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We have used deterministic single-photon two-qubit quantum logic to implement the most powerful
individual-photon attack against the Bennett-Brassard 1984 �BB84� quantum key distribution protocol. Our
measurement results, including physical source and gate errors, are in good agreement with theoretical predic-
tions for the Rényi information obtained by Eve as a function of the errors she imparts to Alice and Bob’s sifted
key bits. The current experiment is a physical simulation of a true attack, because Eve has access to Bob’s
physical receiver module. Nevertheless, the physical simulation allows investigation of the fundamental secu-
rity limit of the BB84 protocol against eavesdropping in the presence of realistic physical errors, and it affords
the opportunity to study the effectiveness of error correction and privacy amplification when the BB84 protocol
is attacked.
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I. INTRODUCTION

In 1984 Bennett and Brassard �1� proposed a protocol
�Bennett-Brassard 1984 �BB84�� for quantum key distribu-
tion in which the sender �Alice� transmits single-photon
pulses to the receiver �Bob� in such a way that security is
vouchsafed by physical laws. Since then, the BB84 protocol
has been implemented in free space �2� as well as in fibers
�3�, and also its security has been the subject of many analy-
ses �4,5�, particularly for configurations that involve nonideal
operating conditions �6�, such as the use of weak laser pulses
instead of single photons. A more fundamental question is
how much information the eavesdropper �Eve� can gain un-
der ideal BB84 operating conditions. Papers by Fuchs and
Peres �7�, Slutsky et al. �8�, and Brandt �9� show that the
most powerful individual-photon attack can be accomplished
with a controlled-NOT �CNOT� gate. In this scheme, Eve sup-
plies the target qubit to the CNOT gate, which entangles it
with the BB84 qubit that Alice is sending to Bob. Eve then
makes her measurement of the target qubit to obtain infor-
mation on the shared key bit at the expense of imposing
detectable errors between Alice and Bob �9,10�.

We have recently shown �10� that this Fuchs-Peres-Brandt
�FPB� entangling probe can be implemented using single-
photon two-qubit �SPTQ� quantum logic in a proof-of-
principle experiment. In SPTQ logic a single photon carries
two independent qubits: the polarization and the momentum
�or spatial path� states of the photon. Compared to standard
two-photon quantum gates, SPTQ gates are deterministic and
can be efficiently implemented using only linear optical ele-
ments �11,12�.

In this work we use SPTQ logic to implement the FPB
probe as a complete physical simulation of the most power-
ful individual-photon attack on BB84 key distribution, in-
cluding physical errors. This is to our knowledge the first
experiment on attacking the BB84 protocol, and the results
are in good agreement with theoretical predictions. It is only

a physical simulation because the two qubits of a single pho-
ton carrier must be measured jointly, so that Eve needs ac-
cess to Bob’s receiver, but not his measurement. The SPTQ
probe could become a true attack if quantum nondemolition
measurements were available to Eve �10�.

II. THEORETICAL BACKGROUND

In the BB84 protocol, Alice sends Bob a single photon
randomly chosen from the four polarization states of the
horizontal-vertical �H-V� and ±45° diagonal-antidiagonal
�D-A� bases. In the FPB attack, Eve sets up her CNOT gate
with its control-qubit computational basis ��0�C , �1�C� given
by a � /8 rotation from the BB84 H-V basis, as shown in Fig.
1�a�,

�0�C = cos��/8��H� + sin��/8��V� ,

�1�C = − sin��/8��H� + cos��/8��V� . �1�

Having selected the error probability PE that she is willing to
create, Eve prepares her probe qubit �CNOT’s target� in the
initial state

�Tin� = ��C + S��0�T + �C − S��1�T�/	2


 cos �in�0�T + sin �in�1�T, �2�

where C=	1−2PE , S=	2PE, and ��0�T , �1�T� is the target
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FIG. 1. �Color online� Relations between different bases. �a�
Control qubit basis for Eve’s CNOT gate referenced to the BB84
polarization states. �b� �T0� and �T1� relative to the target qubit basis.
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qubit’s computational basis. After the CNOT operation—with
inputs from Alice’s photon and Eve’s probe—the two qubits
become entangled. For each of Alice’s four possible inputs
�H�, �V�, �D�, and �A�, the output of the CNOT gate is

�H��Tin� → �Hout� 
 �H��T0� + �V��TE� , �3�

�V��Tin� → �Vout� 
 �V��T1� + �H��TE� , �4�

�D��Tin� → �Dout� 
 �D��T0� − �A��TE� , �5�

�A��Tin� → �Aout� 
 �A��T1� − �D��TE� , �6�

where �un-normalized� �T0�, �T1�, and �TE� are defined in the
target qubit’s computational basis �see Fig. 1�b�� as

�T0� 
 � C
	2

+
S

2��0�T + � C
	2

−
S

2��1�T, �7�

�T1� 
 � C
	2

−
S

2��0�T + � C
	2

+
S

2��1�T, �8�

�TE� 

S

2
��0�T − �1�T� . �9�

Consider the case in which Bob measures in the same
basis that Alice employed and his outcome matches what
Alice sent. Then, according to Eqs. �3�–�6�, the target qubit is
projected into either �T0� or �T1�. After Alice and Bob com-
pare their basis selections over the classical channel, Eve can
learn about their shared bit value by distinguishing between
the �T0� and �T1� output states of her target qubit. To do so,
she employs the minimum error probability receiver for dis-
tinguishing between �T0� and �T1� by performing a projective
measurement along �0�T and �1�T. Eve can then correlate the
measurement of �0�T ��1�T� with �T0� ��T1��. Note that this
projective measurement is not perfect unless �T0� and �T1� are
orthogonal and hence coincide with the target’s computa-
tional basis, �0�T and �1�T. Also note that regardless of the
basis that Alice and Bob choose �H-V or D-A�, Eve needs
only to distinguish between �0�T and �1�T. Therefore she can
measure her probe qubit immediately, obviating the need for
any quantum memory in the FPB probe attack.

Of course, Eve’s information gain comes at a cost: Eve
has caused an error event whenever Alice and Bob choose a
common basis and Eve’s probe output state is �TE�. When
Alice sent �H� and Bob measured in the H-V basis, Eq. �3�
then shows that Alice and Bob will have an error event if the
measured output state is �V� �TE�. The probability that this
will occur is TE �TE�=S2 /2= PE. For the other three cases in
Eqs. �4�–�6�, the error event corresponds to the last term in
each expression. Therefore the conditional error probabilities
are identical, and hence PE is the unconditional error prob-
ability.

We use Rényi information to quantify Eve’s information
gain about the sift events in which Bob measures because
privacy amplification �5� requires an estimated upper bound
for Eve’s Rényi information about the corrected data �8�. Let
B= �0,1� and E= �0,1� denote the ensembles of possible bit

values that Bob and Eve receive on an error-free sift event.
The Rényi information �in bits� that Eve learns about each
error-free sift event is

IR 
 − log2��
b=0

1

P2�b�� + �
e=0

1

P�e�log2��
b=0

1

P2�b�e�� ,

�10�

where �P�b� , P�e�� are the a priori probabilities for Bob’s
and Eve’s bit values, and P�b �e� is the conditional probabil-
ity for Bob’s bit value to be b given that Eve’s is e. With a
perfect channel and perfect equipment, this leads to the the-
oretical prediction �10�,

IR = log2�1 +
4PE�1 − 2PE�

�1 − PE�2 � . �11�

Under these ideal conditions, Eve’s Rényi information is the
same for both bases, but in actual experiments it may differ,
owing to differing equipment errors in each basis.

III. EXPERIMENTAL SETUP AND RESULTS

Figure 2 shows the quantum circuit diagram of our SPTQ
implementation of the FPB probe. We start with a pair of
polarization-entangled photons in the singlet state. Photon 1
is used as a trigger to herald photon 2 as a single-photon
pulse for the BB84 protocol. A SWAP operation applied to
photon 2 exchanges its polarization and momentum qubits so
that the polarization of photon 1 and the momentum of pho-
ton 2 are now entangled in a singlet state. Eve encodes her
probe qubit in the momentum state of photon 2 by projecting
photon 1 along an appropriate polarization state set by a
polarization rotation RE. The polarization state of photon 2
after the SWAP gate is Alice’s qubit, which is set by rotation
RA. Similarly, Bob’s polarization analysis of Alice’s qubit is
set by RB. In this configuration, Eve is heralding the photon
on which Alice is encoding polarization. However, an
equivalent experiment could be performed if Alice
polarization-encoded a single-photon source, after which Eve
imposed her momentum qubit by polarization control applied
in between a pair of SWAP gates.

The CNOT gate in Fig. 2 is preceded by a −� /8 rotation
and followed by a +� /8 rotation because the basis for the
CNOT’s control qubit is rotated by � /8 from the BB84 bases,

RE

RA R-�/8 R�/8 RB

Pol.

Pol.

Mtm 0

Photon 2

Photon 1

SWAP
Bob
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Eve’s
initialization
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FIG. 2. Quantum circuit diagram for the FPB-probe attack. Pho-
ton 1 of a polarization-entangled singlet photon pair heralds photon
2 and sets Eve’s probe qubit to its initial state. The SWAP gate allows
Alice’s qubit to be set in the polarization mode of photon 2, whose
momentum mode is Eve’s probe qubit. The CNOT gate entangles
Alice’s qubit with Eve’s qubit. RE, rotation by Eve; RA, rotation by
Alice; RB, rotation by Bob; R±�/8, rotation by angle ±� /8.
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as noted in Fig. 1. The CNOT gate that Eve employs is a
polarization-controlled NOT �P-CNOT� gate that uses the po-
larization qubit as the control and the momentum qubit of the
same photon as the target. We have previously demonstrated
such a gate in a polarization Sagnac interferometer with an
embedded dove prism �11�. We have also demonstrated the
SWAP operation �12� by cascading three CNOT gates: a
momentum-controlled NOT �M-CNOT�, a P-CNOT, and another
M-CNOT.

Figure 3 shows our experimental setup for implementing
the quantum circuit. We used a bidirectionally pumped Sag-
nac interferometric down-conversion source �13� with a pe-
riodically poled KTiOPO4 crystal to generate polarization-
entangled photons at 810 nm in the singlet state. The
measured flux was �700 pairs/ s per mW of pump in a 1 nm
bandwidth at �99.45% quantum-interference visibility. The
collimated output beam had a beam waist of w0=0.53 mm.
In a collimated configuration, the momentum state of a pho-
ton is the same as the spatial orientation of the beam, for
which we use the right-left �R-L� basis, and we aligned the
output path of photon 2 to match the R input path of the
SWAP gate as shown in Fig. 3. This is equivalent to setting
the momentum qubit to �0� in Fig. 2 under the mapping of R
�L� to �0� ��1��. The L and R beams were separated by
�2 mm.

For each photon pair, photon 1 is used to herald the arrival
of photon 2 and also to remotely control the momentum
qubit of photon 2 by postselection. RE polarization rotation
by Eve was implemented using a quarter-wave plate �QWP�

Q1 and a half-wave plate �HWP� H1, followed by single-
photon detection �D1� through a polarizing beam splitter
�PBS� P1 along H. Q1 was used to compensate an intrinsic
phase shift � imposed by the SWAP gate on the target-qubit
basis ��0�T , �1�T�. We have independently measured ��88°.
Therefore, the RE operation prepared the momentum qubit in
�Tin� � with a Q1-imposed phase shift �:

�Tin� � 
 cos �in�0�T + ei� sin �in�1�T. �12�

The extra phase shift of the SWAP gate would bring Eve’s
probe qubit to be in �Tin� of Eq. �2�.

After the SWAP gate, RA and R−�/8 were combined in a
single operation. The P-CNOT gate had the same phase shift
problem as the SWAP gate, so we used a HWP �H2� and a
QWP �Q2� to compensate for this phase shift and to impose
the required rotation. After H2 and Q2, Alice’s qubit be-
comes

��A� 
 cos �A�0�C + ei� sin �A�1�C, �13�

where � ��98° � is the compensating phase shift and �A,
which is the sum of Alice’s angle and −22.5°, is
−22.5° , 22.5° , 67.5°, or 112.5° for �H� , �D� , �V�, or �A�,
respectively, as shown in Fig. 1�a�. Similarly we combined
R�/8 and RB into a single HWP �H3� in Fig. 3 and a PBS �P2�
was used by Bob to analyze the polarization of Alice’s qubit.

Eve measured her qubit by a projective measurement
along the �0�T− �1�T �spatially, R-L� basis. A HWP �H4/H5�
was placed in the R or L beam path, as indicated in Fig. 3, so
that the R and L beams would be distinguished by their or-
thogonal polarizations. This polarization tagging simplified
their measurements by a PBS �P3, P4� and single-photon
detectors. The four detectors uniquely identified the two qu-
bits of photon 2. D2, D3, D4, and D5 correspond to �H� �R�,
�H� �L�, �V� �R�, �V� �L� ��D� �R�, �D� �L�, �A� �R�, �A� �L��, re-
spectively, when the H-V �D-A� basis is chosen. Therefore,
in our physical simulation, these joint measurements yield
Bob’s polarization information and Eve’s momentum infor-
mation.

TABLE I. Data samples, estimated probabilities, and theoretical values for D and A inputs with Bob using the same basis as Alice, and
for predicted error probabilities PE=0, 0.1, and 0.33. �0� �1� corresponds to Bob’s measuring �D� and Eve’s measuring �1�T. Column 1 shows
the state Alice sent and column 2 shows the predicted error probability PE. “Coincidence” columns show coincidence counts over a 40 s
interval. “Estimated” columns show the measured coincidence counts normalized by the total counts of all four detectors, and “Expected”
columns show the theoretical values under ideal operating conditions.

Coincidence Estimated Expected

Alice PE �1� �0� �1� �1� �0� �1� �0� �0� �1� �0� �1� �1� �0� �1� �0� �0� �1� �0� �1� �1� �0� �1� �0� �0�

�D�= �0� 0 1356 1836 23408 23356 0.027 0.037 0.469 0.468 0 0 0.500 0.500

0.1 2840 4220 9664 32592 0.058 0.086 0.196 0.661 0.050 0.050 0.167 0.733

0.33 7512 9496 1512 30916 0.152 0.192 0.031 0.625 0.167 0.167 0 0.667

�A�= �1� 0 22664 23388 1140 1112 0.469 0.484 0.024 0.023 0.500 0.500 0 0

0.1 8480 34492 4088 2052 0.173 0.702 0.083 0.042 0.167 0.733 0.050 0.050

0.33 1096 32360 9384 6564 0.022 0.655 0.19 0.133 0 0.667 0.167 0.167
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FIG. 3. �Color online� Experimental configuration for a com-
plete physical simulation of the FPB attack on BB84. SPDC, spon-
taneous parametric down-conversion source; H, half-wave plate; Q,
quarter-wave plate; P, polarizing beam splitter; D, single-photon
detector. R, L refer to spatial paths.
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In data collection, we measured coincidences between D1
and one of the detectors for photon 2. Table I shows two data
sets for Alice’s input of D and A polarizations and compares
them with the expected values for the ideal case. From the

raw data, we calculate the Rényi information IR based on Eq.
�10�, and Fig. 4 plots IR as a function of the error probability
PE. The solid curve shows the ideal case �Eq. �11�� and dia-
monds �triangles� represent IR for the measured values with
inputs in the H-V �D-A� basis. We note that accidental coin-
cidences were negligible and the coincidence window was
�3 ns.

In the ideal case with PE=0, Eve gets no information,
IR=0, and Alice and Bob have no error bits. However, due to
experimental errors such as imperfect gate fidelities, we
found that �5% of the sifted bits had errors. For PE=1/3,
Eve obtains perfect information, IR=1 under ideal condi-
tions, but in our experiment, Eve gained a maximum IR
=0.9, corresponding to her having 95% probability of cor-
rectly receiving one of Alice and Bob’s error-free sifted bits.

IV. ERROR ANALYSIS

To understand the errors involved in the experiment, we
model our experimental setup with some nonideal param-
eters. We assume that the phases � in Eq. �12� and � in Eq.
�13� could be inaccurate, and similarly for the setting of �A in
Eq. �13� that might be caused by the wave plates. We also
model the unitary P-CNOT gate as

�
cos � ie−i� sin � 0 0

iei� sin � cos � 0 0

0 0 − iei� sin � cos �

0 0 cos � − ie−i� sin �
� , �14�

where �=0 and �=0 for an ideal P-CNOT gate. Finally we
assume that Bob’s HWP H3 setting of �B was imperfect, so
that

�H� → cos �B�0�C − sin �B�1�C, �15�

�V� → sin �B�0�C + cos �B�1�C, �16�

where �B should equal 22.5° �−22.5° � in the H-V �D-A�
basis.

We fit the data by minimizing the differences between 96
measurements and the calculated numbers based on this error
model. The fitting results were 	��3°, 	��−11°,
	�A�H ,D ,V ,A�= �3.2° , 0.9° , −0.7° , −2.3° �, �=12.3°, �
=3.6°, 	�B�H /V ,D /A�= �−1.8° , 0° �. As expected, the
phase errors are relatively small and those associated with �A
and �B are within the resolution of the rotating mounts hous-
ing the wave plates. The nonzero � also agrees with the

measured classical visibility of 94% for the P-CNOT gate.
Figure 4 shows the fitted IR based on this model for the H-V
basis �dashed curve� and the D-A basis �dotted curve�.

V. CONCLUSION

In summary, we have demonstrated experimentally a
complete physical simulation of the entangling-probe attack,
showing that Eve can gain Rényi information of up to 0.9
under realistic operating conditions, including a CNOT gate
that does not have an ultrahigh fidelity. Our results suggest
the possible amount of information gain by Eve with current
technology and the need to evaluate the required level of
privacy amplification.
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FIG. 4. �Color online� Eve’s Rényi information IR about Bob’s
error-free sifted bits as a function of the error probability PE that
her eavesdropping creates. Solid curve: theoretical result from Eq.
�11�. Diamonds �triangles�: measured values for H-V �D-A� basis.
Dashed �dotted� curves are fits to the data with error model for the
H-V �D-A� basis.
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