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The time-of-flight distribution for a cloud of cold atoms falling freely under gravity is considered. We
generalize the probability current density approach to calculate the quantum arrival time distribution for the
mixed state describing the Maxwell-Boltzmann distribution of velocities for the falling atoms. We find an
empirically testable difference between the time-of-flight distribution calculated using the quantum probability
current and that obtained from a purely classical treatment which is usually employed in analyzing time-of-
flight measurements. The classical time-of-flight distribution matches with the quantum distribution in the large
mass and high temperature limits.
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I. INTRODUCTION

In recent times laser cooling and trapping of atoms has
become an area of active research �1�. The measurement of
the initial temperature of the cloud of atoms is crucial for
characterizing the properties of atom traps. The temperature
of the cloud can be inferred from the velocity distribution of
atoms in the cloud. A well-known technique of measuring
this velocity distribution is the time-of-flight �TOF� method.
Measurements of the TOF distribution have been employed
to analyze various experimental data such as those involving
ions and isotopes �2�, and also in performing mass spectros-
copy of biomolecules like DNA �3�.

The theoretical treatment of the TOF distribution that can
be obtained using, for instance, the Green’s function method
�4�, however, turns out to produce perfect agreement with the
TOF distribution obtained by using Newton’s equations for
ballistic motion of particles accelerated by the Earth’s gravi-
tational field �5�. Thus the interpretation of the results of the
various TOF experiments �1–3� where classical trajectories
are inferred from Newtonian mechanics �6� remains debat-
able, especially in the domain of small atomic masses and
low temperatures where quantum mechanical effects should
be significant.

Though there exists no unique prescription for the defini-
tion of time of flight and arrival time in quantum mechanics,
experimentalists measure arrival times of elementary par-
ticles, atoms, and molecules using the TOF methods. In spite
of the difficulties to give time an observable status in quan-
tum mechanics, several logically consistent schemes for the
treatment of the arrival time distribution have been formu-
lated, such as those based on axiomatic appraches �7�, ope-
arator constructions �8�, and trajectory models �9�. It is thus
desirable that some of the conceptually sound theoretical

formulations of the quantum mechanical arrival time distri-
bution �10� be confronted with accurate experimental data. If
such quantum mechanical approaches are employed for ana-
lyzing experiments using TOF measurements, it should not
only enable one to determine the empirical viability of vari-
ous competing arrival time models �10�, but also possibly
shed new light on the conventional interpretation of the re-
sults of these experiments.

In this paper we employ the probability current approach
�11� towards obtaining the quantum time-of-flight distribu-
tion of cold trapped atoms. The probability current approach
for computation of the mean arrival time of a quantum en-
semble not only provides an unambiguous definition of ar-
rival time at the quantum mechanical level �11–13�, but also
adresses the issue of obtaining the proper classical limit of
the time of flight of massive quantum particles �14,15�. Here
we derive the quantum arrival time distribution for the case
of initially trapped atomic clouds that are subsequently al-
lowed to fall freely under gravity �4,16�. We compute the
mean time of flight for these atoms and compare it with the
mean time of flight obtained through the classical time-of-
flight analysis �5� that has frequently been employed for such
experiments �1–3�. Our analysis predicts the mass and tem-
perature range of the atomic clouds where the quantum me-
chanical treatment alters the arrival time distribution and the
mean arrival time from that obtained through the classical
analysis.

II. CLASSICAL ANALYSIS OF TIME-OF-FLIGHT
MEASUREMENTS

We begin with a brief description of the classical analysis
of TOF measurements of trapped atoms. A probe laser, fo-
cused in the form of a sheet, is placed underneath the atomic
cloud. When the trapping forces are turned off, the cold atom
cloud falls through the laser probe under the influence of
gravity. It is then possible to detect the fluorescence from the
atoms as they reach the sheet. The fluorescence is measured
as a function of time and the initial temperature of the cloud
is determined by fitting the experimental result to the theo-
retically predicted TOF signal of the cloud �4,16�. A detailed
derivation of the TOF signal recorded by the detector �that is,
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the number of atoms arriving at the probe laser as a function
of time� was derived by Yavin et al. �5�.

The cloud of atoms consisting of noninteracting particles
has a Maxwell-Boltzmann velocity distribution given �in one
dimension� by

��v�dv = � m

2�kT
�1/2

exp�−
mv2

2kT
�dv , �1�

where T is the initial temperature of the cloud, and m is the
atomic mass. Using the Newton’s equations for ballistic mo-
tion of a particle accelerated by the Earth’s gravitational field
�in the vertical z-direction�, the velocity is obtained in terms
of the time of flight as

v = �z +
1

2
gt2�/t . �2�

Substituting the above expression for v from Eq. �2� in Eq.
�1�, one can obtain the time-of-flight distribution at an arbi-
trary distance z, given by

�C�t�dt = � m

2�kT
�1/2

exp�−

m�z +
1

2
gt2�2

2kTt2 �
�

�− z +
1

2
gt2�

t2 dt . �3�

The corresponding classical mean time of flight or mean ar-
rival time �C for the atomic cloud calculated using �C�t� as
the time-of-flight distribution is given by

�C =

	
0

�

�C�t�t dt

	
0

�

�C�t�dt

. �4�

For simplicity, here we restrict ourselves to the case of a
point-sized cloud. The three-dimensional calculation was
done by Yavin et al. �5� using a simple coordinate transfor-
mation and the same expression was obtained for the TOF
distribution. These authors �5� have claimed perfect agree-
ment of their results with a previous calculation �4� where
the TOF distribution was derived using a sophisticated
Green’s function technique. We call this TOF distribution
given by Eq. �3� the classical time-of-flight distribution, and
Eq. �4� denotes the corresponding classical mean arrival time
since the classical Newtonian equation is used from the out-
set to derive this TOF distribution.

III. THE QUANTUM ARRIVAL TIME DISTRIBUTION
THROUGH THE PROBABILITY CURRENT

Our aim here is to derive an expression for the time-of-
flight distribution for the atomic cloud through the quantum

probability current without using any classical ingredients.
To that end, let the initial state of each of the atoms be
represented by a one-dimensional Gaussian wave function of
the form

��z,0� = �2��0
2�−1/4 exp� imv

�
z�exp�−

z2

4�0
2� �5�

centered at z=0 and moving with a group velocity v. The
Schrödinger time evolved wave function under the Hamil-
tonian H= p2 /2m+mgz is given by

��z,t� = �2�st
2�−1/4 exp�− �z − vt +

1

2
gt2�2

4st�0
�

�exp
i�m

�
���v − gt��z − vt/2� −

1

6
g2t3�� , �6�

where st=�0�1+ i�t /2m�0
2�.

Considering the free fall of the atoms under gravity, the
expression for the Schrödinger probability current density

J�z,t� �
i�

2m
��

��*

�z
− �*��

�z
� �7�

for the time evolved state is calculated using the initial state
given by Eq. �5� to be

J�z,t� = P�z,t�
�v − gt� +
�2t

4m2�0
2�2�z − vt +

1

2
gt2�� ,

�8�

where the expression for the position probability distribution
is given by

P�z,t� =
1

�2��2�1/2 exp�−
�z − vt +

1

2
gt2�2

2�2 � �9�

with �=�0�1+�2t2 /4m2�0
4�1/2. The modulus of the probabil-

ity current density J�z , t� given by Eq. �8� provides the ar-
rival time distribution for a pure wave packet falling under
gravity. Note that the quantum probability current as defined
by Eq. �7� is formally ambiguous up to a total divergence
term �17�. However, J�z , t� can be uniquely defined through
relativistic wave equations which impart appropriate spin-
dependent corrections to it that persist even in the nonrela-
tivistic limit �12,18�. The ensuing arrival time distribution
defined through the probability current thus contains a spin-
dependent correction for particles with spin �13�.

The atomic cloud is represented by an ensemble of par-
ticles in thermal equilibrium with a thermal distribution of
initial velocities. Each particle has a wave function of the
form �5�, with a Maxwell-Boltzmann distribution of initial

ALI et al. PHYSICAL REVIEW A 75, 042110 �2007�

042110-2



velocities given by Eq. �1�. Thus the initial thermal state of
the atomic cloud we have described is a mixed state. We
obtain the corresponding position probability distribution by
averaging the pure state distribution �9� over a thermal dis-
tribution of initial velocities. The result is

PT�z,t� = � m

2�kT
�1/2	

−�

�

P�z,t�exp�−
mv2

2kT
�dv

=
1

�2��T
2�1/2 exp�−

�z +
1

2
gt2�2

2�T
2 � , �10�

where �T2 =�2+ �kT /m�t2. The peak of the position probabil-
ity distribution PT�z , t� follows the classical trajectory and
the effect of the mass and temperature dependences of the
position probability occurs essentially because the spreading
of the wave packet is different for different atomic mass and
temperature of the cloud.

The corresponding probability current density for the
mixed state at finite temperature JT�z , t� is also obtained by
averaging the pure state current density given by Eq. �8� over
the thermal distribution of initial velocities. The result is

JT�z,t� = � m

2�kT
�1/2	

−�

�

J�z,t�exp�−
mv2

2kT
�dv

=
1

�2��T
2�1/2 exp�−

�z +
1

2
gt2�2

2�T
2 �

� ��z +
1

2
gt2�� kT

m
+

�2

4m2�0
2�t

�T
2 − gt� . �11�

Taking the modulus of the mixed state quantum probabil-
ity current density as determining the quantum arrival time
distribution �11�, we obtain the arrival time probability dis-
tribution for the atomic cloud given by

�Q�t� = 
JT�z,t�
 . �12�

In this way we generalize the probability current density ap-
proach to calculate the quantum TOF distribution for the
mixed state at finite temperature. It may be mentioned here
that in the present calculation we neglect the small spin-
dependent correction �13� that may appear in the probability
current density, as mentioned above, and consequently the
mean arrival time that we compute for any fermionic atoms.
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FIG. 1. �Color online� The classical ��C�t�� and quantum ��Q�t�� TOF distributions of the atomic cloud falling freely under gravity are
plotted for varying mass of the atoms at a fixed temperature T=2.5�10−6 K with �0=10−5 cm and Z=−30 cm.
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The quantum mean arrival time �Q of the atomic cloud,
which is an observable quantity, is given by

�Q =

	
0

�

�Q�t�tdt

	
0

�

�Q�t�dt

. �13�

One may note that though the integral in the numerator of
Eq. �13� may diverge in general, several techniques have
been employed in the literature ensuring rapid fall off for the
probability distributions asymptotically �19�, so that conver-
gent results are obtained for the integrated arrival time. How-
ever, in the present case it turns out from Eqs. �11� and �12�
that �Q�t� falls off exponentially at large times, and there is
no problem of convergence in Eq. �13�.

If we impose now the classical limit for the quantum TOF
distribution given by Eq. �12�, then one can check that under
the large mass and high temperature limits, and when �0
	 �kT /m�t2, one can take �T

2��kT /m�t2. Thus �Q�t�
=�C�t�, i.e., the two distributions match in the limit of large
mass and high temperature. The probability current method
of computing the quantum arrival time distribution furnishes
an effective way of approaching the classical limit of the

distribution by smoothly varying the parameters such as
mass and temperature of the quantum distribution �14,15�.
Note also that the mass dependence of arrival time distribu-
tion given by Eq. �12� and consequently, the observable
mean arrival time given by Eq. �13�, signifies the quantum
mechanical violation of the gravitational weak equivalence
principle �15�. Thus TOF measurements �1–4,16� offer a
practical possibility for experimental demonstration of the
equivalence principle violation at the quantum level �20�.

IV. NUMERICAL RESULTS

We perform a numerical study of the quantum arrival time
distribution of the falling atomic cloud by varying its mass
and temperature separately. We first plot �C�t� and �Q�t� for
a fixed temperature of 2.5�10−6 K in Fig. 1. It is seen that
the classical and the quantum distributions are clearly differ-
ent for clouds of small atomic mass such as Li and Na.
However, as one increases the atomic mass, one sees that
�C�t� and �Q�t� begin to overlap for heavy atoms such as Rb
for this value of temperature. The temperature variation of
the arrival time distributions are displayed in Fig. 2 where
one sees that even for heavy Rb atoms, the two distributions
are quite distinct in the low �nano kelvin� temperature range.
It would be interesting if our prediction in the low tempera-
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FIG. 2. �Color online� The classical ��C�t�� and quantum ��Q�t�� TOF distributions of the atomic cloud falling freely under gravity are
plotted for varying temperatures at a fixed mass of Rb atom �m=85.4678 amu� with �0=10−5 cm and Z=−30 cm.
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ture and lower atomic mass region where the quantum time-
of-flight distribution sharply differs from the classical TOF
distribution could be verified in actual experiments.

The variation with mass of the quantum and classical
mean arrival times at a particular detector location for the
ensemble of falling atoms is depicted in Fig. 3. One can see
that in the limit of large mass the mean arrival time �Q as-
ymptotically approaches the classical result. One can also
investigate the variation of the mean arrival times ��Q and
�C� with varying temperature of the cloud, and obtain similar
results, as expected from the temperature variation of the
classical and quantum arrival time distributions plotted in
Fig. 2. The mass and temperature dependences of the quan-
tum arrival time distribution and consequently the quantum
mean arrival time arise essentially due to the spread of the
wave packet for the atoms. A smaller value of the initial
width �0 for the wave packet results in its faster spread. The
amount of departure of the quantum distribution from its
classical counterpart is thus contingent on the magnitude of
the ensemble spread �since �C�t� is independent of �0�. This
is clearly depicted in Fig. 4 where the classical ��C�t�� and
quantum ��Q�t�� TOF distributions are plotted for three dif-
ferent values of �0 at a fixed mass and temperature.
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FIG. 3. �Color online� The mass variation of the mean arrival
times �Q and �C are shown in the figure for a fixed value of tem-
perature �T=1.41�10−6 K� with Z=−30 cm. The quantum mean
arrival time �Q is plotted for two different values of �0. 2�a� �Q for
�0=10−5 cm, 2�b� �Q for �0=2�10−5 cm. 2�c� The mean arrival
time �C calculated through the classical TOF distribution �C�t� with
T=1.41�10−6 K and Z=−30 cm.
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FIG. 4. �Color online� The classical ��C�t�� and quantum ��Q�t�� TOF distributions of the atomic cloud falling freely under gravity are
plotted for four different values of �0 at a fixed mass of Be atom �m=9.01 amu� and at a fixed temperature T=3.0�10−6 K with
Z=−30 cm.
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V. SUMMARY AND CONCLUSIONS

To summarize, in this work we have considered the analy-
sis of the time-of-flight measurements of falling cold atomic
clouds. The inference of the temperature of the cloud in vari-
ous experiments �1–3� is usually performed through a clas-
sical analysis in which the results obtained are the same as
through the solution of Newton’s equations for ballistic mo-
tion of particles falling under gravity �5�. Here we emphasize
the relevance of employing a quantum mechanical arrival
time distribution for the analysis of such experiments. We
use the probability current density approach towards obtain-
ing the arrival time or the TOF distribution. Our definition of
the quantum arrival time distribution and the observable
mean arrival time in terms of the modulus of the probability
current density is particularly motivated from the equation of
continuity, and other physical considerations discussed in the
literature �9,11–13,21�. Further, we generalize the probability
current density approach to calculate the quantum arrival
time distribution for a mixed state describing the Maxwell-
Boltzmann distribution of velocities for the falling atomic
clouds in the relevant experiments �1,4,16�. We compute the
TOF distribution and mean arrival time through this scheme
and compare our results with those obtained through a clas-
sical analysis �6� for various atomic masses.

The obtained quantum arrival time distribution matches
with the classical TOF distribution in the high temperature
and the large mass limits, hence furnishing another example

of the smooth emergence of the classical limit �14� of the
quantum arrival time in the framework of the probability
current approach. However, a clear distinction between the
quantum and the classical distributions is exhibited for either
small atomic mass or low temperature of the cloud. This
results from differential wave packet spreading depending
upon the mass velocity, and width of the wave packet for the
atoms. Our scheme thus provides a method for experimental
verification of the probability current density approach for
calculating the arrival time distribution, in addition to an
earlier proposed method using the spin rotator as a quantum
clock �22�. Finally, we wish to emphasize that more investi-
gations of modern experiments employing time-of-flight
techniques should be performed using various quantum me-
chanical schemes �10�. Such studies have the potential to
empirically resolve ambiguities inherent in the theoretical
formulations of the quantum arrival time distribution using
cold trapped atom experimental techniques, and may also
shed new light on the inference of the experimental data.
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