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The critical behavior of entanglement near a quantum phase transition has been studied intensely over the
past few years. Few-body quantum systems show critical behavior near the ionization point. We investigate the
scaling properties of the von Neumann entropy for an atomiclike system near the ionization threshold. Using
finite size scaling methods we calculate the critical charge and the critical exponent associated to the von
Neumann entropy. The parallelism between the behavior of entanglement near a quantum phase transition and
the behavior of the von Neumann entropy in a critical few-body quantum system is analyzed.
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I. INTRODUCTION

In the past few years the relationship between quantum
state entanglement and critical phenomena has received a lot
of attention. The work of Osterloh et al. �1� signaled the
opening of the field, which lies between quantum informa-
tion theory and quantum critical phenomena. Since then the
relationship has been made clear, in particular, Wu et al. �2�
have shown that in quantum phase transitions �QPTs� the
nonanalyticity of the reduced density matrix elements signal-
ing the QPT is responsible for nonanalyticity of bipartite
entanglement measures. The examples provided for them are
quantum spin models, which are for many reasons the touch-
stone for any new theory.

Some of the topics concerning the relationship between
entanglement and quantum phase transitions that have been
studied previously include the behavior of thermal entangle-
ment near a quantum phase transition �3�, the scaling prop-
erties of entanglement measured by the entropy of entangle-
ment, which allows one to consider not only bipartite
subsystems but blocks of different sizes �4�, the behavior of
the entanglement on a disordered chain near a critical point
�5�, and the localizable entanglement used to observe diverg-
ing entanglement length �6�. Presently, there are a number of
issues that wait for a better understanding, in particular: what
happens in systems with continuous degrees of freedom?

The bipartite entanglement of distinguishable spins on a
chain can be studied using well known entanglement mea-
sures as the entanglement of formation �7�, random robust-
ness of entanglement �or the modulus of separability� �8�,
which are useful for pure and mixed states. When consider-
ing systems with continuous degrees of freedom and identi-
cal particles one is faced with subtleties that are not present
in models such as quantum spin chains. For a pure state ���
the von Neumann entropy of the reduced state is a good
entanglement measure �9�, although other approaches are
possible, for example, Shannon entropy has been used to
study the two-electron atom �10� and a two-electron artificial
atom �11�, and the von Neumann entropy to study the dy-
namics of entanglement between two trapped atoms �12�.

Gittings and Fisher �13� showed that von Neumann entropy
for the reduced density matrix of half the system can be used
as an entanglement measure for the case of indistinguishable
particles.

At this point it is reasonable �and tempting� to ask which
is the behavior of the von Neumann entropy in a system near
the critical point of the ground-state energy, for example, in
an atomic system near the ionization threshold. A critical
point for a quantum few-body system is defined as a point
for which a bound state becomes absorbed or degenerate
with the continuum. For a two-electron atom the ionization
point is a critical point with a bound state at the threshold
�14�. We want to remark that the critical behavior of a few-
body quantum system is not like the critical behavior of a
quantum spin chain near a QPT. In the quantum Ising model
with a transverse field �15�, for example, the critical param-
eter can be changed at both sides of the critical point; how-
ever, a two-electron atom has a well defined bound �normal-
izable� state at one side of the ionization point. Nevertheless,
there is a strong parallelism between both kinds of systems.

In this paper we will study the behavior of the von Neu-
mann entropy for two electron atomiclike systems near the
ionization point. As we shall show the nonanalyticity of the
ground state energy at the critical point signals a correspond-
ing nonanalyticity of the eigenvalues of the reduced density
matrix and of the von Neumann entropy, which is reminis-
cent of the scenario proposed by Wu et al. �2� for quantum
spin chain models. Moreover, we apply a finite size scaling
�FSS� �16� method to the entropy in order to calculate the
critical nuclear charge and critical exponent. We found that
the critical behavior of the von Neumann entropy for these
systems is similar to the behavior of other entanglement
measures in systems that present quantum phase transitions
�2�.

In order to obtain accurate numerical results we will focus
on the spherical heliumlike atom. This model has a long
history and it has been used to study bound �17,18� and
scattering �19� solutions of the two-electron atomic system.
Moreover, recently it has been shown that the two-electron
atom and its spherical approximation have the same near-
threshold behavior, in particular, both systems have the same
asymptotic expression for the ground-state energy with criti-
cal exponent �=1 �20�.

This paper is organized as follows. In Sec. II we give a
short view about the spherical helium model. In Sec. III we
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discuss the properties of the von Neumann entropy and its
near-threshold behavior. Our results are presented in Sec. IV.
Finally, the conclusions are given in Sec. V.

II. MODEL

In the spherical helium model the Coulombic repulsion
between electrons 1/r12 is replaced by its spherical average
1/r�, where r�=max�r1 ,r2�, then the Hamiltonian, in atomic
units, and applying the standard transformation r�→r� /Z; H
→Z2H, takes the form �18�

H = h�1� + h�2� + �V , �1�

where

h�i� =
1

2
pi

2 −
1

ri
, � =

1

Z
, V =

1

r�

, �2�

pi and ri are the momentum operator and the position opera-
tor of the i=1,2 electron, r12 is the distance between elec-
trons, and Z is the nuclear charge.

As any two identical spin-1 /2 fermionic system the total
Hilbert space is the external product of the spin Hilbert space
times the spatial Hilbert space. That is, the eigenfunctions of
Hamiltonian Eq. �1� take the form

��1,2� = �
A
S�r�1,r�2��trip

sing, �3�

where the spatial wave function �S ��A� is symmetric �an-
tisymmetric� under permutation of the particles, and �sing and
�trip are the singlet and triplet spinor, respectively. Note that,
for ��0, the eigenfunctions of the Hamiltonian Eq. �1� can-
not be obtained by antisymmetrizing a factorized state, i.e.,
they cannot be written as a single Slater determinant �21�.
Then, as established by Ghirardi and Marinatto �9�, for val-
ues of ��0 the states described by bound-state eigenfunc-
tions are entangled states, and the greater is the von Neu-
mann entropy, the larger is the amount of entanglement of
the state.

In particular, the ground-state eigenfunction has the form

�0�1,2� = �0�r�1,r�2��sing, �4�

where �0 is symmetric under permutation of the particles.
The advantage of the spherical-helium Hamiltonian is that

the ground-state function depends only on the radial coordi-
nates of the electrons �0�r�1 ,r�2�=�0�r1 ,r2�. Then this
ground-state function could be written as an expansion in a
complete basis set

�0�r1,r2� = �
m,n

�

Cm,n�m,n�r1,r2� . �5�

In particular, we choose the orthonormal basis set

�m,n�r1,r2� = �m,n�	m�r1�	n�r2� + 	n�r1�	m�r2�� , �6�

where 	m�r� are the one-electron orthonormal s-wave func-
tions

	m�r� =� 
3

4��m + 1��m + 2�
e−
r/2Lm

�2��
r� , �7�

Lm
�2� are the Laguerre polynomials �22�, 
 is a variational

parameter that takes the value 
=1.3 in all the calculations,
and �m,n the matrix

�m,n = 	
1

2
, m = n

1
�2

, m � n .
 �8�

In order to obtain an approximate ground-state function
we apply the Ritz variational method �23�. The expansion
shown in Eq. �5� is truncated at order N=maximum value of
m and n, which corresponds to �N+1��N+2� /2 functions in
the expansion as shown in Eq. �5�. The lowest eigenvalue of
the finite Hamiltonian matrix ��m,n �H ��m�,n�� is a varia-
tional upper bound for the ground-state energy and the cor-
responding eigenvector gives the coefficients Cmn

�N� for the
Nth-order variational wave function

�0
�N��r1,r2� = �

m,n

N

Cm,n
�N� �m,n�r1,r2� . �9�

Explicit expressions for the Hamiltonian matrix elements are
given in the Appendix.

This model has at least one bound state for ���c
�1.054, and the asymptotic behavior of the ground-state en-
ergy is

E0��� − Eth  ��c − ��� for � → �c
−, �10�

where Eth=−1/2 is the threshold energy and �=1 �20�.

III. VON NEUMANN ENTROPY

For a two-particle system in a pure state ��� the density
operator  takes the form

 = ������ . �11�

The reduced density operator is �24,25�

̂red�r�1,r�1�� = tr2������ . �12�

Here the trace is taken over one electron.
The von Neumann entropy is given by

S = − tr�̂red log2 ̂red� . �13�

As the ground-state wave function is given by Eq. �4�, the
von Neumann entropy separates in two contributions, one
corresponding to the spin degrees of freedom plus one cor-
responding to the spatial degrees of freedom. For spin-
independent Hamiltonians the spin degrees of freedom con-
tribution is equal to one; then the entropy could be written as

S = 1 + S = 1 − �
i

�i log2��i� , �14�

where �i are the eigenvalues of the spatial part of the
reduced density operator
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� d3x1�� d3x2�0�r1,r2��0
*�r1�,r2��i�r1�� = �i�i�r1� .

�15�

Here, we want to stress that the ground state is a singlet and
the total wave function is the product of the spatial and the
spin wave functions. For this reason the spin wave function
contributes only with an additive constant to the entropy
�equal to one�. Clearly the additive constant does not change
the behavior of the von Neumann entropy near the critical
point, nor its scaling properties. Then from here we will refer
to the spatial contribution S in Eq. �14� as the von Neumann
entropy.

In this paper we give evidence that the von Neumann
entropy for the ground state has a singular behavior at the
critical point �c,

S��� − S��c�  ��c − ��� for � → �c
−, �16�

with a critical exponent �=0 corresponding to a discontinu-
ity of the entropy at �=�c.

Introducing the Nth-order variational approximation to
the ground state function �Eq. �9�� in the integral equation
�15�, we obtain

� d3x1�� d3x2�0
�N��r1,r2�„�0

�N��r1�,r2�…*�i
�N��r1��

= �i
�N��i

�N��r1�, i = 1, . . . ,N . �17�

The exact eigenfunctions �i
�N� of this integral equation can be

written as a linear combination of the functions 	m, m
=1, . . . ,N �26�. Then Eq. �17� can be recast as an algebraic
eigenvalue problem for a N�N matrix. The conservation of
the probability

�
i=1

N

�i
�N� = 1 �18�

is satisfied for all values of N. In consequence the Nth-order
approximation to the entropy is

S�N� = − �
i=1

N

�i
�N� log2��i

�N�� . �19�

Now we study the scaling of S�N���� with the size of the
basis set N applying standard finite size scaling methods for
quantum few-body systems �10,16�, i.e., we assume the scal-
ing form for the singular part of the entropy,

S��c� − S�N����  �S��c� − S����FS�N��c − ���� for � → �c
−,

�20�

where �=1 was calculated in Ref. �27�, and

FS�x�  x−�/� for x → 0, �21�

where the critical exponent � was defined in Eq. �16�. Now,
we can obtain the critical parameters ��c ,�� by defining the
function �28�

�S��,N,N�� =
ln�Sc − S�N����� − ln�Sc − S�N������

ln�N�� − ln�N�
, �22�

where Sc=log2 2=1 is the limit value of S�N���� for N→�
and ���c. At the critical point we have

�S��c,N,N�� =
�

�
, �23�

independent of the values of N and N�. Thus, for three dif-
ferent values N, N�, and N� the curves defined by Eq. �22�
intersect at the critical point

�S��c,N,N�� = �S��c,N�,N� . �24�

Expression �23� is asymptotic, therefore we calculate ��c ,��
as an extrapolation from a sequence of values ���N� ,��N�� for
N→�, where ���N� ,��N�� are the solutions to Eq. �24� with
N�=N−1 and N�=N+1 �28�.

IV. NUMERICAL RESULTS

Figure 1 shows the behavior of the von Neumann entropy
S�N� vs �, for different values of the basis set size N
=2, . . . ,55. The behavior of the von Neumann entropy can
be understood as follows. For �→0 the two electrons be-
come independent since the Coulomb repulsion between
electrons goes to zero �see Eq. �1��. In that situation the
spatial wave function can be written as a simple product,
giving S�N�=0. For ���c the system consists of one electron
bounded to the central charge, and one unbounded electron.
In this case the spatial wave function can be written as a
symmetrized product of one-electron wave functions so S
=Sc=1.

The scenario described in the previous paragraph can be
better understood looking at Fig. 2, which shows the behav-
ior of the first and second largest eigenvalues �1

�N� and �2
�N�,

respectively. For �→0 there is only one nonzero eigenvalue:
�1

�N�→1, hence it is clear that S�N�→0. For ���c only the
two largest eigenvalues are significant, they become degen-
erate and equal to 1/2, therefore the value of S=log2 2
=S��c�.
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c

FIG. 1. S�N� vs � for N=2, . . . ,55. The convergence of S�N� to a
nonanalytic function at �=�c�1.054 is clear.
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Figure 3 shows the derivative of the von Neumann en-
tropy dS�N�

d� for different values of N. When N is increased the
maximum of the derivative gets increased while the position
of the maximum changes and tends towards the critical point
�c. This figure is similar to the corresponding figure obtained
by Osterloh et al. �1� for the derivative of the concurrence
between nearest neighbors in a spin chain. They were con-
sidering the quantum phase transition that occurs in an Ising
model with transverse external magnetic field. Until the work
of Wu et al. �2� there was not a systematic way to relate
quantum phase transitions characterized by nonanalyticities
of the energy and the behavior of bipartite entanglement.
Anyway, using finite size scaling Osterloh et al. showed that
the divergence of the derivative of the concurrence is loga-
rithmic with the size of the spin chain �i.e., the number of
quantum spins on the chain�.

The critical parameters ��c
�N� ,��N�� vs 1/N are shown in

Fig. 4. Figure 4�a� shows that the finite size scaling provides
values for the critical parameter �c

�N� below and above �c,
i.e., Eq. �24� has two solutions for each N. The extrapolation
of the values of �c

�N���c gives �c�1.0539 which is in very

good agreement with the value obtained using the finite size
scaling method with the energy of the ground state �see �20��
�c

E�1.054. The convergence of the data below the critical
point is not as good as the convergence of the data above the
critical point. It seems that it is necessary to perform the
calculations using larger basis set sizes to get a good conver-
gence, besides it is not clear how to extrapolate the �c

�N�

obtained below �c. On the contrary, above the critical point,
�c

�N�=const 1 /N+�c gives a very good fit of the data. The
extrapolated value is also shown.

The behavior of the critical exponents ��N� is shown in
Fig. 4�b�. The filled dots correspond to the values calculated
using finite size scaling above the critical point; the empty
dots correspond to the values obtained using FSS below the
critical point. Both sets of data seem to support that the criti-
cal exponent �=0. As it is well known, a zero critical expo-
nent is compatible with a discontinuous or a logarithmic be-
havior, and it is very difficult to elucidate from finite size
scaling the right asymptotic form. Our assumption that the
entropy has a discontinuity at �=�c is based on the existence
of a normalizable wave function at the threshold �14�. The
kernel of the integral equation �15� still is a L2 kernel at �
=�c and therefore we expect an infinite number of nonzero
eigenvalues �26�.

V. CONCLUSIONS

The results presented show that all the key ingredients of
the finite size scaling are present in the von Neumann en-
tropy for the spherical helium model. Preliminary results ob-
tained for the heliumlike atom, i.e., taking into account the
full Coulombic repulsion, show the same qualitative behav-
ior as that observed for the spherical approximation, in par-
ticular, the von Neumann entropy saturates to the same value
above �c, and the eigenvalues of the reduced matrix operator
show a similar critical behavior near the ionization point.

For quantum spin chains there is a general theory linking
quantum phase transitions and bipartite entanglement �2�. It
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FIG. 2. First and second largest eigenvalues of the reduced den-
sity matrix against � for N=10, 20, 30, 40, 50, and 55.
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FIG. 3. Derivatives of S�N� vs � for N=10, 20, 30, 40, 50, and
55.
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FIG. 4. �a� Critical parameter ��N� against 1 /N for N
=20, . . . ,55 for the two solutions of Eq. �24�. The extrapolated
value for �c is also shown with a filled dot. �b� Critical exponent
��N� for the two solutions displayed in �a� against 1 /N for N
=20, . . . ,55. For the lower curve ��N��10−4 ∀ N.
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sums up that a nonanalytical point in a bipartite entangle-
ment measure �or its derivative� is necessary and sufficient to
signal a QPT, assuming suitable conditions over the elements
of the two-spin reduced density matrix. Moreover, the order
of the QPT is related to the kind of singularity of the en-
tanglement measure: for a first-�second-� order QPT corre-
sponds a discontinuity �discontinuity or divergence of the
first derivative of� of the entanglement measure. For quan-
tum spin chains like the Ising model, or the frustrated two-
leg spin-1 /2 ladder, a detailed study of the coefficients of the
two-spin reduced density matrix can be carried through since
these models are exactly solvable. The model that we con-
sider in this paper, or other atomiclike systems, lacks this
advantage, so it is more difficult to show that a nonanalytic-
ity on the von Neumann entropy, or in the coefficients of the
reduced density matrix, is necessary or sufficient to have a
critical point.

For quantum few-body systems it is well known that the
critical behavior of the energy near the ionization threshold
depends on the existence �or not� of a normalizable bounded
state at the threshold �16,29�. The He-like atom and the
spherical He-like atom considered in this paper have normal-
izable bounded state at the threshold and the critical expo-
nent asociated to the energy is �=1. The Li atom does not
possess a normalizable bounded state at the threshold and
�=2 �16�. Then, it is reasonable to expect that the behavior
of an entanglement measure near the ionization threshold
will depend on which kind of critical point is under consid-
eration. Also, it is reasonable to expect that the critical be-
havior of the entanglement measure does not depend on the
particular measure used, since the critical behavior of the
concurrence or the negativity is the same in quantum spin
chains �2�. Anyway, it is necessary to calculate the critical
behavior of another measure, and not only the critical behav-
ior of the von Neumann entropy, to be sure about this point.
Work is in progress on these relevant topics.
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APPENDIX

In this Appendix we give the explicit expression for the
matrix elements ��m,n�H��m�,n�� used in the variational cal-
culations, where H is the Hamiltonian defined by Eqs. �1�
and �2�, and the basis functions are defined by Eqs. �6�–�8�.
Using the symmetry under permutation of the particles, a
matrix element takes the form

��m,n�H��m�,n�� = 2�m,n�m�,n��hmm��n,n� + hmn��n,m�

+ hnm��m,n� + hnn��m,m� + �Vmn,m�n�� ,

�A1�

where hmm� is the one-electron matrix element hmm�
= �	m�h�	m��, and Vmn,m�n�= �	m	n�1/r��	m�	n��. The inte-
grals involved in the calculation of hmm� are tabulated �30�,
and we obtain

hmm� =

��2m� + 1�
 − 6�

12
��m� + 1��m� + 2�

�m + 1��m + 2�

−

2

8
�m,m� for m � m�; hm�m = hmm�. �A2�

Using the explicit expression for the Laguerre polynomi-
als Lm

�2��r� �22�, the calculation of the two-electron potential
matrix elements Vmn,m�n� is cumbersome but straightforward,
giving

Vmn,m�n� =



�m�m + 1�n�n + 1�m��m� + 1�n��n� + 1�
�
s=0

m−1

�
t=0

n−1

�
u=0

m�−1

�
v=0

n�−1

�
�− 1�s+t+u+v

s!t!u!v!
�m + 1

s + 2
��n + 1

t + 2
��m� + 1

u + 2
��n� + 1

v + 2
�Is+u,t+v

��� ,

�A3�

where

Ii,j
��� = �

0

�

r1
2 dr1�

0

�

r2
2 dr2

r1
i r2

j

r�

e−�r1+r2� =
�i + 1�!�j + 2�!�2i+2 − 1�

2i+2 − �j + 1�!�
u=1

j+1
u�i + j + 3 − u�!

�j + 2 − u�!2i+j+4−u . �A4�
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