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The electronic spectrum of atomic nobelium �element 102� is calculated in preparation for a planned ex-
periment. The intermediate-Hamiltonian �IH� coupled-cluster method is applied to the ionization potential and
excitation energies of the atom, using a large basis set �37s 31p 26d 21f 16g 11h 6i� and correlating the outer
42 electrons. All the levels studied are obtained simultaneously by diagonalizing the IH matrix. The rows and
columns of this matrix correspond to all excitations from correlated occupied orbitals to virtual orbitals in a
large P space �8s 6p 6d 4f 2g 1h�, and the matrix elements are “dressed” by including excitations to the higher
virtual orbitals �Q space� at the coupled cluster singles-and-doubles level. Lamb shift corrections are included.
The accuracy is assessed by applying the same method to ytterbium, the lighter homologue of No. The
calculated ionization potential of Yb is within 3 meV of experiment, and the average error in the lowest 20
excitation energies of the atom is 300 cm−1. Nobelium is the heaviest element for which a reliable semiempir-
ical estimate of the ionization potential exists, 6.65�7� eV; the calculated value of 6.632 eV is in excellent
agreement. Transition amplitudes are obtained from an extensive relativistic configuration interaction calcula-
tion. The outstanding feature of the predicted nobelium spectrum is a very strong line at 30 060 cm−1, with an
amplitude A=5.0�108 s−1, corresponding to the 7s7p 1P1→7s2 1S0 transition. Putting the error limit conser-
vatively at 0.1 eV, we predict a strong feature in the No spectrum at 30 100±800 cm−1.

DOI: 10.1103/PhysRevA.75.042514 PACS number�s�: 32.30.Jc, 32.70.Cs, 31.15.Dv, 31.30.Jv

I. INTRODUCTION

Spectroscopic studies of superheavy atoms �Z�100�
present a severe challenge to the experimentalist. The first
such study, involving fermium �Z=100�, was published re-
cently �1�; measurements are now planned �2� for nobelium
and lawrencium �Z=102 and 103, respectively�, which
present even larger difficulties. Their low production rates in
nuclear fusion reactions, below ten atoms per second, and
short lifetimes, on the order of seconds, make a reliable pre-
diction of transition energies mandatory, since broad spectro-
scopic scans must be avoided. In addition, theoretical studies
are crucial for identifying the lines. Indeed, the Fm measure-
ments �1� were accompanied and guided by multiconfigura-
tion Dirac-Fock �MCDF� calculations. We recently predicted
the spectrum of lawrencium �3�, and the purpose of the
present work is to provide reasonably accurate transition en-
ergies and amplitudes for nobelium. The quality of the cal-
culated spectrum is estimated by applying the same method
to ytterbium, the lighter homologue of nobelium.

The Fock-space coupled-cluster �FSCC� scheme, a multi-
reference variant of the coupled-cluster method, is used here
in the framework of the four-component Dirac-Coulomb-
Breit Hamiltonian. This method has provided the most accu-
rate transition energies for many atomic and molecular sys-
tems �4�. It takes account of nondynamic electron correlation

by the multiconfigurational approach, including the impor-
tant electron configurations in the model �P� space, and at
the same time provides a good description of dynamic cor-
relation by incorporating many millions of excitations to Q
space determinants. The FSCC approach has been aug-
mented and improved by the development of intermediate
Hamiltonian Fock-space coupled-cluster �IHFSCC� methods
�5–8�. These make possible the use of much larger and more
flexible P spaces without running into intruder states and
divergence, thereby increasing the accuracy obtained �9–13�.
Pilot applications with the extrapolated intermediate-
Hamiltonian approach �14,15� reproduced the known ioniza-
tion potentials and electron affinities of the alkali-metal at-
oms within 1 meV. The IHFSCC calculation �3� of the
excitation energies of Lu, the lighter homologue of Lr, gave
an average error of 400 cm−1, and the application to Lr pin-
pointed two strong transitions of Lr in the experimentally
relevant range of 20 000–30 000 cm−1 with comparable ac-
curacy.

The available experimental information on the levels of
Yb appears in the compendium of Martin et al. �16�. Several
theoretical treatments used the MCDF approach. Yb transi-
tion energies were studied by Migdalek and Baylis �17� and
by Kotochigova and Tupizin �18�, and the low-1,3P1 states of
Yb and No were treated recently with a relatively small basis
�19�. Other methods used include density functional theory
�DFT� calculations by Vosko et al. �20� and pseudopotential
and DFT studies of No by Liu et al. �21�. The FSCC method
was used to obtain excitation energies a decade ago �22�. A
similar application reported recently �23� used basis sets with*Electronic address: kaldor@tau.ac.il
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more s, p, and d functions than the earlier work �22�, but had
fewer f and g functions and no h orbitals, resulting in a
larger average error in the excitation energies listed there.
Most singlet excitation energies were not given, but large
errors in them were reported �23�.

Here we apply the intermediate-Hamiltonian coupled-
cluster approach, an extension of the FSCC method, to the
electronic spectra of the Yb and No atoms, comparing the

results to experimental values for Yb and predicting the spec-
trum of the actinide nobelium.

II. METHOD

The same method is used as in the earlier work on Lu and
Lr �3�. The P space is partitioned into two parts �24�, the
main Pm and intermediate Pi, and an intermediate Hamil-

TABLE I. Transition energies of Yb �cm−1�.

Method Expt. IHFSCC +QED FSCC FSCC MCDF +CP

Ref. �16� Present �23� �22� �18� �17�

Ionization potential

6s2 1S0 50 443 50 463 50 552 51 109 48 074

Excitation energies

6s6p 3P0 17 288 17 011 16 969 17 576 17 359 15 826
3P1 17 992 17 719 17 674 18 424 18 089 16 563
3P2 19 710 19 442 19 399 20 218 19 836 18 167

5d6s 3D1 24 489 24 770 24 723 25 865 24 936
3D2 24 752 24 981 24 935 25 966 25 180
3D3 25 271 25 422 25 379 26 125 25 676

6s6p 1P1 25 068 25 777 25 724 27 271 27 838 23 120

5d6s 1D2 27 678 27 512 27 456 28 587

6s7s 3S1 32 695 32 543 32 495 32 967

6s7s 1S0 34 351 33 900 33 851 34 932

6s7p 3P0 38 091 38 293 38 238
3P1 38 174 38 373 38 318
3P2 38 552 38 707 38 648

6s7p 1P1 40 563 39 214 39 154

6s6d 3D1 39 809 40 158 40 103
3D2 39 838 40 187 40 131
3D3 39 966 40 280 40 224

6s6d 1D2 40 062 40 399 40 340

6s8s 3S1 41 615 41 697 41 582

6s8s 1S0 41 939 42 049 41 934

Average absolute errors of excitation energies

Six lowest levels 246 245 779 262 1 800

Levels calc. in �23� 260 272 691

All 20 levels 320 300

Fine-structure splittings

6s6p 3P1− 3P0 704 708 705 848 730 737
3P2− 3P1 1 718 1 723 1 725 1 794 1 747 1 604

5d6s 3D2− 3D1 263 211 212 101 244
3D3− 3D2 519 441 444 159 496

6s7p 3P1− 3P0 84 80 80
3P2− 3P1 337 334 330

6d6s 3D2− 3D1 30 29 28
3D3− 3D2 93 93 93

Average absolute error

Four splittings 35 34 185 24

All splittings 18 18
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tonian HI in P is derived, the eigenvalues of which give good
approximation to the eigenvalues of H dominated by the
main model-space components. Three projection operators
are defined, satisfying

Pm + Pi = P, P + Q = 1. �1�

Two sets of wavelike operators �24� are expanded in
coupled-cluster normal-ordered exponential expressions.
�=1+� is a standard wave operator in Pm,

�Pm��m� = �exp S�Pm��m� = ��m� , �2�

where ��m� denotes an eigenstate of the Hamiltonian H with
the largest components in Pm, and R=1+� is an operator in
P, satisfying

RP��m� = �exp T�P��m� = ��m� . �3�

The last equation, and therefore all equations derived from it,
applies when operating on ��m�, but not necessarily on ��i�.
This feature distinguishes R from a bona fide wave operator.
The cluster equation for S in the �n� sector of the Fock space
is �9�

Q�S�n�,H0�Pm = Q�VQi� − �PmVQi���n�Pm, �4�

where Qi=1− Pi=Q+ Pm. No PiSPm elements appear in the
equation, so that Pi acts as a buffer between Pm and Q,
facilitating convergence and avoiding intruder states. Equa-
tion �4� is valid provided QSPm�QTPm, which is rather
easy to achieve with a properly defined Pi; this condition is
monitored in the calculation. After Eq. �4� is solved for
QSPm, QTP may be obtained by

�E − H0�QT�n�P = Q�S�E − H0�Pm + �VR� − ��PmVR���n�P .

�5�

E is an arbitrary constant, chosen to facilitate convergence.
Tests have shown that E may be changed within broad
bounds �hundreds of hartrees� with minute effect �a few
wave numbers� on calculated transition energies. The final
step is the construction of the intermediate Hamiltonian

HI = PHRP , �6�

which gives upon diagonalization the correlated energies of
��m�,

HIP��m� = EmP��m� . �7�

The dimension of the HI matrix is that of P; however, only
the eigenvalues corresponding to ��m� are required to satisfy
Eq. �7�. The other eigenvalues, which correspond to states
��i� with the largest components in Pi, may include larger
errors.

The Lamb shifts were estimated for each state by evalu-
ating the electron self-energy and vacuum polarization using
the approximation scheme of Indelicato et al. �25�. The code
described in Refs. �25,26� was adapted to our basis-set ex-
pansion procedure by Vilkas and Ishikawa �27�. All the nec-
essary radial integrals were evaluated analytically. In this
scheme �26�, the screening of the self-energy is estimated by
integrating the charge density of a spinor to a short distance

from the origin, typically 0.3 Compton wavelengths. The ra-
tio of the integral computed with a spinor and that obtained
from the corresponding hydrogenic spinor is used to scale
the self-energy correction for a bare nuclear charge that has
been computed by Mohr �28�. Extensive relativistic configu-
ration interaction �RCI� wave functions are used. While the
IHFSCC excitation energies are expected to be more accu-
rate, the RCI functions reproduced them in most cases within
a few percent, so that the QED corrections should be quite
accurate. The RCI functions are also used to obtain the No
transition amplitudes.

III. APPLICATION

Within the framework of the Dirac-Coulomb-Breit Hamil-
tonian, the Dirac-Fock-Breit orbitals are first calculated and
correlation is included at the coupled-cluster singles-and-
doubles �CCSD� level. The closed-shell reference states for
the Yb and No atoms are the dications �Xe�4f14 and
�Rn�5f14, respectively. The states of the neutral atoms are
reached by adding two electrons to the reference determi-
nants in a designated set of valence orbitals. The Pm and total
P spaces were augmented to convergence of the excitation
energies. The final Pm for Yb included two s orbitals and one
p, d, and f orbitals beyond those occupied in the reference
determinant, and the total P comprised 7s 5p 3f 2g1h orbit-
als, including those in Pm. Somewhat larger spaces were
taken for No, 2s 2p 2d 1f in Pm and 8s 6p 6d 4f 2g 1h in P.

The universal basis set �29� was used, consisting of even-
tempered Gaussian-type orbitals with exponents given by

TABLE II. IHFSCC excitation energies of No �cm−1�. The
ground state is 7s2 1S0.

Upper state +QED

7s7p 3P0 19 028 18 879
3P1 20 605 20 454
3P2 25 527 25 374

6d7s 3D1 28 496 28 338
3D2 28 935 28 778
3D3 30 040 29 897

7s7p 1P1 30 224 30 056

6d7s 1D2 33 071 32 892

7s8s 3S1 35 263 35 092

7s8s 1S0 36 701 36 538

7s8p 3P0 40 742 40 576
3P1 40 860 40 692
3P2 42 003 41 837

7s8p 1P1 42 458 42 285

7s7d 3D1 42 881 42 726
3D2 42 934 42 758
3D3 43 203 43 033

7s7d 1D2 43 423 43 079

7s9s 3S1 44 598 44 247

7s9s 1S0 45 001 44 828
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�n = �	�n−1�, � = 106 111 395.371 615,

	 = 0.486 752 256 286. �8�

Orbitals were added to the basis until the transition energies
converged. The orbitals are left uncontracted. Virtual orbitals
with energies higher than 200 hartrees are omitted. The outer
42 electrons are correlated in both atoms, leaving 28 inner
electrons of Yb and 60 inner electrons of No out at the cor-
relation stage. The basis for both atoms includes 37 s
functions �n=1–37�, 31 p �n=5–35�, 26 d �n=9–34�, 21 f
�n=13–33�, 16 g �n=17–32�, 11 h �n=21–31�, and 6 i
�n=25–30� orbitals.

IV. RESULTS AND DISCUSSION

Since many transition energies of Yb are known with high
accuracy �16�, their calculation provides a check on the ac-
curacy of the method and the validity of predictions for No.
Our results for the lighter element are presented and com-
pared with experiment and previous computations in Table I.
The LS notation is given, but J is the only good quantum
number, particularly for nobelium. The transition energies of
Yb show very good agreement with experiment, with the
ionization potential �IP� within 20 cm−1 of the measured
value and an average error of about 300 cm−1 or 40 meV for
the 20 lowest excitation energies calculated. Fine-structure
splittings are also very good, with an average absolute error
of 23 cm−1 �3 meV� and maximum error of 80 cm−1. The
QED effects are rather small and do not change the picture.
The present results have on average half the error of our
previous FSCC values �22�, due to the use of larger basis sets
and P spaces. The recent FSCC results of Nayak and
Chaudhuri �23� are rather disappointing, giving a good IP,
but relatively poor excitation energies, worse even than the
1995 calculations �22�. The probable cause is the basis used.
The spd basis is good, but the f and g functions are few and

seem to be concentrated in the low-exponent region, neglect-
ing the regions important for correlating the lower-l orbitals.
The early MCDF calculations �17,18�, with or without inclu-
sion of core polarization, have much larger errors. The rela-
tively small basis sets and short correlation expansions used
in the recent MCDF work �19� lead to considerable errors of
about 1200 cm−1 in the excitation energies, indicating the
need for extensive inclusion of correlation to obtain reliable
results.

Nobelium is the heaviest element for which an experi-
mental ionization potential appears in the NIST database �30�
and in the Handbook of Chemistry and Physics �31�. In re-
ality, no measurements on the atom have been performed and
the quoted value originates from semiempirical estimates.
Sugar �32� extrapolated the measured term energy intervals
5fN7s2–5fN7s8s for Ra �N=0� and the actinides Pu–Es
�N=6–11� to other N values up to nobelium �N=14�. The
Rydberg-Ritz formula for term energies was then used to
derive the IP. Application of the method to lanthanides �33�
proved its robustness and accuracy, so that the derived ac-
tinide IPs are reliable. The value quoted for nobelium is
6.65�7� eV. The calculated IP is 53 489 cm−1 or 6.632 eV, in
excellent agreement with this value. It is about 3000 cm−1

higher than for Yb, demonstrating the well-known relativistic
stabilization of s orbitals. The nobelium excitation energies
are shown in Table II. The pattern is similar to that of ytter-
bium, with energies higher by 0.2–0.5 eV, again due to rela-
tivistic stabilization. Lamb shifts are significant, reducing the
excitation energies by �200 cm−1. Only states with a full
5f14 shell are treated by the IHFSCC application. Multiref-
erence Møller-Plesset calculations found 5f13 7s2 7p states in
the same energy range, but they will not show in the spec-
trum, since their transition to the ground state is electric-
dipole forbidden.

The RCI electric-dipole transition amplitudes and life-
times are shown in Table III. The lifetimes of a state are
obtained by considering its transition to all lower states and

TABLE III. RCI electric dipole transition amplitudes of the strongest transitions of nobelium. 
 is the
lifetime of the upper level.

� �Å� Upper state 
 �s� Lower state A �s−1�

2 365 7s8p 1P1 2.9�10−8 7s2 1S0 3.2�107

2 457 7s8p 3P1 2.9�10−8 7s2 1S0 1.0�107

3 327 7s7p 1P1 2.0�10−9 7s2 1S0 5.0�108

4 103 7s9s 3S1 1.2�10−8 7s7p 3P1 1.8�107

4 484 7s7d 3D2 4.5�10−8 7s7p 3P1 1.4�107

5 140 7s9s 3S1 1.2�10−8 7s7p 3P2 4.2�107

5 663 7s7d 3D3 6.1�10−8 7s7p 3P2 1.7�107

6 168 7s8s 3S1 1.4�10−8 7s7p 3P0 1.1�107

6 832 7s8s 3S1 1.4�10−8 7s7p 3P1 3.3�107

7 679 7s7d 1D2 8.0�10−8 7s7p 3P1 1.2�107

8 171 7s8p 3P0 3.7�10−8 7s6d 3D1 1.6�107

10 290 7s8s 3S1 1.4�10−8 7s7p 3P2 2.8�107

15 427 7s8s 1S0 8.9�10−8 7s7p 1P1 1.1�107

18 235 7s8p 3P0 3.7�10−8 7s8s 3S1 1.1�107
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include the effect of magnetic dipole and electric quadrupole
transitions. The synthesized spectrum of No is shown in
Fig. 1. It is obtained by convolution of the lines with a
Gaussian function having a 50-Å full width at half maxi-
mum, assuming all excited states have equal population. The
top panel shows amplitudes of individual transitions, and the
lower panel includes the influence of the level lifetime,
showing A2
 �s−1�, with A the amplitude and 
 the lifetime.
The outstanding feature is the very strong line at
30 060 cm−1, corresponding to the 7s 7p J=1→7s2 transi-
tion. As shown in Table III, the amplitude of this transition is
higher by an order of magnitude than all others. Assuming
error bounds of 0.1 eV, we predict the strongest feature of
the No spectrum at 30 100±800 cm−1. Other strong �though

weaker� transitions are expected at 42 300 cm−1 �7s 8p J
=1→7s2�, 18 900 cm−1 �7s 9s J=1→7s 7p J=2�,
14 600 cm−1 �7s 8s J=1→7s 8p J=1�, and 9700 cm−1

�7s 8s J=1→7s 7p J=2�.

V. SUMMARY AND CONCLUSION

Transition energies and amplitudes of the nobelium atom
in the range 20 000–30 000 cm−1 are calculated in prepara-
tion for the planned experiment �2�. The intermediate-
Hamiltonian Fock-space coupled-cluster formalism at the
singles-and-doubles level is used in the framework of the
Dirac-Coulomb-Breit Hamiltonian, and Lamb shifts are in-
cluded. Very large basis sets and model �P� spaces are used,
and are augmented until convergence of the transition ener-
gies is achieved. The main remaining error comes from omit-
ting connected triple and higher excitations in the coupled-
cluster expansion to the Q space �interactions within P are
included to all orders by diagonalization of the intermediate
Hamiltonian HI matrix�.

The accuracy of the method and computational scheme is
tested by application to ytterbium, the lower homologue of
nobelium. The calculated ionization potential is within
20 cm−1 of experiment, and the average error for the lowest
20 excitation energies �both singlet and triplet� is 300 cm−1.
The IP of nobelium falls within the error bounds of the reli-
able semiempirical estimate. The outstanding feature of the
calculated spectrum of No is a line at 30 060 cm−1, corre-
sponding to the 7s 7p 1P1→7s2 1S0 transition, with an am-
plitude A=5.0�108 s−1. Considering that deviation from ex-
perimental energies in Yb is larger for singlets than for
triplets, and accounting for possible larger uncertainties in
No, we put the error limits for the No transition at a conser-
vative 0.1 eV. We therefore predict a strong feature in the No
spectrum at 30 100±800 cm−1.
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