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In this paper, we first discuss the general properties of an intermediate-statistics quantum bracket,
�u ,v�n=uv−ei2�/�n+1�vu, which corresponds to intermediate statistics in which the maximum occupation num-
ber of one quantum state is an arbitrary integer, n. A further study of the operator realization of intermediate
statistics is given. We construct the intermediate-statistics coherent state. An intermediate-statistics oscillator is
constructed, which returns to bosonic and fermionic oscillators respectively when n→� and n=1. The energy
spectrum of such an intermediate-statistics oscillator is calculated. Finally, we discuss the intermediate-
statistics representation of angular momentum �su�2�� algebra. Moreover, a further study of the operator
realization of intermediate statistics is given in the Appendix.

DOI: 10.1103/PhysRevA.75.042111 PACS number�s�: 11.10.�z, 03.70.�k

I. INTRODUCTION

Bosons and fermions, the only two kinds of particles that
nature realizes, obey Bose-Einstein and Fermi-Dirac statis-
tics, respectively. For bosons, the wave function is symmet-
ric and the maximum occupation number is �; for fermions,
the wave function is antisymmetric and the maximum occu-
pation number is 1. There are two ways to generalize Bose-
Einstein and Fermi-Dirac statistics: �1� One generalization is
achieved by generalizing the symmetry property of the wave
function. The wave function will change a phase factor when
two identical particles exchange. The phase factor can be +1
�symmetric� or −1 �antisymmetric� related to bosons or fer-
mions. Generalizing this result to an arbitrary phase factor
ei�, one obtains the concept of anyon �1�. The corresponding
statistics is fractional statistics. Such a generalization has
been applied to the fractional quantum Hall effect �2�, high
temperature superconductivity �3�, supersymmetry �4�, and
quantum computing �5�. �2� Another generalization is based
on counting the number of many-body quantum states, i.e.,
generalizing the Pauli exclusion principle �6–10�. A direct
generalization is to allow more than one particle occupying
one quantum state. Based on this idea, Gentile constructed a
kind of statistics, called intermediate statistics or Gentile sta-
tistics, in which the maximum number of particles in any
quantum state is neither 1 nor �, but equals a finite number n
�6�, and Bose-Einstein or Fermi-Dirac statistics becomes its
limiting case when the maximum occupation number of one
state equals � or 1. Many authors discuss the properties of
Gentile’s intermediate statistics �11�. Reference �12� provides
an operator realization of intermediate statistics, by introduc-
ing an intermediate-statistics quantum bracket �a generalized
commutator�. In this paper we denote this operation in a
more operational form:

�u,v�n � uv − ei�nvu , �1�

where �n=2� / �n+1� and n is the maximum occupation
number of one quantum state. The bracket, �u ,v�n, will re-
turn to commutativity and anticommutativity, respectively
when n→� and n=1:

�u,v�n→� = �u,v�, �u,v�n=1 = �u,v� .

Just as the commutation relation of creation and annihilation
operators in the Bose-Einstein case is commutative and in
the Fermi-Dirac case is anticommutative, the relation of the
creation operator a† and the annihilation operator b in the
intermediate-statistics case obeys an intermediate commuta-
tion relation between commutativity and anticommutativity,
which, by use of the intermediate-statistics quantum bracket
given in Eq. �1�, can be expressed as �12�

�b,a†�n = 1. �2�

Note that creation operator a† is not the Hermitian conjugate
of the annihilation operator b unless n→� or n=1 �12�. This
realization includes both the phase factor ei�n and the maxi-
mum occupation number n; this implies that such a realiza-
tion builds a bridge between the exchange symmetry of iden-
tical particles �in which the phase factor is extended to an
arbitrary phase factor ei�n� and the generalized Pauli prin-
ciple �in which the maximum occupation number is extended
to an arbitrary integer n�. When the value of n is given, the
phase factor ei�n and then the commutation relation of cre-
ation and annihilation operators is determined. In this
scheme different kinds of intermediate statistics correspond
to different commutation relations of creation and annihila-
tion operators. The commutation relation of creation and an-
nihilation operators of intermediate statistics is intermediate
between commutativity �the Bose-Einstein case�, and anti-
commutativity �the Fermi-Dirac case� �12�. In this operator
realization of Gentile statistics, the state ��	n satisfies
a†�n	n=0 and b�0	n=0, where � is the occupation number
and subscript n represents that such an operator realization
corresponds to Gentile statistics with n as its maxium occu-
pation number �12�.

*Electronic address: daiwusheng@tju.edu.cn
†Electronic address: xiemi@tju.edu.cn

PHYSICAL REVIEW A 75, 042111 �2007�

1050-2947/2007/75�4�/042111�8� ©2007 The American Physical Society042111-1

http://dx.doi.org/10.1103/PhysRevA.75.042111


Although the elementary particles in nature are either
bosons or fermions, the theory of intermediate statistics can
be applied to describe composite-particle systems. Various
composite-particle systems have been studied for many years
�13�, e.g., the Cooper pair in the theory of superconductivity,
the Fermi gas superfluid �14�, the exciton �15�, etc. Some
composite particles, composed of several fermions, may be-
have like bosons, obeying Bose-Einstein statistics, when they
are far from each other. However, when they come closer
together, the fermions in different composite bosons will be-
gin to “feel” each other, and the statistics of the composite
particles will somewhat deviate from Bose-Einstein statistics
�16�. In this case intermediate statistics can be used as an
effective tool for studying such systems.

We will first give a general discussion of the intermediate-
statistics quantum bracket, �u ,v�n, and give a further study of
the operator realization of intermediate statistics, including
the general properties of the bracket �u ,v�n, relations of cre-
ation and annihilation operators of intermediate statistics,
and a different construction of the number operator of inter-
mediate statistics.

Coherent states in our cases are just the eigenstates of the
annihilation operator. Bosonic and fermionic coherent states
have been widely discussed �17�. We will construct the
eigenstates of the annihilation operator of intermediate sta-
tistics, the intermediate-statistics coherent states. The result
shows that the construction of the intermediate-statistics co-
herent state is not unique.

Bosonic and fermionic oscillators play important roles in
many physical theories. In this paper we construct a kind of
intermediate-statistics oscillator which returns to bosonic os-
cillators when n→� and returns to fermionic oscillators
when n=1, and calculate the energy spectrum of such a
system.

Reference �12� shows that by use of only a single set of
creation and annihilation operators of intermediate statistics,
one can establish a kind of representation of the angular mo-
mentum �su�2�� algebra. Notice that a bosonic realization of
the su�2� algebra needs two independent sets of bosonic op-
erators �the Schwinger representation� �18�; otherwise, the
realization with only one set of operators needs the help of
some kinds of intermediate statistics �e.g., the Holstein-
Primakoff representation� �19�. The representation of su�2�
algebra has been discussed by many authors �20�. In this
paper, we give a more general discussion of the intermediate-
statistics representation of su�2� algebra and present some
kinds of representations of su�2� algebra.

In this paper we �1� give a general discussion of the prop-
erties of the intermediate-statistics quantum bracket �Sec. II
and Appendix A� and the operator relations of intermediate
statistics �Appendix B�, �2� construct a kind of intermediate-
statistics coherent state �Sec. III�, �3� construct an
intermediate-statistics oscillator and calculate its spectrum
�Sec. IV�, and �4� present some realizations of angular mo-
mentum �su�2�� algebra based on creation and annihilation
operators of intermediate statistics �Sec. V�. The conclusions
are summarized in Sec. VI.

II. PROPERTIES OF THE INTERMEDIATE-STATISTICS
QUANTUM BRACKET

In this section, we will present some general results of the
intermediate-statistics quantum bracket, �u ,v�n. In the fol-
lowing, u, v, w, and o denote operators, and � denotes a c
number.

The intermediate-statistics quantum bracket of an operator
and itself is

�u,u�n = �1 − ei�n�u2, �3�

and the intermediate-statistics quantum bracket of an opera-
tor and a c number is

�u,��n = ��,u�n = �1 − ei�n��u . �4�

Some basic properties of the intermediate-statistics quantum
bracket are as follows:

�u ± v,w�n = �u,w�n ± �v,w�n,

�w,u ± v�n = �w,u�n ± �w,v�n,

�u,�v�n = ��u,v�n = ��u,v�n,

�u,v�n = − e−i�n�v,u�n − 2i sin �nvu . �5�

Notice that in the case of commutation �n→�� or anticom-
mutation �n=1� the phase factor ei�n is 1 or −1. The relations
between the intermediate-statistics quantum bracket and the
commutator and anticommutator are

�u,v�n − �v,u�n = �1 + ei�n��u,v� ,

�u,v�n + �v,u�n = �1 − ei�n��u,v� . �6�

A general result of the intermediate-statistics quantum
bracket of the product of an arbitrary number of operators is

�u1 ¯ uk,v1 ¯ vl�n = 

i=1

k



j=1

l

u1 ¯ ui−1v1 ¯ v j−1�ui,v j�v j+1 ¯ vlui+1 ¯ uk + �1 − ei�n�v1 ¯ vlu1 ¯ uk. �7�

Moreover, the properties of the twofold intermediate-statistics quantum bracket are

†�u,v�n,w‡n + †�w,u�n,v‡n + †�v,w�n,u‡n + †�v,u�n,w‡n + †�w,v�n,u‡n + †�u,w�n,v‡n

= �1 − ei�n�2�uvw + wuv + vwu + vuw + wvu + uwv� , �8�
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†�u,v�n,w‡n + †�w,u�n,v‡n + †�v,w�n,u‡n − †�v,u�n,w‡n − †�w,v�n,u‡n − †�u,w�n,v‡n

= �1 − ei2�n��uvw + wuv + vwu − vuw − wvu − uwv� . �9�

Equation �9� is in fact a generalized Jacobi identity. Gener-
alizing these relations to the case of k operators, we have



p

�¯†�u1,u2�n,u3‡n, . . . ,uk�n = �1 − ei�n�k−1

p

u1u2 ¯ uk.

�10�

In this equation and following, by 
p we mean the sum over
all permutations of the operators and 
r over all cyclic per-
mutations. Furthermore, we also have the following results:



p

�u1 ¯ ui,ui+1 ¯ uk�n = �1 − ei�n�

p

u1 ¯ uk, �11�



r

�u1 ¯ ui,ui+1 ¯ uk�n = �1 − ei�n�

r

u1 ¯ uk. �12�

It should be pointed out that, wherever the comma in the
intermediate-statistics quantum brackets in Eqs. �11� and
�12� appears, the right-hand sides are the same, i.e.,



p

�u1 ¯ uk−1,uk�n = 

p

�u1 ¯ uk−2,uk−1uk�n = ¯

= 

p

�u1,u2 ¯ uk�n, �13�



r

�u1 ¯ uk−1,uk�n = 

r

�u1 ¯ uk−2,uk−1uk�n = ¯

= 

r

�u1,u2 ¯ uk�n. �14�

More properties of the intermediate-statistics quantum
brackets are listed in Appendix A.

III. INTERMEDIATE-STATISTICS COHERENT STATE

In this section we introduce the intermediate-statistics co-
herent state. We will show that the construction of the
intermediate-statistics coherent state is not unique.

The concept of coherent states is applied to a wide class
of objects �17�. The coherent state in this case is the eigen-
state of the annihilation operator. The coherent states in the
Bose case and in the Fermi case are very different due to the
difference between the exchange symmetries of bosons and
fermions. For constructing the fermionic coherent state, one
needs to use the Grassmann number—anticommuting c num-
bers. The annihilation operator corresponding to intermediate
statistics is of course different from the Bose and the Fermi
cases; for constructing such a kind of coherent state we need
to introduce the generalized Grassmann number.

Let ��	 be the eigenstate of the annihilation operator b:

b��	 = ���	 , �15�

where the state ��	 is the intermediate-statistics coherent
state. For constructing the coherent state ��	, we assume

��	 = M��0	n + 	�1,n��1	n� + 	�2,n��2	n�2

+ ¯ 	�n,n��n	n�n� , �16�

where M is the normalization constant, and 	�i ,n�
�i=1,2 , . . . ,n� are coefficients to be determined. For satisfy-
ing Eq. �15�, one has to assume that � here is neither an
ordinary commuting c number nor an anticommuting c num-
ber like that in the Fermi case. � must be a generalized
Grassmann number satisfying

�n+1 = 0. �17�

When n=1 we have �2=0 and � returns to the Grassmann
number. Like that in the Fermi case �17�, ���	n� ��	n�. As-
suming that

���	n = ���,n���	n� , �18�

one can check that the coefficients in Eq. �16� can be taken
as

	��,n� = �
j=0

�−1
��j,n�

�j + 1	n

, �19�

where �	n= �1−ei2��/�n+1�� / �1−ei2�/�n+1��=
 j=0
�−1ei2�j/�n+1�,

and the relations a†��	n=��+1	n��+1	n and b��	n

=��	n��−1	n �12� have been used. Equation �19� gives the
relations between 	�� ,n� and ��� ,n�. The normalization con-
stant, M, is determined by � ��	=1, where the adjoint state
vector

�� = M�0�n + 	�1,n�*�̄1�n + 	�2,n�*�̄22�n

+ ¯ 	�n,n�*�̄nn�n� . �20�

Then we have

M = �1 + 

m=1

n

��̄��m�	�m,n��2�−1/2

. �21�

As in the Fermi case, �̄ is independent of � and is not a
proper mathematical adjoint �17�.

There is not only one way to construct ��� ,n�. ��� ,n�, for
example, can be taken as

���,n� = e±i2��/�n+1�, �22�

in this case
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	��,n� =
e±i����−1�/�n+1��1 − ei2�/�n+1���/2

�
j=1

�

�1 − ei2�j/�n+1�

; �23�

or

���,n� = �− 1��, �24�

in this case

	��,n� =
�− 1���−1��/2�1 − ei2�/�n+1���/2

�
j=1

�

�1 − ei2�j/�n+1�

. �25�

Especially, in the Fermi case, i.e., n=1, the coherent state
can be constructed as ��	=M��0	+ �1	��. It can be checked
directly that the above constructions will return to the Fermi
case when n=1.

Moreover, we also have

��b†�� =
���,n�
��0,n�

�b†���, ��a†�� =
���,n�
��0,n�

�a†��� ,

b�� =
���,n�
��0,n�

�b�, a�� =
���,n�
��0,n�

�a�. �26�

IV. INTERMEDIATE-STATISTICS OSCILLATOR

The Hamiltonians for bosonic and fermionic oscillators
can be expressed as

HBose =
1

2
�ab

†ab + abab
†� = ab

†ab +
1

2
, �27�

HFermi =
1

2
�af

†af − afaf
†� = af

†af −
1

2
, �28�

where ab
†, ab and af

†, af are creation and annihilation
operators of bosons and fermions, respectively, obeying
�ab ,ab

†�=1 and �af ,af
†�=1. As a generalization of bosonic and

fermionic oscillators, we can construct an intermediate-
statistics oscillator using the creation and the annihilation
operators of intermediate statistics a† and b. The Hamil-
tonian and the spectrum of such an intermediate-statistics
oscillator should return to the bosonic oscillator when
n→� and return to the fermionic oscillator when n=1.

The Hamiltonian of the intermediate-statistics oscillator
should be a quadratic form of creation and annihilation op-
erators. It can be constructed in the following general form:

H =
1

4
�
�n�a†b + ��n�ba† + H.c.� . �29�

In the two limit cases, n=� and n=1, one has a=b, and then
the creation and the annihilation operators are Hermitian
conjugate of each other �12�. The coefficients 
�n� and ��n�
should satisfy Re
���=1, Re����=1, Re
�1�=1, and
Re��1�=−1 for recovering the Bose case, Eq. �27�, when

n=�, and the Fermi case, Eq. �28�, when n=1, respectively.
The choice of 
�n� and ��n� is not unique. One of the sim-
plest choices is 
�n�=1 and ��n�=e−i2�/�n+1�, i.e.,

H =
1

4
�a†b + e−i2�/�n+1�ba† + b†a + ei2�/�n+1�ab†� . �30�

In this case, we have

�H,a†� = cos
2N�

n + 1
a†, �H,a� = − cos

2�N − 1��
n + 1

a ,

�H,b†� = cos
2N�

n + 1
b†, �H,b� = − cos

2�N − 1��
n + 1

b .

�31�

The spectrum should be discussed separately in four
cases: n=4t+1, n=4t+2, n=4t+3, and n=4t+4, where
t�0 and n�1.

The case of n=4t+1. The spectrum is

Ek
�n� = cos2 �

n + 1
+

1

2
csc

�

n + 1
sin

�4k − n − 1��
2�n + 1�

,

k = 0, . . . ,
1

2
�n + 1� . �32�

Except the highest energy level which is nondegenerate, all
the energy levels are twofold degenerate. The total number
of energy levels is �n+3� /2.

The energy of the ground state

E0
�n� = cos2 �

n + 1
−

1

2
csc

�

n + 1
.

The highest energy is

E�n+1�/2
�n� = cos2 �

n + 1
+

1

2
csc

�

n + 1
.

The case of n=4t+2. The spectrum is

Ek
�n� = cos2 �

n + 1
+

1

2
csc

�

n + 1
sin

�2k − n��
2�n + 1�

, k = 0, . . . ,n .

�33�

All energy levels in this case are nondegenerate. The total
number of energy levels is n+1.

The energy of the ground state

E0
�n� = cos2 �

n + 1
−

1

2
csc

�

n + 1
sin

n�

2�n + 1�
.

The highest energy is

En
�n� = cos2 �

n + 1
+

1

2
csc

�

n + 1
sin

n�

2�n + 1�
.

The case of n=4t+3. The spectrum is

Ek
�n� = cos2 �

n + 1
+

1

2
csc

�

n + 1
sin

�4k − n + 1��
2�n + 1�

,
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k = 0,1, . . . ,
1

2
�n − 1� . �34�

All energy levels are twofold degenerate. The total number
of energy levels is �n+1� /2.

The energy of the ground state

E0
�n� = cos2 �

n + 1
−

1

2
csc

�

n + 1
sin

�n − 1��
2�n + 1�

.

The highest energy is

E�n−1�/2
�n� = cos2 �

n + 1
+

1

2
csc

�

n + 1
sin

�n − 1��
2�n + 1�

.

The case of n=4t+4 is just the same as the case of
n=4t+2.

The above result shows that, for an intermediate-statistics
oscillator with a finite n, the total number of energy levels is
finite and the energy levels are often degenerate.

The intermediate-statistics oscillator will return to bosonic
and fermionic oscillators when n→� and n=1 as follows.

�a� n=1: The Fermi case. When n=1, the
intermediate-statistics oscillator will return to a fermionic os-
cillator. n=1 corresponds to the case of n=4t+1. The spec-
trum, Eq. �32�, reduces to

Ek
�1� = −

1

2
cos k�, k = 0,1.

The total number of energy levels is �n+3� /2=2. The energy
of the ground state

E0
�1� = −

1

2
,

and the highest energy is

E1
�1� =

1

2
.

This is just a fermionic oscillator.
�b� n→�: The Bose case. When n=�, the

intermediate-statistics oscillator will return to a bosonic os-
cillator. In Ref. �10� we have shown that, in the theory of
statistical mechanics, for recovering Bose-Einstein statistics
from Gentile statistics, besides the condition n→�, one also
needs an additional condition limn→�,N→� N /n=0, where N
is the total number of particles in the system. Concretely,
limn→�,N→� N /n can also take other nonzero values, and
different nonzero values of such a limit correspond to differ-
ent kinds of intermediate statistics �21�; only limn→�,N→�

N /n=0 corresponds to the Bose case. In our cases, � is the
occupation number of one quantum state. Therefore, in the
Bose case �n. Thus, for recovering the bosonic oscillator,
the condition �n is needed.

The spectrum of the Hamiltonian Eq. �30� can also be
expressed as

E�n���� =
1

2
csc

�

n + 1
�sin

�2� − 1��
n + 1

+ sin
2�

n + 1
cos

�

n + 1
� .

�35�

When �n, the spectrum

�E�n������n �
��

n + 1
cot

�

n + 1
+

1

2
cos

2�

n + 1
.

Taking n→�, we have

E������ = lim
n→�

�E�n������n = � +
1

2
.

This is just the spectrum of a bosonic oscillator. That is to
say, in the case of �n, when n→� the intermediate-
statistics oscillator will return to a bosonic oscillator. Such a
result agrees with the conclusion drawn in Refs. �10,21�:
Intermediate statistics cannot recover the Bose case by only
taking n→�; for recovering the Bose case, one also needs
�n.

V. INTERMEDIATE-STATISTICS REPRESENTATION
OF ANGULAR MOMENTUM [su(2)] ALGEBRA

It is shown in Ref. �12� that one cannot obtain a bosonic
realization of the angular momentum �su�2�� algebra by a
single set of bosonic creation and annihilation operators. Two
kinds of representations of angular momentum operators are
the Schwinger representation �18� and the Holstein-
Primakoff representation �19�, which are successful in
describing magnetism in various quantum systems �22�. The
Schwinger representation needs two sets of independent
boson operators, a1 and a2: J+=a1

†a2, J−=a2
†a1, and

Jz= 1
2 �a1

†a1–a2
†a2�. The Holstein-Primakoff representation,

J+=�2j−Na, J−=a†�2j−N, and Jz= j−N, where
N=0,1 , . . . ,2j, though only using one set of creation and
annihilation operators and a and a† satisfying the bosonic
commutation relations, is not a real bosonic realization. This
is because in the Holstein-Primakoff case the occupation
number N is restricted to be no more than 2j, but in Bose-
Einstein statistics N can take any integer. The result given in
Ref. �12� shows that the angular momentum algebra can be
represented in terms of a single set of creation and annihila-
tion operators in the case of intermediate statistics.

There is a correspondence between the angular momen-
tum and intermediate statistics, which allows us to construct
a representation in terms of intermediate statistics. More con-
cretely, when the maximum occupation number is n, there
are n+1 states: �0	n , �1	n . . . , �n	n; correspondingly, when the
magnitude of the angular momentum is j=n /2, there are also
2j+1=n+1 states: �−j	, �−j+1	 , . . . , �j	. In Ref. �12�, some
special cases of the realization of angular momentum �su�2��
algebra corresponding to intermediate statistics, j=1/2, 1,
3 /2, 2, 5 /2, are discussed. In this paper, we give a systematic
analysis for the intermediate-statistics realization of angular
momentum algebra.

The angular momentum operators, J+, J−, and Jz, satisfy

�J+,J−� = 2Jz, �36�
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�Jz,J±� = ± J±. �37�

As in Ref. �12�, we represent Jz by the particle number op-
erator:

Jz = N −
n

2
. �38�

Thus we have

Jz��	n = �N −
n

2
���	n = �� −

n

2
���	n. �39�

For a given n, the range of value of �, the occupation number
of one single quantum state in intermediate statistics, is
0���n, so the values of Jz are −n /2 ,−n /2+1, . . . ,n /2, a
total of n+1, corresponding to the n+1 components of the
angular momentum j=n /2.

For satisfying Eqs. �36� and �37�, notice that
�N ,J±�= ±J±, we can choose J+ and J− satisfying

J+��	n = c+����� + 1	n,

J−��	n = c−����� − 1	n, �40�

so that

�Jz,J±���	n = �c±����� ± 1 −
n

2
� − c±����� −

n

2
���� ± 1	n

= ± J±�� ± 1	n, �41�

and then Eq. �37� is automatically satisfied. The choice of J±
satisfying Eq. �40� is not unique. In the following we will
consider some kinds of constructions.

One possible construction is

J+ = 

l

�l
*Ala†,

J− = 

q

�qa�A†�q, �42�

where the operator A satisfies

�A,N� = �A†,N� = 0. �43�

Obviously, such a choice satisfies Eq. �37�. Equation �43�
implies that the operator A can be chosen as

A = N, A = a†b or b†a, A = a†a = b†b ,

A = aa† = bb†, etc. �44�

The coefficients can be determined by Eq. �36�. For example,
when A=a†b, Eq. �36� gives



lq

�l
*�q���	n���	n

*�q�	n
l − �� + 1	n��� + 1	n

*�q� + 1	n
l �

= 2� − n . �45�

This is a set of n+1 equations. In principle, one can obtain a
realization of angular momentum �su�2�� algebra by solving
the coefficients �l from this set of equations. One can prove
that such a set of equations always possess solutions. Equa-

tion �45� is a set of linear equations of �l
*�q. However, once

one wants to solve �l, he will encounter high-order algebraic
equations. When the order of the equation is high, it is dif-
ficult to solve. Nevertheless, in a concrete problem, in which
n is given, one can always obtain the solution, and then
obtain the realization of the angular momentum �su �2��
algebra.

Note that the realization given in Eq. �42� is not unique.
There are still other choices, for example,

J+ = 

l

�l
*�Ala† + Blb†� ,

J− = 

q

�q�a�A†�q + b�B†�q� , �46�

where

�B,N� = �B†,N� = 0. �47�

The coefficients �i can be obtained by the same procedure
given above.

VI. CONCLUSIONS

In this paper, we discuss the properties of the
intermediate-statistics quantum bracket, �u ,v�n=uv−ei�nvu,
which is introduced in Ref. �12�. The operation �u ,v�n will
return to commutativity and anticommutativity when n→�
or n=1. The physical meaning of n is clear. It denotes the
maximum occupation number of statistics: n→� and n=1
correspond to Bose and Fermi cases, and the other values of
n correspond to intermediate statistics. That is to say, if the
commutator reflects the properties of a bosonic system, and
the anticommutator reflects the properties of a fermionic sys-
tem, the intermediate-statistics quantum bracket, �u ,v�n, cor-
responds to the system obeying intermediate statistics.

An operator realization of intermediate statistics is given
in Ref. �12�. In this paper, we give a more detailed discussion
of the operator realization. Especially, some operator rela-
tions corresponding to intermediate statistics are provided.

The coherent state is an important concept in physics. The
bosonic and fermionic coherent states have been discussed in
many literatures �17�. In this paper we construct the
intermediate-statistics coherent state. The analysis shows that
the construction of the intermediate-statistics coherent state
is not unique. In this paper, we provide two constructions.

The Fermi oscillator and the Bose oscillator are very im-
portant models in quantum mechanics. Based on the operator
realization of intermediate statistics, we construct a kind of
intermediate-statistics oscillator which returns to the bosonic
oscillator when n→� ��n�, and returns to the fermionic
oscillator when n=1. Its energy spectrum is calculated.

In this paper, we provide a more general discussion of the
intermediate-statistics representation of angular momentum
algebra. Our result shows that one can construct more than
one representation of angular momentum algebra by a single
set of creation and annihilation operators. Note that one can-
not obtain a representation of angular momentum algebra by
a single set of bosonic operators.
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APPENDIX A: PROPERTIES OF THE INTERMEDIATE-
STATISTICS QUANTUM BRACKET

Equation �7� gives a very general result of the
intermediate-statistics quantum bracket. In practice the fol-
lowing special results are often useful:

�u1 ¯ uk,v�n = 

i=1

k

u1 ¯ ui−1�ui,v�ui+1 ¯ uk

+ �1 − ei�n�vu1 ¯ uk, �A1�

�v,u1 ¯ uk�n = 

i=1

k

u1 ¯ ui−1�v,ui�ui+1 ¯ uk

+ �1 − ei�n�u1 ¯ ukv . �A2�

When u1= ¯ =uk=u and v1= ¯ =vl=v, Eq. �7� becomes

�uk,vl�n = 

i=1

k



j=1

l

ui−1v j−1�u,v�vl−juk−i + �1 − ei�n�vluk.

�A3�

We also have

and

�uk,v�n + �uk−1v,u�n = �uk−1,u�nv + �uk−1,v�nu ,

�v,uk�n + �u,vuk−1�n = v�u,uk−1�n + u�v,uk−1�n.

Some useful special cases of Eqs. �A1� and �A2� are

�uv,w�n = u�v,w� + �u,w�v + �1 − ei�n�wuv ,

�w,uv�n = �w,u�v + u�w,v� + �1 − ei�n�uvw , �A4�

�uvw,o�n = �u,o�vw + u�v,o�w + uv�w,o� + �1 − ei�n�ouvw ,

�o,uvw�n = �o,u�vw + u�o,v�w + uv�o,w� + �1 − ei�n�uvwo ,

�A5�

and

�uv,wo�n =
1

1 − ei2�n
�†�u,v�n,�w,o�n‡n + ei�n

†�v,u�n,�w,o�n‡n

+ ei�n
†�u,v�n,�o,w�n‡n + ei2�n

†�v,u�n,�o,w�n‡n� ,

�uv,wo�n = u�v,w�no + ei�nuw�v,o� + ei�n�u,w�ov

+ ei�nw�u,o�v . �A6�

Equations �7�–�12� are very general results. We can also
obtain the corresponding properties for commutators or anti-
commutators by taking n→� or n=1, which are often
useful.

Commutator case:

�u1 ¯ uk,v1 ¯ vl�

= 

i=1

k



j=1

l

u1 ¯ ui−1v1 ¯ v j−1�ui,v j�v j+1 ¯ vlui+1 ¯ uk,

and



i,j,k=1

3

��ijk�†�ui,uj�,uk‡ = 0, �A7�



i,j,k=1

3

�ijk†�ui,uj�,uk‡ = 0. �A8�

Equation �A8� is just the Jacobi identity. Moreover,



p

�†¯�u1,u2� ¯ ,uk−1‡,uk� = 0,

and



p

�u1 ¯ ui,ui+1 ¯ uk� = 0,



r

�u1 ¯ ui,ui+1 ¯ uk� = 0.

Anticommutator case:

�u1 ¯ uk,v1 ¯ vl�

= 

i=1

k



j=1

l

u1 ¯ ui−1v1 ¯ v j−1�ui,v j�v j+1 ¯ vlui+1 ¯ uk

+ 2v1 ¯ vlu1 ¯ uk,



i,j,k=1

3

��ijk�ˆ�ui,uj�,uk‰ = 4 

l,h,m=1

3

��lhm�uluhum,



i,j,k=1

3

�ijkˆ�ui,uj�,uk‰ = 0,



p

�ˆ¯�u1,u2� ¯ ,uk−1‰,uk� = 2k−1

p

u1 ¯ uk,

and



p

�u1 ¯ ui,ui+1 ¯ uk� = 2

p

u1 ¯ uk,



r

�u1 ¯ ui,ui+1 ¯ uk� = 2

r

u1 ¯ uk.
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APPENDIX B: OPERATOR RELATIONS
OF INTERMEDIATE STATISTICS

Reference �12� presents an operator realization of inter-
mediate statistics. Concretely, Ref. �12� constructs a set of
creation, annihilation, and number operators for intermediate
statistics, Bose and Fermi cases becoming its two limiting
cases. In this appendix we will first construct a realization for
the number operator of intermediate statistics. Then, using
the properties of intermediate-statistics quantum brackets
given in the above section, we will give some operator rela-
tions for creation, annihilation, and number operators of in-
termediate statistics.

For completeness, we rewrite the basic operator relations
of intermediate statistics given in Ref. �12�:

�b,a†�n = 1, �N,a†� = a†, �N,b� = − b , �B1�

where a†, b, and N are creation, annihilation, and number
operators in intermediate statistics, respectively.

Reference �12� gives a construction for the number opera-
tor N. However, the construction of N is not unique; it can
also be constructed as

N =
n + 1

2�
arcsin� i

2
�a†b − b†a + ab† − ba†�� . �B2�

It can be checked directly that this construction satisfies
Eq. �B1�.

Moreover, we give some operator relations of a†, b,
and N:

�N,a†�n = ��1 − ei�n�N + ei�n�a†,

�a†,N�n = ��1 − ei�n�N − 1�a†,

�N,b�n = ��1 − ei�n�N − ei�n�b, �b,N�n = ��1 − ei�n�N + 1�b ,

�Nb,a†b� = ei2��N−1�/�n+1�Nb .

We also have

��a†�kb,a†�n = �b�a†�k,a†�n = �a†�k,

�b,a†bk�n = �b,bka†�n = bk,

�a†b2,a†�n = �b,�a†�2b�n = �1 + ei�n�a†b .

Like the fact that intermediate statistics returns to Bose-
Einstein and Fermi-Dirac statistics when n→� and n=1, the
intermediate-statistics quantum bracket will return to com-
mutator and anticommutator in these two limiting cases.
Therefore, when n→� and n=1 the above results lead to the
operator relations of creation and annihilation operators in
Bose-Einstein and Fermi-Dirac cases.
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