly reduces the initial phase space to be
sampled. Also, by virtue of their different character the elec-
trons become practically distinguishable and allow us to ne-
glect antisymmetrization of the initial state. We denote the
photoelectron by 1, the other 1s electron by 2, and the 2s
electron by 3. Following photon absorption, we model the
initial phase space distribution of the remaining two elec-
trons, 1s and 2s, by the Wigner transform of the correspond-
ing initial wave function ��r1=0 ,r2 ,r3�, where ri are the
electron vectors starting at the nucleus. We approximate the
initial wave function as a simple product of hydrogenic or-
bitals �i

Zi�ri� with effective charges Zi, to facilitate the
Wigner transformation. The Zi are chosen so that they repro-
duce the known ionization potentials Ii, namely for the 2s
electron Z3=1.259 �I3=0.198 a.u.� and for the 1s electron
Z2=2.358 �I2=2.780 a.u.�. �We use atomic units throughout
the paper if not stated otherwise.� The excess energy, E, is
given by E=E�− I with E� the photon energy and I
=7.478 a.u. the Li triple ionization threshold energy. Given
the above considerations, the initial phase space density is
given by

���� = N��r1���E1 + I1 − �� �
i=2,3

W�
i
Zi�ri,pi���Ei + Ii� �2�

with normalization constant N.
We next determine which fraction of ���� leads to triple

ionization, by following the phase space distribution in time.
The evolution of a classical phase space density is deter-
mined by the classical Liouville equation

��„��t�…
�t

= Lcl�„��t�… , �3�

with the initial phase space values being

��0� � � , �4�

and Lcl the classical Liouville operator which is defined by
the Poisson bracket �H , �, with H the Hamiltonian of the
system. In our case H is the full Coulomb four-body Hamil-
tonian. We determine the triple ionization probability P3+

formally through

P3+ = lim
t→	

	
tabs

t

d�P3+ exp��t − tabs�Lcl����� . �5�

The projector P3+ indicates that we integrate only over those
parts of phase space that lead to triple ionization. In practice,
Eq. �5� amounts to discretizing the initial phase space, as-
signing weights to each discrete point � j = (pj�0� ,qj�0�) ac-
cording to ��� j�, and evolving in time each initial condition
� j with the Coulomb four-body Hamiltonian. We propagate
the electron trajectories using the classical equations of mo-
tion �classical trajectory Monte Carlo method �16,17��.
Regularized coordinates �18� are used to avoid problems
with electron trajectories starting at the nucleus. We label as
triple ionizing those trajectories where the energies off all
three electrons are positive, Ei
0 with i=1,2 ,3, asymptoti-
cally in time. We evaluate P3+ by adding the weights of all
triply ionized trajectories.

B. Double differential probabilities

Our goal is to formulate the double-energy-differential
cross section d2�3+ /dE�dE�. It should be such that when
doubly integrating over it the total triple ionization cross
section is recovered,

�3+ = 	
0

E

dE�	
0

E−E�

dE�

d2�3+

dE�dE�

� �abs	
0

E

dE�	
0

E−E�

dE�

d2P3+

dE�dE�

. �6�

In what follows, we formulate d2P3+ /dE�dE�.
As it has already been mentioned in Sec. II A, by consid-

ering a product of hydrogenic orbitals as our initial state, we
neglect antisymmetrization in the initial state. The three es-
caping electrons are distinguishable resulting in three distinct
double differential probabilities d2P3+�Ei ,Ej� /dEidEj with
the energy of the third electron being Ek=E−Ei−Ej from
conservation of energy and i , j ,k=1,2 ,3, i j. We next sym-
metrize each one of the above three double differential prob-
abilities as follows: d2P3+�Ei ,Ej� /dEidEj should be �a� sym-
metric under exchange of the electron indices, that is, it
should have the same value when Ei→Ej since electrons i
and j are indistinguishable; �b� for constant energy Ei the
double differential probability, which is now only a function
of Ej, should be symmetric with respect to �E−Ei� /2 since
electrons j and k are indistinguishable; for constant energy Ej
the double differential probability, which is now only a func-
tion of Ei, should be symmetric with respect to �E−Ej� /2
since electrons i and k are indistinguishable; the double dif-
ferential probability that satisfies the above properties is of
the following form:

d2Psym
3+ �Ei,Ej�
dEidEj

=
1

6

d2P3+�Ei,Ej�

dEidEj
+

d2P3+�Ej,Ei�
dEidEj

+
d2P3+�Ei,E − Ei − Ej�

dEidEj

+
d2P3+�E − Ei − Ej,Ei�

dEidEj
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+
d2P3+�Ej,E − Ei − Ej�

dEidEj

+
d2P3+�E − Ei − Ej,Ej�

dEidEj
� . �7�

It now follows that the symmetrized double differential prob-
ability is given by

d2P3+�E�,E��
dE�dE�

= �
ij

1

3

d2Psym

3+ �Ei,Ej�
dEidEj

� , �8�

where the normalization factor follows from

	
0

E

dE�	
0

E−E�

dE�

d2P3+�E�,E��
dE�dE�

= P3+. �9�

C. Numerical evaluation of double
differential probabilities

To numerically evaluate the three dP3+�Ei ,Ej� /dEidEj we
divide the energy surface �0,E��0,E� into N2 equally sized
square bins. We then find the triple ionized trajectories which
fall into the bins and add up their weights. Note that from
conservation of energy the double-energy-differential prob-
abilities map out a triangle, see Sec. III. The size of N is
chosen so that we have a small standard relative error for
each square bin �the error is inversely proportional to the
square root of the number of triple ionizing events in a given
square bin �16��. For each of the excess energies currently
under investigation the number of triple ionizing trajectories
used in our computations was no less than 8000.

III. RESULTS

In this section we present results for excess energies of
115, 50, and 3.8 eV. Our choice of excess energies allows us
to investigate the double differential cross sections for ener-
gies close to threshold �3.8 eV�, close to the energy where
the total cross section is maximum �50 eV� and for higher
energies �115 eV�. Note, that the 115 eV is in the energy
range where our quasiclassical formulation is still valid �for
very high excess energies one must treat the problem quan-
tum mechanically�. In Fig. 1 we plot the double-energy-
differential cross section for two excess energies, namely 115
and 3.8 eV, to illustrate the difference in energy sharing of
the three escaping electrons at large �115 eV� and small
�3.8 eV� excess energies. The figure clearly illustrates that
the double differential cross section has the symmetries dis-
cussed in Sec. II B. In addition, one can see that at large
excess energies, 115 eV, the differential cross section has a
bowl shape. That is, for a given energy of one of the elec-
trons the other two electrons share unequally the remaining
energy, see below. On the other hand, at 3.8 eV for a given
energy of one of the electrons the other two electrons tend to
roughly equally share the remaining energy.

To gain more insight into the double differential cross
sections, we consider in Figs. 2–4 slices through the double-
energy-differential cross sections for each of the four excess
energies. That is, fixing the energy of one of the three escap-
ing electrons, E�, we plot the double differential cross sec-
tion as a function of the energy of another escaping electron,
E�. The energy of the third outgoing electron can be found
from conservation of energy. For all excess energies consid-
ered the energy surface �0,E��0,E� is binned in N2 squares
with N=14 for 115 and 50 eV while N=10 for 3.8 eV.

In addition, for excess energy of 115 we see that the slices
through the double differential cross section have a “U-
shape.” The latter is the well-known characteristic shape of
the single-energy-differential cross section for two outgoing
electrons for high photon energies. In Ref. �12�, the slices
through the differential cross sections were all found to be of
“U-shape.” We next compare our quasicalssical results with
the ab initio results of Ref. �12� for 320 eV photon energy.
The comparison is only an approximate one since our bin-
ning restricts the energies E� we can consider. The value of
E� we use to compare is the one closer to the energy consid-
ered by the quantum calculations. Also note that the photon
energy of 320 eV corresponds to a slightly higher excess
energy than the 115 eV excess energy favoring a shape of
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FIG. 1. �Color online� Contour plots of the double-energy-
differential cross section for excess energies 115 and 3.8 eV. The
trianglelike structure close to the E�=E−E� line is an artifact of our
choice of square bins.
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FIG. 2. Double-energy-differential cross sec-
tion for E=115 eV. The cross section is shown as
a function of one electron’s energy when the en-
ergy of one of the electrons is fixed to 12.32 eV,
28.75 eV, and 53.4 eV. Dashed black lines are
the data extracted from Ref. �12� for a 320 eV
photon energy.
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slightly more unequal energy sharing than the ones consid-
ered in Figs. 2�a�–2�c�. We compare our results for 12.32,
28.75, 53.4 eV, respectively, with the results of Ref. �12� for
10, 30, 50 eV �dashed line� in Figs. 2�a�–2�c�. Our data
points are the black circles while the solid lines are a fit to
these data points �the same holds for Figs. 3 and 4. We find
that our results for 115 eV excess energy compare very well
with those of Ref. �12�. The agreement is very good for
intermediate values of E� while it is not as good close to the
edges. However, close to the edges, as the authors in Ref.
�12� point out, their results are less accurate due to some lack
of convergence. From Fig. 2 we see that for large excess
energies the smaller Ea is the more pronounced the unequal
energy sharing between the two electrons is. That means that
for a very small energy of one electron a highly unequal
energy sharing is favored among the other two. For a very
large energy of one electron the unequal energy sharing of
the other two is not as pronounced.

We next focus on the slices through the double differential
cross sections for excess energies of 50 and 3.8 eV, with the
latter being very close to threshold, see Figs. 3 and 4. One
notices that at 50 eV for Ea=1.79 eV �see Fig. 3�a�� the
maximum of the differential cross section shifts to an energy
E��0 unlike the 115 eV excess energy where the maximum
is at E�=0. In addition, one sees from Fig. 3 that equal
energy sharing among two of the electrons is favored for
intermediate E� energies �hump in the middle of the E� en-
ergy range�. It thus, seems, that at 50 eV excess energy a
transition starts taking place from a highly unequal energy
sharing at 115 eV to a more equal one. At 3.8 eV, an energy
very close to threshold, the transition to equal energy sharing
configurations becomes even more pronounced. A compari-
son of Figs. 3 and 4 shows that the maximum of the differ-
ential cross section for 3.8 eV has shifted to energies E�

higher than those for 50 eV and for E�=1.71 eV, see Fig.
4�c��, equal energy sharing is the favorable configuration.

What is also quite interesting is that at 3.8 eV the slices
through the double differential cross sections as the energy
E� is increased, see Figs. 4�a�–4�c�, have shapes similar to
those of the single-energy-differential cross sections of the
two electron escape for decreasing excess energy close to
threshold, see, for example, �19�.

It is clear that a thorough study of the slices through the
double-energy differentials for the three electron escape is
needed for a large number of excess energies. Such a study
can answer the question of how the transition takes place
from a “U-shape” at higher excess energies �115 eV� to more
equal energy sharing for energies closer to the energy of the
maximum of the triple ionization cross section �50 eV�, and
finally to energies where equal energy sharing is the favor-
able configuration �3.8 eV�. Understanding how the transi-
tion takes place will ultimately help us understand how the
behavior of the three escaping electrons changes with de-
creasing excess energy. To compare with two electron es-
cape, let us point out that in the latter case a transition of the
single-energy-differential cross section takes place from an
unequal energy sharing to an equal sharing one as the photon
energy decreases. For the case of He double ionization, at
100 eV photon energy �close to the energy where the maxi-
mum of the double ionization cross section is� the single-
energy-differential cross section is flat. 100 eV is the critical
energy where the transition from unequal to equal energy
sharing starts taking place for two electron escape �20,21�. In
addition, for the case of electron-hydrogen scattering �19�, as
the excess energy is decreased �for energies close to thresh-
old� it was found that the single differential cross sections
have shapes similar to those shown in Fig. 4. What are the
physical implications of this similarity for the three electron
case remains to be seen.

IV. CONLUSIONS

We have presented the quasiclassical study of double-
energy-differential cross sections for the triple ionization of
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the lithium ground state. For 115 eV our results are in very
good agreement with the ab initio double-energy-differential
cross sections in Ref. �12� for a photon energy of 320 eV.
This agreement indicates that our simple initial state of a
product wave function correctly captures the essential fea-
tures of the triple ionization process by single photon absorp-
tion from the Li ground state. At 50 eV, it seems that a
transition starts taking place from a “U-shape” to a more
equal energy sharing configuration. We find that at 3.8 eV
the slices through the double-energy-differential cross sec-
tion have transitioned roughly to shapes where equal energy
sharing is favored. We believe that our first results on how
the transition towards threshold takes place will be the im-

petus for future studies of double-energy-differential cross
sections as the excess energy is reduced down to threshold. It
could be the case that these detailed studies for a large num-
ber of excess energies will allow a connection between the
shapes of the double-energy-differential cross sections and
the sequences of collisions that the three electrons follow to
escape �13�.
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