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Recent experiments claiming the formation of quantum superposition states in near-macroscopic systems
raise the question of how the sizes of general quantum superposition states in an interacting system are to be
quantified. We propose here a measure of size for such superposition states that is based on what measurements
can be performed to probe and distinguish the different branches of the state. The measure allows the com-
parison of the effective size for superposition states in very different physical systems. It can be applied to a
very general class of superposition states and reproduces known results for near-ideal cases. Comparison with
a prior measure based on analysis of coherence between branches indicates that significantly smaller effective
superposition sizes result from our measurement-based measure. Application to a system of interacting bosons
in a double-well trapping potential shows that the effective superposition size is strongly dependent on the
relative magnitude of the barrier height and interparticle interaction.
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I. INTRODUCTION

Despite quantum mechanics being one of the most sweep-
ingly successful theoretical frameworks in the history of
physics, there has always been and still appears to be a great
deal of unease and confusion about some of its fundamental
concepts and consequences. Most strikingly, quantum me-
chanics requires that if the outcomes of certain experiments
are known with certainty, then it will not be possible to pre-
dict the outcome of other, incompatible experiments. Instead,
the system must exist in an indeterminate state, allowing for
the possibility of several different outcomes of these experi-
ments. In many interpretations, this is viewed as the system
simultaneously existing in a “superposition” of all the differ-
ent outcomes at once, until an experiment is actually per-
formed and an outcome is determined.

This seemingly ghostly state of affairs is perhaps not very
unnerving in the context of atoms and microscopic systems.
But, as Schrödinger pointed out in 1935 �1�, a microscopic
system coupled to a macroscopic one would inevitably lead
to a situation in which even a macroscopic living being—in
his example, a cat—could conceivably end up in a state of
being neither alive nor dead, until an observer actually looks
and determines its fate. One “solution” proposed by some
people uncomfortable with this situation, is that there may be
some intrinsic “size limit” for quantum mechanics, which
somehow prohibits nature from putting macroscopic systems
into this kind of counterintuitive superposition �see, e.g., Ref.
�2� for a review�. Although one may doubt such a proposal or
question the need for it, it does deserve to be investigated
whether it can be formulated in a precise enough way to be
tested experimentally, especially given claims in recent years
that “Schrödinger cat” states have been or can be produced in
more or less macroscopic systems �2–7�.

In order to investigate any possible size limits to quantum
mechanics experimentally, one must of course have a reason-
ably clear definition of what the size of a system involved in
quantum coherent behavior is. In this paper we will investi-
gate systems described by catlike states that can be generi-
cally written as ���� �A�+ �B�, where �A� and �B� are macro-
scopic or mesoscopic states that are distinguishable to some
extent. The task is to define a measure of how “large” this
quantum superposition is in terms of the constituent sub-
systems. Each of these notions will be made more precise in
the course of this paper. We explicitly seek a measure that is
independent of the physical nature of the subsystems and that
can therefore be used to compare the effective size of catlike
states realized in very different physical situations, e.g.,
Bose-Einstein condensates �BECs� and superconducting cur-
rent loops.

This question, which could be succinctly phrased as “how
big is Schrödinger’s cat” for a given system in a particular
quantum superposition state, has been asked in several ear-
lier papers �2,8�. By size we mean the number of effective
independent subsystems that can describe the superposition
�we will discuss in more detail what we mean by these no-
tions in Sec. II�. One “ideal” N-particle cat state, for which
the answer would be N, is a Greenberger-Horne-Zeilin
�GHZ� state of the form ���=2−1/2��0��N+ �1��N�, where �0�
and �1� are any pair of orthogonal one-particle states. Hardly
any states realizable in the laboratory are of this idealized
form, however, and we therefore seek a measure that can
quantify the size of more general states that are still recog-
nizable as generic catlike states but that may be very differ-
ent from the ideal form. The particular case of a generalized
GHZ-type N-particle state of the form ���=K−1���0��N
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+ ��1��N�, where ��0� and ��1� are nonorthogonal one-
particle states, was studied in Ref. �8� with two independent
approaches, one based on the stability with respect to deco-
herence, and the other on the amount of distillable entangle-
ment. In the limit of highly overlapping states, where
���0 ��1��2=1−�2 for some ��1, Dür et al. found that both
decoherence and distillable entanglement measures of the
“effective” number of degrees of freedom participating in the
superposition n, yielded an effective cat size of n�N�2 �8�.
These two measures were specific to the form of the nonor-
thogonal GHZ-type states and it is not obvious how to apply
them to arbitrary superposition states. Another motivation of
this paper is thus to derive a measure of the effective cat size
that can be applied to superpositions �A�+ �B� having com-
pletely general forms of the states �A� and �B�.

The rest of this paper is divided into four parts. In Sec. II,
we present a measure of effective “cat size” for general bi-
nary superposition states that is based on the notion that the
degree to which a superposition state can be viewed as a cat
state should depend primarily on how distinguishable the
two branches of the state are. This measure is based funda-
mentally on measurements, and thereby differs from earlier
measures that have tended to be based on the mathematical
form of the state. The new measure is thus potentially more
useful for experimental implementations. In Sec. III, we ap-
ply the measure to a system of bosons in a two-mode de-
scription. In Sec. IV, we connect the results from Sec. II with
realistic numerical Monte Carlo simulations of bosons with
attractive interactions trapped in a double-well potential.
Section V summarizes and indicates future directions of re-
search.

II. IDEAL CATS AND EFFECTIVE CAT SIZES

In this section we will give a definition of the size of a
catlike state of an object, ���= �A�+ �B�. We will consider
that the object is formed by N subsystems, and our measure
of effective size will then range between 0 and N, analo-
gously as in Ref. �8�. However, in contrast to that work, the
quantity we introduce here will measure how �macroscopi-
cally� distinguishable the states �A� and �B� are. The main
idea that we want to capture with this definition is the fol-
lowing: How many fundamental subsystems of the object do
we have to measure in order to collapse the entire state into
a single branch corresponding to one of the two states �A� or
�B�, and how many times larger than this number is the entire
system? By “fundamental subsystem,” we mean something
that in some sense can be taken as a fundamental building
block of our system, e.g., single particles or something simi-
lar. It is by no means always clear what one should consider
the fundamental building blocks of a given physical system
�molecules, atoms, Cooper pairs, electrons, quarks…�, and
we will not attempt to make a definitive definition of what
such building blocks should be, if this is even possible. How-
ever, our measure will be based on how many measurements
must be carried out to perform a specific task, namely, to
collapse the superposition state into one branch or the other.
A reasonable qualitative definition would therefore be that a
fundamental subsystem is the smallest subsystem that one

could in principle measure in some experimental context and
which would provide information that could help distinguish
one branch from the other. For a BEC experiment one could
in principle, e.g., scatter light from single atoms, making
single atoms reasonable candidates for fundamental sub-
systems. Our measure thus will depend on the experimental
situation and the relevant size and energy scale, something
which probably must be expected if one wishes a measure
that does not involve Planck-scale physics. For the remainder
of this paper, even though relevant fundamental subsystems
may not always be something that can reasonably be called
particles, we will use the terms “particle” and fundamental
subsystem interchangeably, and this concept plays an impor-
tant role in our measure. More specifically, the question we
ask to define our measure is the following: What is the maxi-
mal number of disjoint subsets that one can constitute from
the N particles such that by measuring all particles in any
given subset one can cause the superposition state to collapse
into one of the branches �A� or �B� to a high degree. A mea-
surement that causes such a collapse is equivalent to a mea-
surement that with high probability lets us determine cor-
rectly whether a system is in state �A� or �B� if we are given
a system that is definitely in either one of these two states,
but we do not know which one. We emphasize that the latter
situation is clearly very different from having a system that is
actually in a superposition �A�+ �B�. But since a measurement
that collapses the superposition state is identical to one that
is capable of distinguishing between the two branch states
�assuming an ideal measurement with no classical noise�, we
shall often use the latter picture in the discussion below.

It is not difficult to write a mathematical definition that
expresses our measure as formulated above. However, in
practice it may be quite difficult to calculate this for general
superpositions, since for a given accuracy one has to opti-
mize the number of subsets over all possible partitionings of
the N particles. Thus, we will use an alternative definition
that also captures the above concepts but is simpler to evalu-
ate, particularly for states possessing permutation invariance.

Definition of cat size. Given an object composed of N
subsystems and 0���1, we define the cat size of a state
���� �A�+ �B� with 	�A� 	 = 	�B� 	 =1, to a precision �, by

C���� ª N/nmin, �1�

where nmin is the minimum number of particles one has to
measure, on average, in order to distinguish the states �A�
and �B� with probability greater than or equal to 1−�.

In order to determine C���� we can proceed as follows.
We begin with 1-particle measurements �n=1�. For each par-
ticle k we calculate the optimal probability of being able to
distinguish �A� and �B� by measuring just this particle and
average this probability with respect to k. If the resulting
average probability is larger than 1−�, then nmin=1 and
hence C����=N. If not, we then go on to consider all pos-
sible sets of two particles �j ,k�, determining the correspond-
ing optimal probability of distinguishing �A� and �B� by mea-
suring these two particles. If after averaging this probability
with respect to j ,k we obtain an average probability larger
than 1−�, we have nmin=2 and hence C����=N /2. If not,
we repeat the procedure with measurements of an increasing
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number of particles until we reach a value of nmin for which
the averaged probability of successfully distinguishing the
two branches is for the first time larger than 1−�. If this
happens only when all particles are measured, then nmin=N,
and the cat size is C�=1. If even measuring all N particles
still fails to distinguish the two branches to the desired pre-
cision
1−�, then nmin and hence the cat size C� are essentially un-
defined. For simplicity, we will define the cat size to be zero
in this situation.

Thus, the only ingredient we need in order to determine
the cat size is the maximal probability to be able to distin-
guish two states �A� and �B� by measuring only a given sub-
set of the total system �or using some similarly restricted set
of measurements, as we will see in Sec. III�. We now briefly
discuss this probability. For more thorough and general dis-
cussions, see Refs. �9–11�. Using a generalized quantum
measurement, i.e., a POVM �positive operator valued mea-
sure� �12�, in which the outcome described by POVM ele-
ment EA is taken to indicate that the system is in state �A� and
the outcome EB that it is in state �B�, then given equal prior
probabilities for each state �i.e., equal weight for the two
branches of the superposition�, the probability P of inferring
the correct state from a single measurement is

P =
1

2
�tr�	AEA� + tr�	BEB�� , �2�

where 	A= �A��A� and 	B= �B��B� are the density matrices of
the two states. If we now restrict ourselves to measure only a
subset of n particles, then the measurement outcomes are
given by POVM elements EA

�n� ,EB
�n� that act nontrivially only

on these n particles, acting as the identity on the remaining
N−n particles. The probability of successfully inferring the
state is then

P =
1

2
�tr�	AEA

�n�
� 1�N−n�� + tr�	BEB

�n�
� 1�N−n���

=
1

2
�tr�	A

�n�EA
�n�� + tr�	B

�n�EB
�n��� , �3�

with 	A
�n�
 trN−n 	A and 	B

�n�
 trN−n 	B the corresponding
n-particle reduced density matrices �n-RDMs�. �trN−n denotes
the trace over all particles except the n particles being mea-
sured.� The maximum probability for successfully distin-
guishing two density matrices 	A

�n� and 	B
�n� will then be given

by an optimal POVM, which is known to be a projective
measurement in the eigenbasis of the operator 	A

�n�−	B
�n�

�9–11�

P =
1

2
+

1

4
		A

�n� − 	B
�n�	 . �4�

Here 	X 	 =tr �X� is the trace norm, i.e., �i �
i�, with 
i the
eigenvalues of X.

Several remarks are in order here.

�i� We have based our working definition here on the av-
erage probability over all equal size subsets being larger than
1−�. One could alternatively have employed a requirement

that the minimal probability is larger than 1−�. Also, as
mentioned above, at the cost of introducing a great deal more
computational expense, one could replace the average over
equal size subsets by the optimum partition over all possible
subsets.

�ii� Although it should be clear from the notation, we
note that, as defined, our measure applies only to pure quan-
tum states, not mixed states. Defining a cat size measure for
mixed states is complicated by the fact that there is no
unique way to decompose a mixed state density matrix into a
convex sum of pure states, so that, e.g., a mixture of com-
pletely separable states could also be written formally as a
mixture of very catlike states. Any cat size measure appli-
cable to mixed states would therefore have to weight the cat
size quite heavily with the purity of the state. We will not
pursue such an extension of our measure in this paper.

�iii� For states that are symmetric with respect to permu-
tations, for a given number of measured particles n it suffices
to consider only a single subset, since all subsets give rise to
the same probability because of symmetry. This results in a
considerable gain for computational studies with large N and
will be analyzed in detail for bosonic systems in the remain-
der of this paper.

�iv� We have assumed that we can perform collective
measurements on a subset of n particles. However, we can
also consider the situation in which only individual single-
particle measurements are performed. In some cases the cal-
culation could then be highly simplified, since we would
have to consider only single-particle reduced density opera-
tors. This situation appears well suited to bosonic systems
and will be analyzed further in Sec. III B.

�v� Given a state � in which �A� and �B� are not speci-
fied, there are many ways of selecting the two branches, and
these may give rise to different values of the measure. Thus,
when we talk about the size of a cat state, we must always
specify what are the branches A and B. Furthermore, appli-
cation of the measurement-based cat size defined above re-
quires that the two branches have the same norm. If the norm
of the two branches are different, i.e.,

��� � �A� + g�B� , �5�

with 0�g�1, we expect that C���� must be multiplied by a
factor that interpolates smoothly between a value of zero
when g=0 and a value of unity when �g � =1. This factor can
be determined by recognizing that the general superposition
for general g can always be distilled to the equal superposi-
tion �g � =1 by generalized measurements �8�, yielding an ef-
fective cat size that is reduced by the associated probability.
For the state of Eq. �5�, one can perform a measurement
using the operator

A1 

g�A��B��
�B��A�

+
�B��A��
�A��B�

, �6�

and complement this with any other measurement operator
A2 such that E1
A1

†A1 and E2
A2
†A2 form a POVM, i.e.,

E1+E2=1. �A�� and �B�� are any states that are orthogonal to
�A� and �B�, respectively. If one obtains the outcome corre-
sponding to A1, then the state after the measurement will be
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the equal superposition state ���� �A�+ �B�. The probability
for this to happen is

pg =
�2 + �A�B� + �B�A���g�2

1 + �A�B�g + �B�A�g* + �g�2
. �7�

Thus if the norm of the two branches is different, we can
take the effective cat size to be pgC����, where g is the
smaller of the two norms. Note that if at least one particle
separates out in each of the branches �A� and �B�, i.e., if ���
can be written in the form �a� �AN−1�+ �b� �BN−1� for some
one-particle states �a�, �b� and �N−1�-particle states �AN−1�,
�BN−1�, then the distillation can be accomplished using only a
local single-particle measurement, namely

A1 =
g�a��b�
�b��a�

+
�b��a��
�a��b�

. �8�

The probability of obtaining the outcome A1 is the same as in
Eq. �7�, with �A� replaced by �a� �AN−1�.

�vi� In order to calculate C����, we can calculate P=1
− PE, where PE is the probability of error in distinguishing
the two states, and then find the value of n for which P�1
−�. In Sec. III we will show plots of PE rather than P, since
these better illustrate the scaling of the error with n. For large
N values, in some situations we can also solve P=1−� to
obtain a continuous value of n �see Sec. III B�.

�vii� Our approach of asking how many subsystems a
system can be divided into such that each one alone suffices
to distinguish the branches of a state, has some similarities
with the concept of redundancy, introduced in a different
context in Ref. �13�. There, the redundancy of a piece of
information about a quantum system is defined as the num-
ber of fragments �partitions, in our terminology� into which
the environment can be divided such that this information is
contained in every one of the fragments. This is used in Ref.
�13� to probe how objective a certain piece of information
about a quantum system is, since information that has a high
degree of redundancy can be obtained by many observers
independently through measuring different parts of the envi-
ronment, without disturbing the system itself or each other’s
measurements.

�viii� Finally, we note that our measure does not look at
the physical properties of the object, such as mass or spatial
dimensions, but rather at the number of components. For
example, with this measure a very massive elementary par-
ticle can have a cat size of 1 at most.

We now give some examples of the cat size for simple
superposition states, calculated using the above formalism in
a two-state basis. Suppose we have a system consisting of a
macroscopic number N of spin-1/2 particles. First, consider
the ideal GHZ states ��±�ª ��0��N± �1��N�. Here only one
particle need be measured to distinguish the two branches
with certainty, i.e., the one-particle reduced density matrix
�1-RDM� already gives P=1, and hence nmin=1 and C�=N
for all �. Now consider the linear superposition state ���
= 1

�2
���+�+ ��−��= �0��N. This is also a superposition of two

distinguishable �orthogonal� macroscopic quantum states,
but here all N particles must be measured in order to distin-

guish the two branches. The n-RDMs for ��+� and ��−� are
identical for all n�N, so P=0 unless n=N, in which case
P=1. Hence nmin=N and the cat size is equal to 1, as ex-
pected since the state is equivalent to a product state. As a
final example, we apply our measure to the nonideal state
with nonorthogonal branches that was studied in Ref. �8�,
namely, ���ª ��0��N+ ����N� with ��0 ����2=1−�2, where �
�1. Here, the two branches �0��N and ����N are separable
states, and their respective n-RDMs are therefore equal to
density matrices of pure n-particle states, namely, �0��n and
����n, respectively. In general, for any quantum system and
any pair of states �a� and �b� with ��a �b��2=c2, we can write
the corresponding density matrices in a two-state partial ba-
sis defined by �a� and �a��, where �a�� is the state orthogonal
to �a� but contained in the subspace spanned by �a� and �b�
�14�. Specifically, writing �b�=c �a�+s �a�� with �c�2+ �s�2=1,
we have

	a − 	b = 1 − �c�2 − sc

− sc − �s�2� . �9�

Using Eq. �4�, we find that �a� and �b� can be successfully
distinguished with probability P= 1

2 �1+ �s � �. Defining �a�
= �0��n and �b�= ����n, we then obtain the maximum success
probability

P =
1

2
�1 + �1 − �1 − �2�n� , �10�

for distinguishing �0��N and ����N using n-particle measure-
ments. Requiring this to be greater than 1−�, where � is the
desired precision, results in a value of nmin given by

nmin = � log�4� − 4�2�
log�1 − �2� � , �11�

where �¯� denotes the ceiling function, i.e., the nearest inte-
ger above the value of the argument. For � and � small, this
results in C�=N /nmin=N�2 / �−log����, in agreement with the
N�2 scaling found for these states in Ref. �8�.

III. CAT STATES IN BOSONIC SYSTEMS

Most experiments involving quantum coherence in more
or less macroscopic systems, including potentially macro-
scopic cat states, are performed on systems of identical par-
ticles. These include photon states �15�, superconducting cur-
rent loops �3,4�, spin-polarized atomic ensembles �5�, and
BEC’s �16�. Cat states of bosonic particles allow some sim-
plification of the proposed measure of effective cat size,
since making use of the permutation symmetry reduces the
size and number of the n-RDMs to be analyzed. We consider
here a generic form of the cat state wave function that gen-
eralizes the ideal GHZ state

�GHZN� =
1
�2

��0��N + �1��N� , �12�

to situations described by a superposition of nonideal GHZ-
type states in which the single-particle states are nonorthogo-
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nal. In particular, we consider states of the form �17�

��� � �
−/2

/2

d�f�����cos �a† + sin �b†�N

+ �sin �a† + cos �b†�N��0�


 �
−/2

/2

d�f������A
�N����� + ��B

�N������


 ���A
�N�� + ��B

�N��� , �13�

where the operators a† and b† create two orthogonal single-
particle states. For fixed values of �, the integrand of Eq.
�13� corresponds to ground states of a two-state BEC with
attractive interactions, found in Ref. �18� using a two-mode
approximation and an extended mean-field calculation. In
this section we will illustrate the effects of f��� for various
values of its mean and variance. The two branches of the
superposition ��A

�N�� and ��B
�N�� are thus defined here by a

superposition of states ��A
�N����� and ��B

�N����� that are them-
selves non-ideal GHZ-type states of variable orthogonality
defined by the angle �. In the notation above, �=0 and  /2
correspond to perfect orthogonality of the single-particle
states ��A

�1�����= �cos �a†+sin �b†� �0� and ��B
�1�����

= �sin �a†+cos �b†� �0� �with ��A
�1��0��=a† �0� and ��B

�1��0��
=b† �0�, switched for �= /2�, �= /4 corresponds to com-
plete overlap �with both ��A

�1�� /4�� and ��B
�1�� /4�� equal to

2−1/2�a†+b†� �0��, �=− /4 also corresponds to complete
overlap but with differing overall sign ���A

�1��− /4��=−��B
�1�

��− /4��=2−1/2�a†−b†� �0��, and �=− /2 corresponds to
orthogonality again but with a factor of −1 for each of the
states relative to �= /2. The extent to which the two
branches can be delineated is clearly dependent on the am-
plitude function f��� that controls the amount of spreading of
each branch. The form of the spreading function f��� will
depend on the details of the physical realization of the mac-
roscopic superposition, as will the values of the angle �. This
generalized superposition reduces to the form employed in
Ref. �18� when f���=���−�0� for some �0 dependent on the
parameters of the Hamiltonian used there, and is in agree-
ment with general expectations for the form of macroscopic
superposition wave functions for superconductors �2�. In
Sec. V we analyze the form of f��� appropriate to a cat state
formed from a BEC trapped in an external double-well po-
tential. Numerical calculations for attractive Bose gases have
shown that the competing effects of tunneling between
modes and interactions between particles can be taken into
account by letting f��� be a Gaussian, the shape of which is
determined by the ratio of tunneling and interaction energies
�19,20�. Note that while Eq. �13� is implicitly a two-mode
wave function, this form can readily be generalized to mul-
timode superpositions.

A. Calculation of effective cat sizes for superpositions
of nonideal states

We can first give some qualitative expectations for the
effective size of this superposition state when N becomes

large. There are two factors that will reduce the effective size
below that of the ideal GHZ state, N. Firstly, for values of
��0, the two branches of ��� in Eq. �13� are not orthogonal,
and hence not completely distinguishable. As shown explic-
itly in Sec. II above, our measure therefore gives a cat size
for this state that is smaller than N, in agreement with the
results derived previously in Ref. �8�. Second, if the ampli-
tude function f��� deviates from a � function, the inner prod-
uct between the two branches will not approach zero even in
the limit N→�. Hence there will always be a finite minimal
probability that we will not be able to distinguish the two
branches, even in the thermodynamic limit and even if all N
particles are measured. Eventually, if this irreducible overlap
between the branches is large enough, the division into two
different branches becomes meaningless. The effect of this
second factor has not been investigated before, but is essen-
tial to investigate for understanding macroscopic superposi-
tions in realistic physical systems.

To make quantitative calculations for states of the form of
Eq. �13�, it is convenient to first make a change of basis as
follows:

c =
1
�2

�a + ib�, d =
1
�2

�b + ia� , �14�

c† =
1
�2

�a† − ib†�, d† =
1
�2

�b† − ia†� , �15�

so that the integrand components of the two branches in Eq.
�13� become

��A
�N����� =

1
�N!2N/2

�ei�c† + ie−i�d†�N�0� ,

��B
�N����� =

1
�N!2N/2

�ei�d† + ie−i�c†�N�0� . �16�

When measuring indistinguishable bosons, we obviously
cannot pick out n specific particles to make an n-particle
measurement as described in the discussion in Sec. II. For
indistinguishable particles, the Kraus operators �21� describ-
ing the effect of any measurement outcome have the form,
e.g., Ak

�n�=��i�ck
i1i2¯inai1

ai2
¯ain

, where i denotes a single-
particle state, with corresponding POVM elements

Ek
�n� = �

�i�,�j�
�ck

i1¯in�*ck
j1¯jnain

†
¯ ai1

† aj1
¯ ajn


 �
�i�,�j�

�Ek
�n�� j1¯jn

i1¯in ain
†
¯ ai1

† aj1
¯ ajn

. �17�

Here k labels the outcome and the superscript �n� specifies
the number of particles on which the operator acts �22�.

Equation �17� gives us the probability

Pk = tr�������Ek
�n��

= �
�i�,�j�

�Ek
�n�� j1¯jn

i1¯in ���ain
†
¯ ai1

† aj1
¯ ajn

���


 tr�Ek
�n�	�n�� , �18�
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for a given outcome Ek
�n� when the system is in state ���.

Here Ek
�n� is the matrix given by the coefficients �Ek

�n�� j1¯jn
i1¯in

�N ! / �N−n�!, and

�	�n�� j1j2¯jn

i1i2¯in 

�N − n�!

N!
� ���ain

†
¯ ai2

† ai1
† aj1

aj2
¯ ajn

���

�19�

is the n-particle reduced density matrix, or n-RDM, of the
bosonic system in second quantized form. The combinatorial
factors here are introduced so that 	�n� will have trace 1.
Furthermore, since 	�n� is symmetric in both all upper and all
lower indices, we can index 	�n� by mode occupation num-
bers k and l. The resulting symmetrized matrix acts on a
vector space, which is equal to the full vector space projected
onto a symmetric subspace �23�. Denoting the symmetrized
RDM by 	̃�n�, we obtain

�	̃�n��l
k =��n

k
��n

l
��	�n�� j1¯jn

i1¯in �20�

where the index k refers to the number of creation operators
equal to c† and l to the number of annihilation operators
equal to c �24�. With this definition, the symmetrized n-RDM

	̃�n� has the same nonzero eigenvalues as 	�n� and can there-
fore be used in place of 	�n� for the calculation of effective
cat sizes.

This projection onto the symmetric subspace results in a
significant reduction in dimensionality, permitting calcula-
tions to be made for values of n up to several hundred. Ma-
trix elements of 	̃A

�n�− 	̃B
�n� are readily calculated for general

forms of the amplitude spreading function f��� �see Appen-
dix A�. A key component of these matrix elements are inner
products between the states ��A,B

N ���� at different values of �,
which yield factors of cosN��−��� and sinN��+���. For large
values of N these functions can be approximated by delta
functions. This simplifies the resulting integrals but removes
any explicit N dependence from the result �see Appendix A�.
The matrix 	A

�n�−	B
�n� is then diagonalized and Eq. �4� is

evaluated to obtain the maximal probability of successfully
distinguishing ��A

�N��and ��B
�N�� with an n-particle measure-

ment. The effective cat size C� is then obtained by determin-
ing the minimum value of n such that P�1−�, according to
Eq. �1�. When using the delta function approximation for
large N, since the total number of particles is unspecified, we
evaluate the relative cat size, C� /N=1/nmin.

Figures 1 and 2 show the results of calculations for a
Gaussian amplitude spreading function
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FIG. 1. �Color online� Error probability PE
1− P for distinguishing the two branches of the generalized cat-state superposition Eq. �13�
when characterized by a Gaussian amplitude spreading function f���, for various values of the Gaussian parameters �0 and �.
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f��� = �2�2�−1/4e−�� − �0�2/4�2
. �21�

This form is convenient for a systematic analysis of the be-
havior of effective cat size with spread and overlap of the
two branches since all matrix elements are analytic �see Ap-
pendix A�. The range of �0 should be from − /2 to + /2 in
order to encompass all relative phases and degrees of overlap
or orthogonality. Superposition states characterized by �=0
possess zero spread and reduce to the nonideal states studied
earlier in Ref. �8� that are characterized by the extent of
nonorthogonality for �0�0. Figure 1 shows the error prob-
ability PE=1− P, plotted on a logarithmic scale as a function
of n, for various values of the spread function parameters �0
and �. We show PE rather than P, since the former allows a
clearer analysis of the differences between results for �=0
and for ��0. The relative effective cat size C� /N
1/nmin
resulting from these probabilities is plotted as a function of
�0 and � for several different values of the precision param-
eter � in Fig. 2.

Figure 1 shows that while for all values of the parameters
�0 and � there is a generic increase in the probability P for
distinguishing the two branches of the cat state as n increases
�i.e., a decrease in the error probability PE�, the nature of this
decrease is strongly dependent on the actual values of �0 and

�. For �=0, the error is due entirely to nonorthogonality, as
discussed in Ref. �8� and Sec. II. Here, when �0=0 the gen-
eralized superposition reduces to the ideal GHZ state and the
error probability is zero, independent of n �not shown in the
bottom right panel since the logarithmic scale cannot accom-
modate PE=0�. When ��0, the nonorthogonality makes the
success probability increase more slowly with n, and hence
the effective cat sizes in Fig. 2 become smaller as �0 ap-
proaches the value ± /4 at which the two branches ��A

�N��
and ��B

�N�� overlap completely. In particular, for strong over-
lap, ���A ��B��2=1−�2 with ��1 �outer limits of �0 on
�=0 axis�, we verify that the relative cat sizes are in accor-
dance with the asymptotic scaling ��2 established in Sec. II.
This effect of nonorthogonality also acts when ��0, with
the relative cat sizes also dropping off away from �0=0.
However, now there is an additional decrease, due to the
branches of the cat state getting “smeared out” and overlap-
ping more as the width parameter � increases. For all �, we
see that the effective cat size is largest for �0=0, where the
two branches ��A

�N���0�� and ��B
�N���0�� are orthogonal.

Detailed analysis of the dependence of the error probabil-
ity PE on the width parameter � provides additional infor-
mation. When �=0 and �0�0, consistent with the scaling
shown in Sec. II, the error probability decreases exponen-
tially with n and asymptotically approaches zero as more
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FIG. 2. �Color online� Relative effective cat size C� /N
1/nmin as a function of the Gaussian parameters �0 and �, for several values of
desired precision �. All plots have a resolution of  /40 in both �0 and �. Numerical calculations were made for n�100, imposing a
numerical cutoff of 0.01 on the value of 1 /nmin.
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particles are measured �solid blue lines in the top right and
bottom panels�. However, for ��0, we see that the decrease
in the error probability is slower than exponential. In fact it
appears to never approach zero but is instead bounded below
by some finite value, implying that the success probability is
bounded away from unity. This derives from an important
feature of this Gaussian amplitude function f��� that is illus-
trated by comparing the overlap between ��A

�N�� and ��B
�N��

for different values of � and �0. For example, at �=0,
�� /4, the inner product between ��A

�N��and ��B
�N�� goes to

zero as N→�, so that the two branches become orthogonal
in the limit of an infinite number of particles, and one can
therefore always tell them apart with arbitrarily high cer-
tainty by measuring enough of the particles �solid blue line�.
However, for ��0, the overlap approaches a finite value as
N→�. In this situation it is not always possible to distin-
guish the two branches within a given precision, regardless
of how many particles are measured—even for n=N. This
implies that nmin is undefined for these extreme cases. As
noted in Sec. II, we formally define C�=0 in these situations,
with the additional understanding that ��� is not really a
meaningful cat state at all here.

This behavior for ��0 is consistent with the fact that the
two branches ��A

�N����� and ��B
�N����� can be interchanged,

either by transforming �→ /2−�, for 0��� /2, or by
first transforming �→− /2−� and then changing sign, for
0���− /2. Thus when the amplitude spread function f���
has support both inside and outside the region − /4���

+ /4, some of ��� contributes to both branches ��A
�N�� and

��B
�N��, and the state cannot be split into two disjoint

branches. Using Eqs. �A1�–�A3�, it is also easy to see that for
�=0, ��A

�N� ��B
�N��→0 when N→�, so that the branches be-

come orthogonal and distinguishable in the thermodynamic
limit, whereas for ��0, ��A

�N� ��B
�N�� approaches a finite

minimum value. This is the physical reason why two
strongly overlapping branches cannot be distinguished to ar-
bitrary high precision ��→0�, even in the limit N ,n→�.
Detailed analysis of the support of the amplitude spread
function will thus be very important for realistic estimates of
cat size in physical systems involving superpositions of non-
orthogonal states.

This difference in behavior of success probability scaling
for �=0 and for ��0 has a large effect on the effective cat
size. Figure 2 shows the effective relative cat size C� /N for
four different precision values, �=10−2 ,10−4 ,10−6, and
10−10. It is evident that if � is sufficiently small, the effective
cat size does not depend too heavily on the exact value of �
when �=0. This is to be expected, since 1− P decreases
exponentially with n when �=0, and hence nmin will only be
proportional to log�1− P�. However, when ��0, we see that
the cat size can be significantly reduced or even vanish for a
given system as we decrease the desired precision �. This
illustrates the point made above, namely, that states with
��0 become increasingly poor cat states as � increases and
eventually are not cat states at all. It also provides a dramatic
illustration of the general fact that the degree to which a
superposition state can be viewed as a cat state is inherently
dependent on the precision to which the implied measure-
ments are made.

B. Estimate of effective cat sizes
from single-particle measurements

In all of the analysis so far, we have assumed that any
n-particle measurements can be made to distinguish the
branches �A� and �B� of a cat state, including collective mea-
surements in entangled bases. In practice, this is usually not
feasible for large values of n. From a practical perspective, it
would therefore be desirable to have a definition of cat size
that relies not on general n-particle measurements, but in-
stead only makes use of measurements that can be put to-
gether from n separate one-particle measurements.

Allowing only those n-particle measurements that can be
realized as a sequence of one-particle measurements means
that we restrict the corresponding POVM elements to be of
the form

E = �
�i�

p�i�Ei1
�1�Ei2

�2�
¯ Ein

�n�, �22�

where each Eik

�k�
Aik

�k�†Aik

�k� acts on a single particle k only,
and where pi are positive numbers subject to the constraint
that tr E�1. �Note that, unlike the situation in Secs. II and
III A, the POVM elements here act each on only a single
particle, and the superscript index �k� in parentheses there-
fore labels the particle that each operator acts on, not the
number of particles it acts on.� This means that the POVM
elements must be separable. Furthermore, to ensure that the
measurements can be realized as a sequence of one-particle
measurements, it must be possible to express the POVM el-
ements in such a way that Eik

�k� only depends on Eil

�l� for l

�k but not for l�k. To find the maximum probability P of
successfully distinguishing the branches �A� and �B� of a cat
state using such measurements, we would then need to maxi-
mize Eq. �3� with EA

�n�and EB
�n� subject to the above con-

straints. Unfortunately, we know of no efficient way to do
this. In particular, deciding whether a given POVM is sepa-
rable as in Eq. �22� is known to be an NP-hard problem �25�.

However, if we restrict ourselves to a very simple case,
namely, to superposition states where each of the two
branches of the cat state are themselves product states, not
only is the optimal measurement strategy using a sequence of
n one-particle measurements known, but it even performs
equally well as the optimal general n-particle measurement.
To show this we adapt the techniques used in Ref. �26�. In
that work, one is given n copies of a quantum system, all
prepared in one of two states ��A� and ��B� and asked to tell
which one �note that Ref. �26� uses 0 ,1 rather than A ,B�.
The joint state of all n copies is then either ��A��n or ��B��n,
and the corresponding density matrix is 	�

�n
�������� � ��n,
for �=A ,B. One assumes prior probabilities qA and qB=1
−qA that the correct state is ��A� and ��B�, respectively. The
maximum possible probability of guessing the right state
would in general consist of making an optimally chosen col-
lective n-party measurement �i.e., possibly in an entangled
basis� on the n copies. However, it is shown that by measur-
ing only a single copy at a time and choosing each measure-
ment according to a protocol that effectively amounts to
Bayesian updating of the priors qA and qB based on the out-
come of the previous measurement, one can obtain a success
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probability that is equal to the maximum one for a general
n-party measurement.

In our case, we are trying to ascertain whether a single
system consisting of N subsystems is in a state ��A� or an-
other state ��B�, where these states are known to be product
states with respect to the N subsystems. We can therefore
write

���� 
 ���
�1�� � ���

�2�� � ¯ � ���
�N�� , �23�

where �=A ,B and ���
�k�� is the state of particle number k, and

we assume that we will measure the first n particles. This is
equivalent to a generalization of Ref. �26� to a situation
where not all the copies of the system under study are the
same, but where each “copy” k is in one of two states ���

�k��
for �=A or B, and where � is the same for each k, and the
task is to determine the value of �, by only measuring n of
the “copies.” We will now show that the conclusion of Ref.
�26� still holds in this case, namely, that performing a se-
quence of n optimal one-particle measurements with Baye-
sian updating between each measurement gives the same
probability of success as the best collective n-particle mea-
surement. We will use a slightly different approach than Ref.
�26�, using one-particle reduced density matrices instead of
single-particle state vectors, since this approach is more
readily generalizable to indistinguishable particles.

Following the notation of Ref. �26�, we will here write the
states ��A

�k�� and ��B
�k�� of particle k in the branches ��A� and

��B�, respectively, as

���
�k�� 
 cos �k�xk� + �− 1�a sin �k�yk� , �24�

where a=0 for �=A and a=1 for �=B, and �x� and �y� are
two basis vectors in the state space of particle k chosen such
that this relation is valid �this is always possible�. The cor-
responding reduced density matrix with respect to particle k
in the ��x�,�y�� basis are then

	�
�k� = � cos2 �k �− 1�a cos �k sin �k

�− 1�a cos �k sin �k sin2�k
�

=� cos2 �k
�− 1�a

2
sin 2�k

�− 1�a

2
sin 2�k sin2�k

� �25�

�note here that the superscript k again refers to the particle to
which the RDM belongs, not the number of particles de-
scribed by the RDM, which in this case is just one.� If we
now let the probability, prior to measuring particle k, of the
state being ���

�k�� be q�
�k�, then the measurement that produces

the highest probability of successfully identifying the correct
state, is a projective measurement in the basis in which the
matrix ��k�
q0

�k�	0
�k�−q1

�k�	1
�k� is diagonal �9,27�. The conclu-

sion �=A is associated with the eigenspaces with positive
eigenvalues of ��k�, while �=B corresponds to the eigens-
paces with negative eigenvalues. In the basis ��xk�,�yk��, the
matrix ��k� is

��k� = ��qA
�k� − qB

�k��cos2 �
1

2
�qA

�k� + q1
�k�� sin 2�

�qA
�k� + qB

�k��sin 2� �qA
�k� − qB

�k��sin2 �
�

�26�

and is diagonalized by

U��k� = � cos �k sin �k

− sin �k cos �k
� , �27�

with

sin 2�k =
qA

�k� + qB
�k�

Rk
sin 2�k =

1

Rk
sin 2�k, �28�

cos 2�k =
qA

�k� − qB
�k�

Rk
cos 2�k, �29�

Rk = ��qA
�k� + qB

�k��2 − 4qA
�k�qB

�k� cos2 2�k

= �1 − 4qA
�k�qB

�k� cos2 2�k, �30�

resulting in eigenvalues


A,B
�k� 


1

2
�qA

�k� − qB
�k�� ±

1

2
Rk. �31�

The outcome EA
�k� is associated with the eigenspace of ��k�

corresponding to the eigenvalue 
A
�k�, which is the first eigen-

vector in the diagonal basis. In the basis used in Eq. �26�, we
then have

EA
�k� = U��k�†�1 0

0 0
�U��k� =� cos2 �k

1

2
sin 2�k

1

2
sin 2�k sin2 �k

� .

�32�

Combining this with Eq. �25� gives us the conditional prob-
abilities P�EA

�k� ���=tr�EA
�k�	�

�k�� of obtaining the outcome EA
�k�

when measuring particle k, given that the initial state of the
joint system was ����

P�EA
�k��A� =

1

2
+

1

2Rk
�1 − 2qB

�k� cos2 2�k� , �33�

P�EA
�k��B� =

1

2
−

1

2Rk
�1 − 2qA

�k� cos2 2�k� . �34�

The corresponding probabilities of obtaining EB
�k�=1−EA

�k� are
then

P�EB
�k��A� =

1

2
−

1

2Rk
�1 − 2qB

�k� cos2 2�k� �35�

P�EB
�k��B� =

1

2
+

1

2Rk
�1 − 2qA

�k� cos2 2�k� �36�

Using Eqs. �33� and �36�, the probability of successfully
identifying the state ���

�k�� after measuring particle k �condi-

MEASUREMENT-BASED MEASURE OF THE SIZE OF … PHYSICAL REVIEW A 75, 042106 �2007�

042106-9



tional upon earlier measurements yielding the priors qA
�k� and

qB
�k�� is

Pk 
 qA
�k�P�EA

�k��A� + qB
�k�P�EB

�k��B� =
1

2
+

1

2
Rk. �37�

To find the overall success probability of the procedure,
we need to evaluate what the posterior probabilities for �
=A and �=B are after measuring each particle. These will
then serve as the prior probabilities qA

�k+1� and qB
�k+1� for the

next measurement, and the overall success probability will
be the probability of obtaining the correct result at the very
last measurement. The outcome of this measurement will be
used as the indicator of what the initial state was. Similar to
Ref. �26�, we show in Appendix B that one of the posterior
probabilities q�

�k+1� will be equal to the success probability Pk
of the kth measurement, while the other will be the error

probability P̄k=1− Pk. We then know that either qA
�k+1�= Pk

and qB
�k+1�=1− Pk if the outcome EA

�k� was obtained, or vice
versa if the outcome EB

�k� was obtained. To simplify the no-
tation in the following, we define ck

2
cos2 �k= ���A
�k� ��B

�k���2.
Combining Eqs. �37� and �30� we can then establish the re-
cursive relation

Rk = �1 − 4Pk−1�1 − Pk−1�ck
2, �38�

whose solution is

Rk =�1 − 4qA
�1�qB

�1��
l=1

k

cl
2. �39�

From this we see that the probability of obtaining the correct
result when measuring particle number n—the last of the n
particles to be measured—and hence the overall probability
of success, is equal to

Pn =
1

2
+

1

2
�1 − 4qAqB�

k=1

n

ck
2, �40�

where qA
qA
�1� and qB
qB

�1� are the priors before the start of
the whole measurement series. When we apply this to mea-
suring cat size, we assume equal weight for the two
branches, so that qA=qB=1/2, and Pn=1/2+1/2�1−�kck

2.
Now if we employ the same reasoning as went into deriving
Eq. �10� for the success probability of the optimal collective
n-particle measurement, we easily obtain that this is identical
to Pn in Eq. �40�. Hence, when the branches are product
states, a sequence of single-particle measurements with
Bayesian updating has the same success probability as the
optimal n-particle measurement.

The above discussion was carried out entirely in terms of
distinguishable particles. The result generalizes partly to the
bosonic system, but not entirely. The result holds if each of
the branches are single-mode Fock states with all N particles
in the same mode, i.e., ��A�= �a†�N �0� /N! and ��B�
= �b†�N �0� /N!, where the modes created by a† and b† are not
necessarily orthogonal. If we then write a†=cos �cx

†

+sin �cy
† and b†=cos �cx

†−sin �cy
† in analogy with Eq. �24�,

where cx
† and cy

† are creation operators for orthogonal modes

x and y, the bosonic n-RDMs that we obtain using the tech-
niques from Sec. III are identical to those we obtain for
distinguishable particles using Eqs. �23� and �24�. Further-
more, the action of the optimal measurements obtained in the
bosonic case can �at least in principle� be realized through
Kraus operators consisting of a single annihilation operator
for each measurement. This simply annihilates a single bo-
son without changing the joint state of the system in any
other way. Hence all conclusions obtained for distinguishable
particles carry over to the bosonic case in this situation.

However, if each branch is a more general Fock state with
more than one occupied mode, i.e., of the form

�A� � �
k

ak
†�0�, �B� � �

k

bk
†�0� , �41�

where ak
† and ak�

† may create particles in different modes �not
necessarily orthogonal� when k�k�, then the single-particle
Bayesian updating measurement protocol derived above for
distinguishable particles cannot even be implemented. Since
the particles are not distinguishable and cannot be addressed
individually, there is no way to associate a single value of k
with each measurement, and hence no way to optimize each
single-particle measurement in the way we did above. Fur-
thermore, if the modes associated with different ak

† or bk
† are

not orthogonal, then the branches in Eq. �41� in fact contain
entanglement between modes, and measuring one particle
will therefore change the state of the remaining system and
affect subsequent measurements. Hence the protocol de-
scribed in this section only works for bosonic systems when
each branch is a Fock state with all particles in a single
mode.

IV. n-RDM ENTROPIES AND RELATED MEASURES
OF THE DEGREE TO WHICH A SUPERPOSITION

STATE CAN BE VIEWED AS A CAT STATE

We now analyze the von Neumann entropy of the n-RDM
	�n� and show that this provides insight into how meaningful
it is to treat the state ��� of Eq. �13� as a two-branch cat
state. Calculating the entropy of the n-RDM also allows us to
compare our cat-size measure to an earlier one, the so-called
“disconnectivity” introduced by Leggett �28�.

The von Neumann entropy of a density matrix 	 is given
as

S = − tr�	 ln 	� 
 − �
i

	i ln 	i, �42�

where �	i� are the eigenvalues of 	. Analogous to the Shan-
non entropy of a probability distribution, this quantity tells
us how much information is encoded in the knowledge of the
physical system represented by the density matrix. Equiva-
lently, it can be viewed as the minimum amount of ignorance
we can have about the outcome of any measurement on a
system represented by a given density matrix, where the
minimization is over all possible measurements encom-
passed by the density matrix, i.e., all possible n-particle mea-
surements in the case of an n-RDM. To evaluate the von
Neumann entropy Sn characterizing n-particle measurements
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on a cat state we need the n-RDM 	̃�n� of the full state ���
and not just that of the individual branches. This is calculated
for the states of Eq. �13� in Appendix A.

Before analyzing the entropy of 	̃�n� for Eq. �13�, we first
summarize how the entropy should scale for general classes
of catlike and noncatlike states. In general, for an experiment
that has d equally likely outcomes, the entropy of the prob-
ability distribution is simply ln d. If not all outcomes are
equally likely, then the entropy S will be less than ln d.
Therefore, if the probability distribution of a measurement
has entropy S, then the measurement must have at least eS

distinct outcomes. This further means that, since the von
Neumann entropy of a density matrix is the minimum en-
tropy of any measurement describable by that density matrix,
any measurement on a system whose von Neumann entropy
is S must also have at least eS distinguishable outcomes.

For a perfect cat state, schematically of the form ���
=1/�2��0��N+ �1��N� with �0 �1�=0, this implies that the
n-RDM of the system will have a von Neumann entropy Sn
=ln 2, independent of n, until n=N where SN=0. If we make
a single-particle measurement in the ��0� , �1�� basis, the out-
comes �0� and �1� are both equally likely, so the entropy of
that measurement is ln 2. Unless we measure all N particles
however, measuring more particles gives us no additional
information, since measuring just one particle completely
collapses the system into one of its branches, and hence the
entropy of the n-RDM for all n�N is equal to ln 2. For a
“poor” cat state, e.g., one of the form ������0��N+ ��1��N

with ��0 ��1��0, we cannot distinguish the two branches
perfectly with an n-particle measurement. One can show that
the von Neumann entropy in this case will be less than ln 2.
However, as we measure more and more particles, the
branches become more and more distinguishable as they ap-
proach orthogonality in the thermodynamic limit. Hence the
von Neumann entropy will asymptotically approach ln 2 as n
grows. It will then decrease to zero again, in a symmetric
fashion, as n approaches N, as more and more information
about the coherence of the branches becomes available.

Unlike such catlike states, the entropy of the n-RDM of
completely generic �pure� states will usually not level out as
n increases. For a generic state, measuring n particles is not
likely to tell us very much about the effect of adding an n
+1th particle to the measurement. Therefore, the number of
distinguishable outcomes will usually keep increasing with
n, until it reaches �N /2. At that point, we will start gaining
enough phase information that the entropy will start decreas-
ing again. At this point, the number of particles that we are
tracing out becomes smaller than the number of particles we
are keeping, so the entropy can increase no further, and in-
stead drops steadily, until it reaches zero at n=N �in a pure
state�.

We turn now to the entropy of 	̃�n� for the Gaussian cat
states defined by Eqs. �13� and �21�. This is plotted as a
function of n for various parameter combinations �0 and � in
Fig. 3, under the simplifying assumption that N�n �since we
restrict ourselves to this region, the drop in entropy as n
→N cannot be seen�. As expected from the above general
arguments, when �=0 the entropies asymptotically approach
ln 2 as n→�. This means that as we measure more and more

particles, there exists a von Neumann measurement with ex-
actly two distinguishable and equally likely outcomes. In
contrast, for ��0 the entropy of the n-RDM seems to grow
without any upper bound, in an approximately logarithmic
fashion. This means that, regardless of what kind of
n-particle von Neumann measurement we make, as n→�
there will always be an ever increasing number of distin-
guishable outcomes. Our state is hence not just branching
into a nice cat with two cleanly distinct branches, but instead
developing a whole canopy. This canopy keeps growing with
n. Hence it does not really make sense to view ��� as any
kind of two-branch or even a d-branch cat state in this situ-
ation. Instead, it is simply some more complicated kind of
generic superposition state. �The zigzag pattern for large val-
ues of � is caused by the factor of �−1�n+k−l in Eq. �A11� in
Appendix A, which results in a different behavior for even
and odd values of n when ��0, due to interference between
contributions with a given � in Eq. �13� for odd values of n.�

The von Neumann entropy of the density matrix of the
full state ��� has previously been used to define a measure of
cat size referred to as the disconnectivity D by Leggett
�2,28�. To compute D, the entropy Sn of the n-RDM is cal-
culated for successively larger n. For each n one also finds
the minimum total entropy of any partition of the n particles,
i.e., minm�Sm+Sn−m�, where the minimum is taken over all m
from 1 to n−1. One then defines the ratio �29�

�n 

Sn

min1�m�n�Sm + Sn−m�
, �43�

and the disconnectivity of the system D is defined as the
highest integer n for which �n is smaller than some “small”
fraction �1 ��1 is defined to be 0�. Thus D=max�n ��n

�1�. The motivation for this measure is that as long as n is
smaller than the total number of particles needed to observe
perfectly the coherence of the joint state of all N particles,
the entropy Sn will be nonzero since some information about
the coherence is being neglected when N−n particles are
being traced out. Subdividing the system further will only
neglect more information and increase the total entropy, so
that Sm+Sn−m�Sn and �n�1. As n approaches the number
of particles sufficient to capture the full coherence of the
system, Sn and thus �n will approach zero. However, if n can
increase further beyond this point, then the denominator will
also vanish, and �n jumps again to 1. Thus the first value of
n at which all coherence is taken into account will be the
largest number for which �n�1. The term “coherence” is
used here quite generally in the sense of correlations. If the
system is made up of distinguishable particles and in a pure
state, then these correlations will be equivalent to entangle-
ment and the entropy Sn of the n-RDMs is identical to the
bipartite entanglement entropy between the n particles in-
cluded in the n-RDM and the N−n particles being traced out
�23�. However, for indistinguishable particles, the definition
of entanglement must be made with care, since states with
little “useful” entanglement can still look very entangled if
one views single particles as good subsystems, due to the
requirement that the total N-particle wave function be sym-
metrized or antisymmetrized with respect to the permutation
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of particles �30–33�. We will comment on these issues in
more detail below.

There are both similarities and important differences be-
tween the disconnectivity and our measure of effective cat
size. Both are based on considering how many particles must
be measured to obtain a specific kind of information about
the state or its components. But while C� asks how many
particles must be measured to differentiate between the two
branches composing the total state, the disconnectivity D
asks how many particles must be measured in order to ob-
serve all or nearly all correlations in the full quantum state. It
also does not address whether or not the state is naturally
divided into branches. These differences are reflected in very
different numerical results. For the bosonic systems treated
above, where we have assumed that N is large and made
approximations based on n�N �see Appendix A for a full
description�, explicit calculation for a range of � and �0 val-
ues shows that Sn increases monotonically with n for the
whole range treated �except for some minor oscillations be-
tween odd and even values of n�, so that �n does not drop
below 1/2 until the assumption n�N is no longer valid. This
means that the disconnectivity must be of order N for all
parameter values � and �0. In contrast, Fig. 2 shows that for
all values of � our measurement-based measure can give
values of effective cat size C� much smaller than N, depend-
ing on the value of �0.

In order to make a more direct comparison of D with C�,
we have also calculated Sn for n from 1 to N for a finite value
of N and used this to evaluate the disconnectivity directly for
some specific examples. We use �0=9 /40,�=0 to study a
system close to the full overlap situation ��0= /4�. We use
two examples at �0= /8 ��=0, N=100 and �= /16, N
=20� for the study of an intermediate system and for analysis
of the effect of nonzero spreading. The n-RDM entropies and
disconnectivity ratios �n �Eq. �43�� are plotted for these three
cases in Fig. 4. The values of measurement-based cat size C�

obtained for these parameters are superimposed as dashed
vertical lines and the bottom right panel shows the sensitivity
of C� to the precision � for these three cases. It is evident
that for all three cases, �n is more or less constant at a value
larger than one half and drops to a small fraction substan-
tially smaller than this value only at n�N. Hence the dis-
connectivity D is equal to or very close to N in all cases. In
contrast, our cat size measure based on distinguishability
gives a cat size C� that is substantially less than N for all
three examples. With an error threshold �=0.01, we obtain
C0.01=N /5 for �0= /8 and �=0 or �= /16, and C0.01=0
for �0=9 /40. Furthermore, the bottom right panel shows
that in all three cases C��N for all small �, so that our
measure differs from disconnectivity for all reasonable error
thresholds.
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FIG. 3. �Color online� von Neumann entropies of n-RDMs for various values of �0 and �, evaluated in all cases with n�N.
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This difference between disconnectivity and measure-
ment-based cat size is not totally unexpected. In order to
observe perfectly all the correlations in the states of Eq. �13�,
one does indeed need to measure all or nearly all particles in
the system, even when the branches are nonorthogonal, un-
less �0= /4. However, it is clear that except when the
branches are orthogonal, it is not possible to tell them apart
with near certainty without measuring more than one particle
and one hence obtains a reduced effective cat size. Only
when we have a perfect cat with truly orthogonal branches,
e.g., as in an ideal GHZ state, will the two measures agree.
For other states the two measures can be regarded as char-
acterizing different aspects of the quantum correlations in a
quantum state.

Another important aspect of disconnectivity can be seen
by applying it not to catlike states but to Fock states, i.e.,
states of the form ����a† kb† N−k �0�. For these states explicit
calculation of the n-RDMs and their associated entropy
Sn shows that D=N for all k except k=0, where one obtains
D=1 �see Appendix C�. In contrast, since Fock states
have no branches in the second-quantized formalism em-

ployed here, nmin�N and the measurement-based cat size
measure gives a cat size C�=0 �see Sec. II�. They also have
no entanglement when expressed in a second-quantized
occupation-number basis. Thus it may seem puzzling that D
can be large. However, we note that the disconnectivity relies
on the entropies of the n-RDMs for its definition, and Sn
treats individual particles as the fundamental subsystems into
which the system is divided and measures the correlation
between them. As noted in many recent papers, this is not
appropriate if one is dealing with a system of indistinguish-
able particles, since the system can then appear to exhibit full
N-particle entanglement simply due to the fact that the wave-
function has to be �anti�symmetrized under exchange of par-
ticles. This fictitious entanglement, which has been referred
to as “fluffy bunny” entanglement in the literature �34,33�
and which goes away if one treats only the modes as good
subsystems instead of particles, is however, necessarily
present in the entropy of the n-RDM, Sn. The fluffy bunny-
entanglement contribution to disconnectivity is nonzero for
all states other than those that can be written as Fock states
with only a single occupied mode. Consequently, the discon-
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nectivity of a system of indistinguishable particles will be
large for all states that are not of this latter special kind,
whether they are superposition states or not. This suggests
that one reason for the much larger values of D than C�

found here for the states of Eq. �13� is inflation of the dis-
connectivity degree to which a superposition state can be
viewed as a cat state by fluffy bunny entanglement. We note
that redefining disconnectivity in terms of reduced density
matrices of modes instead of particles, while possible in
principle, will however, be strongly dependent on the spe-
cific choice of modes. Nevertheless, a mode disconnectivity
would be limited by the number of modes, and for a quantum
condensate it is hence likely to also be substantially smaller
than the total number of particles included in the description.

V. APPLICATION TO CAT STATES OF BOSE-EINSTEIN
CONDENSATES IN A DOUBLE-WELL POTENTIAL

Finally, we apply our measure of cat size to a realistic
system of bosons in a double well. We consider numerical
results that have been obtained for bosons with attractive
interactions in a spherically symmetric three-dimensional
harmonic trapping potential, which is split in two by a
Gaussian potential barrier in the xy plane, forming a double
well in the z direction �35�. The numerical calculations were
made using variational path integral �VPI� Monte Carlo
�36,37� with 40 interacting bosonic atoms. The Hamiltonian
used was

H = �
i
−

1

2
�i

2 +
1

2
ri

2 +
Vb

�4�2
e−zi

2/2�2� + �
i�j

Vint�ri − r j� ,

�44�

where the sums run over the coordinates ri of each of the 40
atoms and Vb is a variable barrier height for the Gaussian
potential separating the two wells. Energies are given in units
of �� /2, where � is the frequency of the ground state of the
harmonic trapping potential, and lengths are given in units of
�� /m�. The two-particle interaction potential Vint used here
was a Lennard-Jones potential

Vint�r� = ELJ�aLJ

r
�12

− �aLJ

r
�6� , �45�

with Lennard-Jones energy ELJ and length aLJ. The Lennard-
Jones potential parameters ELJ and aLJ determine the scatter-
ing length a �38�. It thus provides a model potential that
allows us to design a computationally efficient sampling
scheme for a given scattering length, a �35�. Formation of
cat states requires a negative value of a. For a realistic cold
atom system with attractive effective interactions such as 7Li
�a=−14.5 Å �39��, we find that stable cat states can be
formed with �1000 atoms in a trap of linear dimension
aho= � /m�=13 000 Å, using suitable values of Lennard-
Jones parameters.

To compare with our model states in Eq. �13�, the numeri-
cal data were used to find the probability distribution P�n�
for finding n of the N=40 particles on one side of the double
well. This was done for three cases with Vb=10, 15, 20 and

with ELJ=50, aLJ=0.15 in all three cases, and for one case
with Vb=120, ELJ=150, and aLJ=0.15 �the last choice of
extra high potential barrier and strong attractive interaction
was made to get as close to a maximal cat state as possible�.
We then fit the probability distribution P�na� for the number
of particles in mode a calculated from the states in Eq. �13�,
to the numerically calculated distributions in each case by
varying �0 and � to obtain the smallest possible difference
between the two distributions in the least mean square sense.
The fitting had a resolution of 0.10 in �0 and 0.005 in �.
The resulting best fit values for each case are shown in Table
I, along with the effective cat sizes C0.01 for �=0.01 and
C10−4 for �=10−4 calculated using the states of Eq. �13� with
the fitted values of �0 and � �the numerical precision in the
calculations do not warrant smaller values of ��. The corre-
sponding fitted number distributions are compared to the VPI
distributions in Fig. 5, showing a very good fit for the cases
studied here. Note that this does not imply that our states
give the correct phases between the superposed states, since
we are only fitting to the number distribution. However,
given that Eq. �13� with �=0 gives the exact ground state in
the mean-field limit �18�, it is reasonable to expect that Eq.
�13� constitutes a good approximation to the true states. Our
comparison with the distributions calculated from VPI
Monte Carlo supports this expectation and also implies that
the probability distributions �but not necessarily the ampli-
tudes �35�� can be accurately described by a two-mode ap-
proximation.

Table I shows that for the lowest barrier height Vb=10 we
do not really get a cat state at all, since the low barrier height
results in large tunneling, which allows the particles to over-
come their attractive interactions and distribute themselves
almost binomially between the two wells. The best fit value
of �0 �0.22�, is less than one � away from the complete
overlap value  /4, and the effective cat size is correspond-
ingly zero since the branches are strongly overlapping. As
the barrier height Vb is increased for a given attraction
strength ELJ, the tunneling rate decreases, and it becomes
more favorable for all particles to sit in one well. However,
since the tunneling amplitude is still finite, the lowest-energy
state is not a Fock state but rather a superposition state of
nearly all particles being in either one well or the other, i.e.,
a cat state. Thus, C� increases with Vb. In the most extreme
example here, Vb=120,ELJ=150, the tunneling amplitude is
extremely small and the branches have negligible overlap,
resulting in an ideal cat state C�=40 for N=40. As expected,
we see that C� does depend on the value of the precision �,
becoming smaller as � decreases. We also see that the de-

TABLE I. Best fit of �0, �, and effective cat sizes C0.01 at �
=0.01 and C10−4 at �=10−4, for four numerically calculated distri-
butions of bosons in a double-well potential. aLJ=0.15 in all cases.

Vb ELJ Best fit �0 Best fit � C0.01 C10−4

10 50 0.22 0.030 0 0

15 50 0.10 0.020 10 4

20 50 0.05 0.010 20 10

120 150 0 0.005 40 40
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crease in cat size is greater for larger � values, while for the
most catlike case �Vb=120 and ELJ=150�, where � is prac-
tically zero, C� is not affected at all by reducing � from 10−2

to 10−4.
We also calculated the disconnectivity D for these states

and find that D=N=40 in all four cases. This may appear
initially somewhat surprising, especially for the case of Vb
=10 �top left panel in Fig. 5�, since in that state the branches
are almost completely overlapping, and resemble a binomi-
ally distributed state more than a cat state. However, even in
this case, since the distribution is not exactly binomial, there
must be some entanglement between the particles. Further-
more, all N particles must be involved in this entanglement
since they are indistinguishable. As discussed in Sec. IV, this
coherence between all particles leads to a large value for D,
even though the state cannot be reasonably called a cat state
in any way.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a measure of the effective size of su-
perposition states in general quantum systems, i.e., the num-

ber of effective subsystems that can describe the superposi-
tion, which is based on how well measurements can
distinguish between the different branches of the state. Our
measure does in general require one to consider coherent
multiparticle measurements, although we find that for the
special class of states considered in Ref. �8�, a procedure
using only single-particle measurements can be useful. The
resulting cat size measure is dependent on the precision to
which the branches are to be distinguished. Application of
this measurement-based measure to generalized superposi-
tions states of bosons in a two-mode system predicts cat
sizes much smaller than what is predicted from the earlier
measure of disconnectivity that was proposed in Ref. �28�.
Analysis of disconnectivity for specific examples showed
that for indistinguishable particles this quantity is large for a
much wider variety of states than superposition states, in-
cluding single-branch Fock states, due to the inclusion of
particle correlations induced by �anti�symmetrization.

We expect that the new measure will be useful for com-
paring the effective size of superposition states in different
kinds of physical systems, including those with macroscopic
numbers of constituents. We have shown that the generalized
superposition states studied here can be fit to realistic nu-
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merical simulations of bosons in a 3D double-well trapping
potential, and have analyzed the degree to which a superpo-
sition state can be viewed as a cat state of these interacting
bosons as a function of their interaction strength and of the
barrier height. Future directions include applying our mea-
sure to more complicated systems that have been realized
experimentally, in particular, to the experiments with super-
conducting loops reported in Refs. �3,4�. In a very recent
paper �40�, a different cat-size measure was defined and ap-
plied to the three-Josephson junction circuit reported in Ref.
�3�, and the cat size according to that measure found to be
extremely small �of order 1�. It would thus be of great inter-
est to evaluate the new measurement-based measure of cat
size for superpositions of superconducting loops.
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APPENDIX A: CALCULATION OF n-PARTICLE
REDUCED DENSITY MATRICES

Inner products between the states ��1,2
�N����� are computed

in the c ,d basis using standard methods, giving

��A
�N������A

�N������ =
1

2N �0��e−i�c − iei�d�N�ei��c†

+ ie−i��d†�N�0�

=
1

2NN�ei��−��� + e−i��−�����0��e−i�c

− iei�d�N−1�ei��c† + ie−i��d†�N−1�0�


 N cos�� − �����1
�N−1������1

�N−1������

= N�N − 1�cos2�� − �����1
�N−2������1

�N−2�

������� � = N ! cosN�� − ���

� N !�2

N
��� − ��� , �A1�

and similarly

��B
�N������B

�N������ = N ! cosN�� − ��� � N !�2

N
��� − ��� ,

�A2�

��A
�N������B

�N������ = N ! sinN�� + ���

� N !�2

N
��

2
− � − ���

+ ��−


2
− � − ���� . �A3�

The �-function approximations are valid in the limit of large
N. We have assumed that �+�� is bounded to lie between
± /2.

Defining

�	̃��
�n��l

k 
��n

k
��n

l
����

�N��c†kd†n−kcldn−l���
�N�� , �A4�

with ��=AA, BB, AB, or BA �	̃AA and 	̃BB correspond to 	̃A
�n�

and 	̃B
�n� as defined in Sec. III A�, and using the action of the

operators c ,d on the branches ��1
�N����� and ��2

�N����� leads to

�	̃AA
�n��l

k �
ik−l

2n ��n

k
��n

l
��

−/2

/2

d�d��f���*f����e−2i�k�−l���+in��−��� cosN−n�� − ���

�
ik−l

2n ��n

k
��n

l
��

−/2

/2

d�e−2i�k−l���f����2, �A5�

�	̃BB
�n��l

k �
i−�k−l�

2n ��n

k
��n

l
��

−/2

/2

d�d��f���*f����e2i�k�−l���−in��−��� cosN−n�� − ���

�
i−�k−l�

2n ��n

k
��n

l
��

−/2

/2

d�e2i�k−l���f����2, �A6�

�	̃AB
�n��l

k �
ik+l−n

2n ��n

k
��n

l
��

−/2

/2

d�d��f���*f����e−2i�k�+l���+in��+��� sinN−n�� + ���

�
ik−l

2n ��n

k
��n

l
��

−/2

/2

d�e−2i�k−l���f���*f�/2 − �� + �− 1�nf���*f�− /2 − ��� , �A7�
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�	̃BA
�n��l

k = ��	̃AB
�n��k

l �* �
in−k−l

2n ��n

k
��n

l
��

−/2

/2

d�d��f���f����*e2i�l�+k���−in��+��� sinN−n�� + ���

�
ik−l

2n ��n

k
��n

l
��

−/2

/2

d�e−2i�k−l���f���f�/2 − ��* + �− 1�nf���*f�− /2 − ��� , �A8�

where in the last steps we have made use of the above delta
function approximation.

Using the Gaussian form in Eq. �21� for the amplitude
spreading function results in the following analytic forms for
the n-RDM matrix elements:

�	̃AA
�n��l

k =
ik−l

2n ��n

k
��n

l
�e−2i�k−l��0e−2�k − l�2�2

, �A9�

�	̃BB
�n��l

k =
i−�k−l�

2n ��n

k
��n

l
�e2i�k−l��0e−2�k − l�2�2

. �A10�

The n-RDM of the full state ���, which we use for calculat-
ing entropies in Sec. IV, also requires the sum of 	̃AB

�n� and
	̃BA

�n�, which is given by

�	̃AB
�n� + 	̃BA

�n��l
k =

2

2n��n

k
��n

l
�e−2�k − l�2�2

�e−��0 − /4�2/2�2

+ �− 1�n+k−le−��0 + /4�2/2�2
� . �A11�

The traces of the two first matrices are already equal to 1, so
no further normalization is necessary. The trace of the matrix
defined in Eq. �A11� is given by

�
k=0

n

�	̃AB
�n� + 	̃BA

�n��k
k = 2�e−��0 − /4�2/2�2

+ �− 1�ne−��0 + /4�2/2�2
� ,

�A12�

so that the final form of the symmetrized n-RDM 	̃�n�, prop-
erly normalized, is

�	̃�n��l
k 


�	̃AA
�n� + 	̃BB

�n� + 	̃AB
�n� + 	̃BA

�n��l
k

tr�	̃AA
�n� + 	̃BB

�n� + 	̃AB
�n� + 	̃BA

�n��
=��n

k
��n

l
� ik−le−2i�k−l��0 + i−�k−l�e2i�k−l��0 + 2�E− + �− 1�n+k−lE+�

2n�2 + 2�E− + �− 1�n+k−lE+��
e−2�k − l�2�2

, �A13�

where E±
exp�−��0± /4�2 /2�2�.

APPENDIX B: DERIVATION OF q�
„k+1…=Pk FOR �=A OR B

To show that one of the prior probabilities qA,B
�k+1� of branch

A or B before performing the �k+1�th measurement in Sec.
III B will be equal to the success probability Pk of identify-
ing the correct branch in the kth measurement, first note that
using Bayes’ theorem and the definition of conditional prob-
abilities, the success probability Pk as given by Eq. �37� can
equivalently be written as

Pk = P�A�EA
�k��P�EA

�k�� + P�B�EB
�k��P�EB

�k�� , �B1�

where P�� �E�
�k�� is the posterior probability that the state is

���� given that the measurement on the kth particle gave the
outcome E�

�k�, and P�E�
�k�� is the total probability that the

measurement gives the outcome E�
�k�, irrespective of what the

state is. Second, note that P�A �EA
�k�� and P�B �EB

�k�� are in fact
equal. This follows from

P�A�EA
�k�� =

P�EA
�k��A�qA

�k�

P�EA
�k��

=
P�EA

�k��A�qA
�k�

qA
�k�P�EA

�k��A� + qB
�k�P�EA

�k��B�

=
1

1 +
qB

�k�P�EA
�k��B�

qA
�k�P�EA

�k��A�

�B2�

and similarly,

P�B�EB
�k�� =

P�EB
�k��B�qB

�k�

qA
�k�P�EB

�k��A� + qB
�k�P�EB

�k��B�
=

1

1 +
qA

�k�P�EB
�k��A�

qB
�k�P�EB

�k��B�

.

�B3�

These will be equal if and only if
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qB
�k�P�EA

�k��B�
qA

�k�P�EA
�k��A�

=
qA

�k�P�EB
�k��A�

qB
�k�P�EB

�k��B�
. �B4�

After a good deal of algebra, using Eqs. �33�–�36�, the fact
that qA

�k�+qB
�k�=1, and moving factors between the two sides

of Eq. �B4�, both sides can be reduced to

�qA
�k�qB

�k��2 cos2 2�k�1 − cos2 2�k� , �B5�

proving that indeed P�A �EA
�k��= P�B �EB

�k��. Finally, since the
measurement on particle k must give either the outcome EA

�k�

or EB
�k�, we have P�EA

�k��+ P�EB
�k��=1, so that Eq. �B1� reduces

to

Pk = P�A�EA
�k�� = P�B�EB

�k�� , �B6�

which is what we wanted to show.

APPENDIX C: DISCONNECTIVITY OF FOCK STATES

In this Appendix we show that the disconnectivity D de-
termined by Eq. �43� is equal to the total particle number N
for all Fock states that have more than one mode with a
nonzero occupation number.

A Fock state in a second-quantized system with d modes,
occupation numbers n
�n1 ,n2 , . . . ,nd�, and a total of N par-
ticles has the form

�n� 
 �
k=1

d �ak
†�nk

�nk!
�0� , �C1�

with �knk=N. We assume here that the particles are bosons,
although this does not affect our final conclusion. We then

define a symmetrized n-RDM 	̃�n� by generalizing Eqs. �20�
and �19�. For this we use p
�p1 , p2 , . . . , pd� and q

�q1 ,q2 , . . . ,qd� as upper and lower indices, representing
the number of creation and annihilation operators, respec-
tively,

�	̃�n��q
p 


�N − n�!
N!

n!

��k
pk ! qk!

���

��ad
†�p1

¯ �a1
†�pda1

q1
¯ ad

qd��� , �C2�

subject to the constraint that �kpk=�kqk=n. For a Fock state
Eq. �C2� is nonzero only for p=q; i.e., the n-RDM is diag-
onal. Furthermore, we must have pk ,qk�nk for a given ma-
trix element not to vanish. For the case N=n, the only non-
zero matrix element is then p=q=n, i.e., the N-RDM 	̃�N�

has only a single matrix element equal to 1 on the diagonal
and the rest are equal to zero. Hence the entropy is SN=0. On
the other hand, if n�N and if there is more than one nk
�0, there will be at least two different p=q for which
�	̃�n��p

p�0, so that 	̃�n�must have more than one nonzero ei-
genvalue. Therefore Sn�0 for all n�N. This implies that the
numerator of �N in Eq. �43� vanishes while the denominator
does not. Hence �N=0, so that n=N is the largest n for which
�n�1, and consequently the disconnectivity is D=N, pro-
vided that there is more than one mode with a nonzero oc-
cupation number. If only one mode is occupied, 	̃�n� has only
a single nonzero eigenvalue �equal to 1� for all n, and there-
fore �n=1 for all n�1. Since �1=0 by definition, we there-
fore have D=1 for a Fock state in which only a single mode
is occupied.
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