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We give the derivation of the Fano profile �the resonance energy position, the resonance width �, and q
value� from the time-dependent nonrelativistic density-functional theory �DFT� and propose a scheme for
calculating the photoabsorption cross section of hot dense plasmas. As a consequence of this derivation, we
show the line profile is obtained as a superposition of Fano and Lorentz profiles when the competition of two
optically allowed bound-bound and bound-free transitions occurs. We also show the results of the photoab-
sorption cross section by applying our scheme to an Fe plasma �density is 7.85 g/cm3, temperature is 100 eV�,
where the calculation is carried out without numerical divergence for any photon energy. The calculated results
are in good agreement with those of Grimaldi.
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I. INTRODUCTION

In hot dense plasmas such as inertial confinement plasmas
and the interior of stars, the thermal properties �such as ion-
ion correlation, the charge state distribution, and so on� and
the atomic ones �such as the spectral properties, electronic
states, the level occupation number of electron, and so on�
are closely correlated with each other. The former have been
sufficiently investigated theoretically and experimentally by
many authors. The latter, namely, the numerical data on the
atom or ion in the plasmas, are becoming available in recent
years.

The average atom �AA� model �1–4� and the finite tem-
perature density-functional theory �FTDFT� �5,6� have been
employed vigorously to study the equation of state �EOS�
�7–10� photoabsorption �11,12�, opacity �13�, and so on for
the local thermodynamic equilibrium �LTE� plasmas. As an
actual LTE plasma is composed of various ions in different
excited states and charge states, the spectral structure of LTE
plasma is very complex because of the enormous number of
transition lines. The method of the supertransition array
�STA� �9,13–15� has been used to analyse the complex line
spectrum of an ion in a LTE plasma, where the ionic charge
state distribution of the plasma is drawn from the AA which
has noninteger occupation numbers of electrons.

For the photoabsorption of an isolated atom by time-
dependent DFT �TDDFT�, it has been established that the
relaxation of the electronic system under the radiation field is
very important �16–18�. The photoabsorption cross section
for an isolated atom calculated with the relaxation is in good
agreement with experiments �19–23�. In the case of the LTE
plasmas, Grimaldi et al. �24� applied TDDFT to the photo-
absorption of the dense Fe plasmas and showed that relax-
ation of the electronic system drastically changes the photo-
absorption cross section. They also examined the plasma
level broadening and the self-energy effect, but they did not
consider the accurate ion-ion pair distribution function in the
calculation.

There are some problems, however, with the TDDFT pro-
posed by Zangwill and Soven �ZS theory� �16� which is ap-
plied to the calculation of photoabsorption:

�i� The calculation does not give the correct resonance
energy position for photoabsorption due to the local density
approximation employed for the exchange-correlation poten-
tial.

�ii� For photon energies in the vicinity of a peak of Fano
profile, one encounters a numerical difficulty in calculating
the photoabsorption cross section with the theory, that is, in
most cases, a long computation time is required to obtain
convergence, and sometimes the calculation does not con-
verge. One way to avoid this numerical difficulty is to use a
fitting method for the resonance line shape, following �25�,
which uses fitting parameters such as resonance energy po-
sition, resonance width �, and the q value for the Fano pro-
file.

The purpose of this paper is to give a derivation of the
Fano profile from the nonrelativistic TDDFT and to propose
a scheme for calculating the photoabsorption cross section of
plasmas without the numerical difficulty pointed out in �ii�
above. In this scheme, the resonance energy position of the
photoabsorption obtained does not equal the difference of the
eigenvalues of the Kohn-Sham equation with the local den-
sity approximation �hereafter LDA� which are related to the
optically allowed transitions, but includes a shift to a more
accurate energy. Therefore, our scheme also solves the above
problem �i� approximately, but without the effect of the
nearest-neighbor interaction on the photoabsorption �26�.
Moreover, it is shown from this derivation that the line pro-
file is expressed by a superposition of the Fano and the Lor-
entz profiles in the case where competition of two optically
allowed bound-bound and bound-free transitions occurs.

In Sec. II, we first describe our nonrelativistic FTDFT of
the plasma �27� which gives the wave functions and eigen-
values used to obtain the best one-electron density of the AA
in a plasma. In our FTDFT, the ion distribution �the ion-ion
pair correlation function gii�r�� is calculated using the
hypernetted-chain �HNC� equation. Then, we present the
scheme for calculating the photoabsorption cross section of
the plasma. We also give a derivation of the Fano profile
�resonance energy position, resonance width �, and q value�
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with the TDDFT. In Sec. III, we show the numerical results
of the photoabsorption cross section for a dense Fe plasma
obtained by use of our scheme, and compare it with those of
Grimaldi �24�. The concluding remarks are given in Sec. IV.

II. DESCRIPTION OF THE SCHEME

Here, we consider a charge-neutral plasma in LTE whose
ion number density is �ion and temperature is T in energy
units. We assume the plasma consist of average atoms whose
nuclear charge is +Ze and a uniform background electron
density.

A. Finite temperature DFT of plasmas

There has been addressed many useful theories for the
studying of thermal properties or electronic structure of hot
dense plasmas �5,6,28,29�, however, we briefly show our
nonrelativistic FTDFT of the hot dense plasmas �8,27�. Our
theory assumes the plasma is composed of the average atom
allowed to have noninteger occupation number of bound
electrons and uniform background electrons in continuum
states. Though the electronic structure of plasmas is very
complex because of resonances from the continuum density
of states �30,31�, our FTDFT treats the continuum states as
plane waves instead of wave functions obtained from the
LDA equation.

The possible bound state wave functions of the average
atom are obtained by solving the following LDA equation
�hereafter, we use atomic units�:

�−
1

2
�2 + V�r���n��r� = �n��n��r� , �1�

where the potential V�r� for the AA is given as

V�r� = −
Z

r
+� �b�r��

�r − r��
dr� −� Qs�r��

�r − r��
dr� + vxc��b�r� + �c�

− vxc��c� . �2�

The �b�r� is the density of the bound electrons in the AA,

�b�r� = 2	
n�

f��n����n��r��2, �3�

where the factor f��n�� is the Fermi distribution function,

f��� =
1

e���−�� + 1
. �4�

The fourth and the fifth terms on the right-hand side of Eq.
�2�, vxc���, are the exchange-correlation potentials in the case
of finite temperature �32�. The form of the exchange-
correlation potential employed here is given in Appendix B
of the present paper.

The boundary condition for the wave function is given by

�n��r� 
 0, �r� → 	 . �5�

This means that the bound electrons in the AA are not con-
fined in the ion sphere, where the ion-sphere radius aion is
defined as 4


3 aion
3 �ion=1.

The chemical potential � in Eq. �4� is obtained from the
conservation of the number of electrons per an AA,

Z = 2	
n�

f��n�� + Z*, �6�

where Z* is the noninteger charge of the AA, which is de-
fined by Eq. �8� below.

The function Qs�r� in the third term on the right-hand side
of Eq. �2� is the charge density, composed of three parts: the
charge densities of the nucleus, the bound electrons of the
other average atoms surrounding the AA located at the origin
of the coordinate system, and the uniform background elec-
tron charge density −�c,

Qs�r� = Z�iongii�r� − �ion� �b�r − R�gii�R�dR − �c. �7�

The �c in Eq. �7� is given as

�c = Z*�ion =
1


2 � �2�

e���−�� + 1
d� . �8�

The function gii�r� on the right-hand side of Eq. �7� is the
pair distribution function of ions in the plasma, and it is
calculated by HNC approximation as

Gii�r� = C�r� + �ion� C�r − r��Gii�r��dr�, �9�

N�r� = �ion� C�r − r��Gii�r��dr�, �10�

gii�r� = eN�r�−���r�, �11�

where Gii�r�=gii�r�−1. Equation �9� is called the Ornstein-
Zernike’s relation, and defines the direct correlation function
C�r�. The Fourier transform �̃�k� of the interatomic interac-
tion ��r� in Eq. �11� is given as

�̃�k� =
4


k2 �Z − �̃b�k��2, �12�

where �̃b�k� is the Fourier transform of the bound electron
density �b�r� of Eq. �3�. For simplicity, our FTDFT does not
include the effect of the polarization of continuum electrons
on the ion-ion interaction.

B. Derivation of Fano profile

We now discuss the photoresponse of an AA in plasmas to
a frequency-dependent external field. If the incident photon
energy � is in the vicinity of the difference between two
orbital energies �ni�i

and �nf�f
���i−� f � =1�, i.e., �
�nf�f

−�ni�i
with �nf�f

−�ni�i
� ��nf�f

�, one of the �nf� f� electrons can
attain an energy above the ionization energy via the follow-
ing successive excitation processes:

�ni�i�a�nf� f�b → �ni�i�a−1�nf� f�b+1 → �ni�i�a�nf� f�b−1�� � � ,

consequently, the �nf� f� electron can be ejected. Another pro-
cess can coincide with this process, that is, one of the �nf� f�
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electrons can directly absorb the photon energy �:

�ni�i�a�nf� f�b → �ni�i�a�nf� f�b−1�� � � .

These two processes compete with each other, namely, a
channel mixing occurs, and consequently, the Fano profile
appears on the photoabsorption cross section. If the energies
of the �ni�i

and the �nf�f
do not satisfy the condition

�nf�f
−�ni�i

� ��nf�f
�, the channel mixing cannot occur in our

calculation, but a direct bound-bound transition
�ni�i�a�nf� f�b→ �ni�i�a−1�nf� f�b+1 can occur if the photon en-
ergy satisfies the resonance condition �=�nf�f

−�ni�i
. To in-

vestigate the above processes, we study how the electrons
respond to a frequency-dependent external field.

1. Formulation of the photoabsorption

We assume that the frequency dependent external electric
field is of magnitude E0 directed along the z axis. The inter-
action between this field and the electrons of the AA is
���r��ext�r ,�eitdr, where ��r� is the electron density and

�ext�r,� = E0z . �13�

The induced charge density ���r ,� in the presence of the
external field �ext�r ,� is calculated by means of the single
particle response function �0�r ,r� ;� �24� as follows:

���r,� =� �0�r,r�;��scf�r,�dr , �14�

where �scf�r ,� is the self-consistent field produced by the
photoresponse of the electrons. The self-consistent field
�scf�r ,� is determined by the following relations:

�scf�r,� = �ext�r,� + �ind�r,� , �15�

�ind�r,� =� K�r,r�����r,�dr�, �16�

K�r,r�� =
1

�r − r��
+ �vxc���

��


�=��r�
��r − r�� , �17�

where �ind�r ,� is the frequency-dependent-induced poten-
tial. The kernel function K�r ,r�� is assumed to be static
�16,24�.

The response function �0�r ,r� ;� in Eq. �14� is given as

�0�r,r�;� = 2	
ij

�f��i� − f�� j��
�i

*�r�� j�r�� j
*�r���i�r��

 − �� j − �i� + i�
,

�18�

where �i�r� and �i are the wave functions and eigenvalues
obtained from the LDA equation, Eq. �1�, and the sum is
supposed to be over all bound and continuum states. The
factor 2 on the right-hand side of Eq. �18� comes from the
sum with respect to the electron spin.

We first separate the radial and the angular parts of
�ext�r ,�, �scf�r ,�, ���r ,�, and �0�r ,r� ;� as follows:

�ext�r,� = E0�4


3
rY10�r̂� , �19�

�scf�r,� = E0�
scf�r�Y10�r̂� , �20�

���r,� = E0���r�Y10�r̂� , �21�

�0�r,r�;� = 	
�m

Y�m
* �r̂��

0 �r,r��Y�m�r̂�� , �22�

where Y�m�r̂� is the spherical harmonic.
Substituting ��r�=Rn��r�Y�m�r̂� �Rn��r� is the radial wave

function� into Eq. �18�, we obtain the radial part of the single
particle response function �

0 �r ,r�� �17�,

�
0 �r,r�� = 	

n�
	
n���

2�f��n�� − f��n�����C���

Rn��r�Rn����r�Rn����r��Rn��r��

�n� − �n��� +  + i�
+ 	

n���
� 2�f��n�� − f����C���

�
Rn��r�R����r�R����r��Rn��r��

�n� − � +  + i�
d� + 	

n���
� 2�f��� − f��n���C���

R����r�Rn��r�Rn��r��R����r��

� − �n� +  + i�
d�

+ 	
���
� � 2�f��� − f�����C���

R���r�R�����r�R�����r��R���r��

� − �� +  + i�
d�d��. �23�

The factor C��� in Eq. �23� is given by

C��� =
1

4

�2 � + 1��2�� + 1��� �� 1

0 0 0
�2

, �24�

where the 2�3 matrix is a 3− j symbol.
The R���r� in Eq. �23� is the radial wave function of a

electron of energy � and angular momentum �, which is
obtained by solving Eq. �1�, namely,

1

r2

d

dr
�r2dR���r�

dr
� + 2�� − V�r� −

��� + 1�
2r2 �R���r� = 0.

�25�
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The radial wave function R���r� has an asymptotic form

R���r� 
� 2


k

1

r
sin�kr −

�


2
+ ���, r → 	 , �26�

where k is wave number, �= k2

2 , and �� is the phase shift. In
our FTDFT, the nuclear charge of AA is screened by elec-
trons in the plasma, therefore the potential V�r� for AA in the
outer region does not include a Coulomb potential propor-
tional to − c

r . Thus a logarithmic term − C
k log�2kr� does not

appear in the argument of the sine on the right-hand side of
Eq. �26�.

The photoabsorption cross section is calculated as follows
�16,24�,

��� = − 4
�� � �
scf*�r��

��Im �
0 �r,r����

scf�r�r�2r2dr�dr , �27�

where � is the fine-structure constant.

2. Approximation for the response function

The real part of �
0 �r ,r�� is not included directly in the

form of the photoabsorption cross section given by Eq. �27�,
but the self-consistent field �

scf�r� is slightly affected by this
real part. Then, the principal part of the photoabsorption
cross section is carried through the imaginary part of
�

0 �r ,r��. So, it seems that the contribution to the absorption
cross section from the real part of the second term on the
right-hand size of Eq. �23� is small. Therefore, the second
term in Eq. �23� is approximated as

	
n���

� 2�f��n�� − f����C���

Rn��r�R����r�R����r��Rn��r��

�n� − � +  + i�
d�

= 	
n���

� 2�f��n�� − f����C���Rn��r�R����r�R����r��Rn��r��P
1

�n� − � + 
d�

− i
 	
n���

2�f��n�� − f�Ef��C���Rn��r�REf���r�REf���r��Rn��r����Ef�


 − i
 	
n���

2�f��n�� − f�Ef��C���Rn��r�REf���r�REf���r��Rn��r����Ef� , �28�

where Ef =�n�+ and ��Ef� is the unit step function.
The third term, which is positive quantity, is also negligible in this context. At this stage, we also neglect the fourth term

on the right-hand side of Eq. �23� �33�.
Neglecting the real part of the second term, the third and the fourth terms on the right-hand side of Eq. �23�, we obtain the

approximate single-particle density response function:

�
0 �r,r�� � 2�f��ni�i

� − f��nf�f
��C�i�f

�ni�i,nf�f
Rni�i

�r�Rnf�f
�r�Rnf�f

�r��Rni�i
�r��

+ 	
�n���n���

2�f��n�� − f��n�����C����n�,n���Rn��r�Rn����r�Rn����r��Rn��r��

− i
 	
n���

2�f��n�� − f�Ef��C���Rn��r�REf���r�REf���r��Rn��r����Ef� , �29�

where �n�,n��� is given as

�n�,n��� =
1

�n� − �n��� +  + i�
−

1

�n��� − �n� +  + i�
.

�30�

In the second term on the right-hand side of Eq. �29�, the
double sum runs over all bound states on the condition �n�

��n���, but without two bound states �ni�i� and �nf� f�, and

the term of this sum vanishes unless ��−�� � =1. A Fermi
distribution function f�Ef� appears in Eq. �29� by reason of
that an ion in plasma is not isolated, so that, in the case of
finite temperature, the continuum states of electrons are par-
tially occupied.

3. The photoabsorption cross section and Fano profile

We rewrite the first term and the sum on the second term
of Eq. �29� to a single sum as follows,
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k=0,1,2,. . .

kmax

ck�kUk�r�Uk�r�� , �31�

where the term of k=0 in above sum corresponds to the first
term of Eq. �29�, and the factors c0 ,�0 and the function U0�r�
are given as

�c0 = 2�f��ni�i
� − f��nf�f

��C�i�f
,

�0 = �ni�i,nf�f
,

U0�r� = Rni�i
�r�Rnf�f

�r� .

�32�

The other terms �k=1,2 , . . . � in the sum equation �31� cor-
respond to the nonvanishing terms on the second term of Eq.
�29�, and the factors ck ,�k and the function Uk�r� are deter-
mined by a combination of two bound states as following:

�ck = 2�f��n�� − f��n�����C���,

�k = �n�,n���,

Uk�r� = Rn��r�Rn����r� .

�33�

Here, we assume that the number of all nonvanishing terms
is kmax. �One may refer to Appendix A, as an example.�

In similar manner, numbering kmax+1, kmax+2, . . . for all
nonvanishing terms on the third term of Eq. �29�, we rewrite
it as

	
k�kmax

ck�kUk�r�Uk�r�� , �34�

where the factors ck ,�k and the function Uk�r� are, respec-
tively,

�ck = 2�f��n�� − f�Ef��C�����Ef� ,

�k = − i
 ,

Uk�r� = Rn��r�REf���r� .

�35�

Then, Eq. �29� can be expressed as

�
0 �r,r�� = 	

k=0

kmax

ck�kUk�r�Uk�r�� + 	
k�kmax

ck�kUk�r�Uk�r�� .

�36�

Substituting Eq. �36� into Eq. �14�, we obtain the radial
part of the induced electron density ���r� in Eq. �21�,

���r� = c0U0�r�a0 + 	
k=1

ck�kUk�r�ak, �37�

where complex coefficients a0 and ak, are given as

�a0 = �0�
0

	

U0�r��
scf�r�r2dr ,

ak = �
0

	

Uk�r��
scf�r�r2dr, k � 0.

�38�

From Eqs. �15�, �16�, and �37�, the radial part �
scf�r� in Eq.

�21� satisfies

�
scf�r� = �

ext�r� + �
0

	

K�r,r�����r��r�2dr�

= �
ext�r� + c0B0�r�a0 + 	

k=1
ck�kBk�r�ak, �39�

where �
ext�r�=��4
 /3�r is the radial part of the external

field �ext�r ,�.
The kernel function K�r ,r�� in the above equation is the

radial part of the K�r ,r�� of Eq. �17�:

K�r,r�� =  4


max�r,r��
+

�Vxc���
��


�=��r�

��r − r��
r�2 , �40�

and the function Bk�r� is given by

Bk�r� = �
0

	

K�r,r��Uk�r��r�2dr�. �41�

The self-consistent field �
scf�r� is obtained by simulta-

neously solving Eq. �37� and Eq. �39�. Substituting Eq. �39�
into Eq. �38�, we obtain the relation

V̂�
a0

a1

a2

�
� =�

d0

d1

d2

�
� , �42�

where the factor dk is

dk = �
0

	

Uk�r��
ext�r�r2dr , �43�

and V̂ is the matrix given as

�
1/�0 − V00 − �1V01 − �2V02 ¯

− V10 1 − �1V11 − �2V12 ¯

− V20 − �1V21 1 − �2V22 ¯

� � � �

� . �44�

The factor Vkk� in above matrix elements is given as

Vkk� = ck��
0

	

Uk�r�Bk��r�r2dr . �45�

The determinant D of the matrix V̂ can be expanded in
terms of its cofactors as follows,

D = � 1

�0
− V00�A + B , �46�

where A and B are the determinants obtained from the cofac-
tors of D. When the infinitesimal positive quantity � in �0
goes to 0 , �D�2 becomes

�D�2 = �A�2�2�e2 + 1� . �47�

Here �=Im�B /A� and e is the dimensionless reduced energy
given by
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e =
 − �r

�̃/2
. �48�

The factor �r in Eq. �48� is considered as a resonance energy
position of the Fano profile, and it is given by

�r = ���2 + 2���V00 − �� , �49�

where �=Re�B /A�, and ��=�nf�f
−�ni�i

is the transition en-

ergy. The factor �̃ in Eq. �48� is given by

�̃ =
4���

 + �r
, �50�

and it slightly depends on the photon energy. At �=�r, how-

ever, it is possible to consider �̃ as the resonance width � of
the Fano profile.

The complex coefficients a0 and ak satisfy the following
relations the same as Eq. �46�:

Da0 = � 1

�0
− V00�A + B�, �51�

Dak = � 1

�0
− V00�Pk + Qk. �52�

Therefore, we obtain the following relation for ak:

�ak�2 =
�Re Pk�2

�A�2
�e + q1k�2

�e2 + 1�
+

�Im Pk�2

�A�2
�e + q2k�2

�e2 + 1�
, �53�

where the factors q1k and q2k are

q1k =
1

�
�Re Qk

Re Pk
− ��, q2k =

1

�
� Im Qk

Im Pk
− �� . �54�

The right-hand side of Eq. �53� has two Fano profiles,
where q1k and q2k are considered as the q values of those
Fano profiles. As shown later, we can rewrite these two Fano
profiles to a Fano profile and a Lorentz profile.

The photoabsorption cross section, Eq. �27�, is rewritten
with the use of a0 and ak as

��� = 4
��c0�Im
1

�0
��a0�2 + 	

k=1
ck�− Im �k��ak�2� .

�55�

For �→0, we obtain

Im� 1

�0
� = �



��
→ 0�� → 0� , �56�

lim
�→0

�− Im �k� = �0, k � kmax,


 , k � kmax,
�57�

and

lim
�→0

�a0�2 =
1

�D�2�
d0 − �1V01 − �2V02 ¯

d1 1 − �1V11 − �2V12 ¯

d2 − �1V21 1 − �2V22 ¯

� � � �

� � 	 .

�58�

One can see the value of �a0� becomes finite for �→0. So we
obtain lim�→0 Im� 1

�0
� �a0�2=0, namely, the first term on the

right side of Eq. �55� vanishes. This means that the photoab-
sorption cross section of Eq. �55� is not divergent for any
incident photon energy .

Dropping the first term on the right side of Eq. �55�, and
substituting Eq. �53� into the second term of Eq. �55�, we
obtain the absorption cross section

��� = 4
2� 	
k�kmax

ck

�Pk�2

�A�2 ��e + qk�2

e2 + 1

+ dL�k�
�̃/�2
�

� − �r�2 + ��̃/2�2� , �59�

where

qk =
1

�
�Re�Qk

Pk
� − �� , �60�

dL�k� =

�̃

2�2�Im�Qk

Pk
��2

. �61�

The photoabsorption cross section, Eq. �59�, is the superpo-
sition of the “Fano profile” and “Lorentz profile,” but the

factors qk and �̃ in these profiles depend slightly on the pho-
ton energy . At �=�r, the factor qk is considered as the q
value of the Fano profile.

C. Numerical scheme to calculate the photoabsorption
cross section

Here, we present the scheme for calculating the photoab-
sorption cross section of plasmas. We assume that
E1 ,E2 , . . . ,EN are electronic optical transition energies �� of
the AA which are calculated by eigenvalues of the LDA
equation �1�.

For calculating the photoabsorption cross section in the
range �0,max� of photon energy, we divide this range into
some small intervals as follows:

�
0 �  �

1

2
�E1 + E2� ,

1

2
�E1 + E2� �  �

1

2
�E2 + E3� ,

1

2
�E2 + E3� �  �

1

2
�E3 + E4� ,

�
1

2
�EN−1 + EN� �  � max.

�62�
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In each small interval of photon energy, we calculate ���
of Eq. �59� employing the wave functions obtained by Eq.
�1�. If the competition between successive excitation and di-
rect photoionization does not occur in a given interval, the
��� of Eq. �59� vanishes in that interval. In this case, we
calculate the photoabsorption cross section by means of the
following equation,

��� = 4
2� 	
k�kmax

ck�dk�2P�� , �63�

where P�� is the normalized Gaussian-type line profile with
the Doppler width. The photoabsorption cross section, Eq.
�63�, is identical to the one in the case where electrons of an
AA are responding independently to the external field.

III. RESULTS AND DISCUSSION

We have applied our theory to a Fe plasma �T=100 eV,
�ion=8.465�1022 cm−3�. Table I shows the atomic data ob-
tained by our FTDFT calculations. This Fe plasma is in liq-
uid range because the coupling constant �coupling
�Z*2 / �aionT� for this plasma is �12, so the HNC approxi-
mation may be suitable for this plasma �34,35�.

The potential of Eq. �2� around a nucleus in Fe plasma is
shown by “a” in Fig. 1. One can see that the potential be-
comes positive in the region of r=aion. The existence of the
positive region in the potential is due to the charges of other
ions and electrons surrounding the AA located at the origin.
This positive region of the potential grows into a large hump
when the plasma density is large or the plasma temperature is
low and completely disappears when the plasma density is
low or the plasma temperature is high. The onset of this
hump coincides with the onset of growth of the first peak of
the radial distribution function gii�R�, which is shown in Fig.
2. In a plasma where the potential of Eq. �2� has a positive
region, no bound states with large principal quantum num-

bers can exist in the AA due to pressure ionization. Conse-
quently, the number of orbitals of the AA is finite. In our
calculation of the Fe plasma, the 4s state is not bound.

The calculated optically allowed transitions and their tran-
sition energies �� for the Fe ion are shown in Table II. The
absorption cross section for the photon energy in the range of
22–34 �a.u.� is shown in Fig. 3, where the three Fano profiles
appear at the photon energies of 23 �a .u . �, 27 �a .u . �, and
29 �a .u . �, respectively. The resonance energy positions of
these Fano profiles are shifted from the positions of the tran-
sition energies. The shifts obtained by our scheme are con-

TABLE I. The energies, occupation numbers fn�, and the charge
state Z* of the Fe ion in Fe plasma, and the chemical potential � of
Fe plasma obtained by our FTDFT and Grimaldi �24�. The plasma
density and temperature are 7.85 g/cm3 and 100 eV, respectively.

Orbital fn� Energy �a.u.�
Present Grimaldi Present Grimaldi

1s 1.00000 1.0000 −258.407 −258.14

2s 0.999280 0.9992 −33.3265 −32.942

2p 0.997906 0.9977 −29.3981 −29.008

3s 0.418225 0.4117 −5.52423 −5.4112

3p 0.340303 0.3345 −4.30461 −4.1947

3d 0.232670 0.2269 −2.35194 −2.2184

4s - 0.1438 - −0.16614

Z* �present� 10.8090

�Grimaldi� 10.697

� �present� −6.73719 �a.u.�
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FIG. 1. The potentials. a: The potential V�r� of Eq. �2� for an
AA in the Fe plasma ��ion=7.85 g/cm3, T=100 eV� that has the
positive region near the r=aion. b: The potential “a” with the cen-
trifugal potential ���+1� /2r2��=2�.
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FIG. 2. The radial distribution function gii�r� obtained from our
FTDFT for the Fe plasma ��ion=7.85 g/cm3, T=100 eV�. The cou-
pling constant � of this Fe plasma is ��12.
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siderably larger than Grimaldi’s results, which include line
shifts and linewidths obtained from the level self-energies. In
Table III, we show the differences between resonance energy

position and transition energy ��, resonance widths �̃, and q
values which are obtained by our scheme.

The Fano profile at energy of 27 �a.u.� is explained as a
result of the two competing transitions of 2p→3d and 3d
→���=1 or 3�. In Fig. 4, we show the profile in the vicinity
of the peak of this Fano profile. From this figure, our calcu-
lation shows that the line profile does not diverge and its
peak value is finite.

The structure at photon energy 29.6 �a.u.� is not the Fano
profile but the edge profile in the vicinity of the threshold of
2p. The electron ejected from the 2p shell with an angular
momentum �=0 moves in the potential shown by “a” in Fig.
1. From this figure, it is clear that there exists a large amount
of the wave function for this electron inside of the ion sphere
radius. So, the overlap between the wave function of the
ejected electron and the one of the 2p shell becomes large,
therefore, the transition probability is enhanced. In Fig. 5, we
show the edge profile in the region of this 2p threshold,
where the broken line shows the profile of the transition 2p
→���=0� only, the light solid line shows the cross section
without the transition 2p→���=0�, and the heavy solid line
shows the total cross section.

In Fig. 6, we show the photoabsorption cross section in
the energy range 0
6 �a.u.�. A narrow Fano profile due to

the 2s→2p appears in this figure at resonance energy posi-
tion of the photon energy of 3.93 �a.u.�. Though it seems
there are another two resonances due to 3s→3p and 3p
→3d in this figure, these resonances cannot occur because
the transition energy of ��3p−�3s� �or ��3d−�3p � � is less than
the ionization energy of the 3p �or the 3d� electrons. Instead,
the usual bound-bound transitions by photoabsorption with-
out relaxation occur. In Fig. 6, we show the two usual bound-
bound absorption lines for the 3s-3p and 3p-3d transitions
with the Doppler width. These are obtained with Eq. �63�,

TABLE II. Transition energies �� for the optically allowed tran-
sitions, these are the differences between two eigenvalues obtained
by our FTDFT and Grimaldi �24� for the Fe plasma.

�� �a.u.�
Transition Present Grimaldi

3s→3p 1.21962 1.216

3p→3d 1.95266 1.976

2s→2p 3.92837 3.933

3p→4s - 4.029

2p→3s 23.8739 23.59

2p→3d 27.0462 26.79

2s→3p 29.0219 28.75

2p→4s - 28.84

TABLE III. The parameters of the Fano profiles, �r−�� �a.u.�, �̃ �a.u.�, and q, which are obtained by our
scheme. �� is the energy given in Table II. The line profile obtained at resonance energy position is
composed by the Fano profile and the Lorentz profile. The peak values of the Fano and the Lorentz profiles
are proportional to the qk

2+1 and dL�k�, respectively, so that, as shown in this table, the Lorentz profile is a
negligible amount.

Resonance �r−�� �a .u . � �̃ qk qk
2 dL�k�

2p→3s��p� 0.057 2.16694�10−4 1.29909�102 1.68762�104 5.59501�10−1

2p→3d��p� 0.358 1.50620�10−2 −1.18565�102 1.40576�104 6.68707�100

2p→3d��f� 0.358 1.50620�10−2 1.08855�102 1.18495�104 6.6269�10−3

2s→3p��s� 0.051 4.42277�10−4 2.92585�102 8.56060�104 1.01332�100

2s→3p��d� 0.051 4.42277�10−4 5.26407�101 2.77105�103 1.00126�10−1
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FIG. 3. The photoabsorption cross section of Fe plasma ��ion

=7.85 g/cm3, T=100 eV�. Upper panel; our scheme, lower panel,
Grimaldi et al. transcribed from Ref. �24�.
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the independent-particle model in the calculation of the tran-
sition probability. The absorption cross sections shown in
Fig. 3 and Fig. 6 are in reasonable agreement with that of
Grimaldi �24�, indicating that the dropped terms of Eq. �23�
make negligible contributions to the absorption cross section.

IV. CONCLUSION

We have given a derivation of the Fano profile �the reso-
nance energy position, the resonance width �, and q value�
from the TDDFT, and have proposed a scheme for calculat-
ing the photoabsorption cross section with relaxation of the
system. We have shown that our scheme is applicable to the

calculation of photoabsorption of LTE plasmas.
This scheme has made clear that the line profile in the

vicinity of the resonance energy position is composed of the
Fano profile and the Lorentz profile, an that these profiles do
not appear when the bound-bound transition and the bound-
free transition do not compete.

The photoabsorption cross sections of Fe plasma �T
=100 eV, �ion=8.465�1022 cm−3� have been calculated by
our scheme, and it has been shown that the results of the
cross sections are in good agreement with those of Grimaldi.
Thus, we conclude that the dropped terms of Eq. �23� make
negligible contribution to the absorption cross section for
plasmas.
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APPENDIX A: REWRITING THE DOUBLE SUM TO A SINGLE SUM

For example, we assume that all bound states of the AA obtained are 1s, 2s, 2p, and 3s, and the incident photon energy 
is in the vicinity of the difference between �2p and �3s. Then, the first and the second terms of Eq. �29� are written as follows:

2�f��ni�i
� − f��nf�f

��C�i�f
�ni�i,nf�f

Rni�i
�r�Rnf�f

�r�Rnf�f
�r��Rni�i

�r��

+ 	
�n���n���

2�f��n�� − f��n�����C����n�,n���Rn��r�Rn����r�Rn����r��Rn��r��

= 2�f��2p� − f��3s��C10�2p,3sR2p�r�R3s�r�R3s�r��R2p�r�� + 2�f��1s� − f��2p��C01�1s,2pR1s�r�R2p�r�R2p�r��R1s�r��

+ 2�f��2s� − f��2p��C01�2s,2pR2s�r�R2p�r�R2p�r��R2s�r�� . �A1�

These three terms are numbered 0 to 2 �kmax=2� as shown in
following table:

�n� ,n���� �1s ,2p� �2s ,2p� �2p ,3s�
k 1 2 0

Then, we can rewrite the right side of Eq. �A1� to a sum,

	
k=0

2

ck�kUk�r�Uk�r�� , �A2�

where factors ck ,�k and function Uk�r� are

k = 0:�c0 = 2�f��2p� − f��3s��C10,

�0 = �2p,3s,

U0�r� = R2p�r�R3s�r� ,

�A3�

k = 1:�c1 = 2�f��1s� − f��2p��C01,

�1 = �1s,2p,

U1�r� = R1s�r�R2p�r� ,

�A4�

k = 2:�c2 = 2�f��2s� − f��2p��C01,

�2 = �2s,2p,

U2�r� = R2s�r�R2p�r� .

�A5�

The third term of Eq. �29� is written as

− i
 	
n���

2�f��n��

− f�Ef��C���Rnl�r�REf���r�REf���r��Rn��r����Ef�

= − i
2�f��1s� − f��1s

+ ��C01R1s�r�R��1s+�p�r�R��1s+�p�r��R1s�r�����1s + �

− i
2�f��2s� − f��2s

+ ��C01R2s�r�R��2s+�p�r�R��2s+�p�r��R2s�r�����2s + �

− i
2�f��2p� − f��2p

+ ��C10R2p�r�R��2p+�s�r�R��2p+�s�r��R2p�r�����2p + �

− i
2�f��2p� − f��2p

+ ��C12R2p�r�R��2p+�d�r�R��2p+�d�r��R2p�r�����2p + �

− i
2�f��3s� − f��3s

+ ��C01R3s�r�R��3s+�p�r�R��3s+�p�r��R3s�r�����3s + � .

�A6�

All terms on the right side of Eq. �A6� are numbered 3,
4 , . . . ,7 as shown in following table:

�n� ,��� �1s , p� �2s , p� �2p ,s� �2p ,d� �3s , p�
k 3 4 5 6 7

and we rewrite the right side of Eq. �A6� as

	
k=3

7

ck�kUk�r�Uk�r�� . �A7�

For example, some factors in this sum are shown as

k = 3:�c3 = 2�f��1s� − f��1s + ��C01���1s + � ,

�3 = − i
 ,

U3�r� = R1s�r�R��1s+�p�r� ,
�A8�

k = 4:�c4 = 2�f��2s� − f��2s + ��C01���2s + � ,

�4 = − i
 ,

U4�r� = R2s�r�R��2s+�p�r� ,
�A9�

k = 5:�c5 = 2�f��2p� − f��2p + ��C10���2p + � ,

�5 = − i
 ,

U5�r� = R2p�r�R��2p+�s�r� .

�A10�

Then, Eq. �29� is rewritten as

�
0 �r,r�� = 	

k=0

2

ck�kUk�r�Uk�r�� + 	
k�2

ck�kUk�r�Uk�r��

= 	
k=0

7

ck�kUk�r�Uk�r�� . �A11�
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APPENDIX B: EXCHANGE-CORRELATION POTENTIAL

The exchange-correlation potential at finite temperature
employed in our FTDFT is given as follows �32�:

vxc��� = �x�rs,t� + �c�rs,t� , �B1�

where � is an electron density and rs is the electron sphere
radius �hereafter atomic units�,

rs = � 3

4
�
�1/3

,

and t is ratio of electron temperature T to the zero-
temperature Fermi energy Ef =

1
2 �3
2��2/3,

t =
T

Ef
.

The functions �x�rs , t� and �c�rs , t� in Eq. �B1� are given
as

�x�rs,t� = − � 9

4
2�1/3 1

rs

��1 + 2.834 31t2 − 0.215 12t2 + 5.275 86t4

1 + 3.943 09t2 + 7.913 79t4

�tanh�1/t�� , �B2�

�c�rs,t� = − 0.02545 ln�1 + 19/rs��1 + c1t + c2t1/4�e−c3t

− 0.638 168� t

rs
tanh�1/t�e−c4/t. �B3�

The factors c1, c2, c3, and c4 in �c�rs , t� are given as

�
c1 =

9.554 32

1 + 0.066 66rs
,

c2 =
3.579 12 − 5.990 65rs

1/4 + 1.297 22rs
3/4

1 + 1.611 26rs
1/4 ,

c3 =
4.802 17

1 + 0.423 387�rs

,

c4 = 0.293 35 + 0.322 565�rs.

In original paper �32�, the exponential function on the first
term of the right-hand side of Eq. �B3� is expressed as e−c3/t,
but the author of the present paper thinks this expression
may be a typing error.
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