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We consider the pooling of quantum states when Alice and Bob both have one part of a tripartite system and,
on the basis of measurements on their respective parts, each infers a quantum state for the third part S. We
denote the conditioned states which Alice and Bob assign to S by � and �, respectively, while the uncondi-
tioned state of S is �. The state assigned by an overseer, who has all the data available to Alice and Bob, is �.
The pooler is told only �, �, and �. We show that for certain classes of tripartite states, this information is
enough for her to reconstruct � by the formula ����−1�. Specifically, we identify two classes of states for
which this pooling formula works: �i� all pure states for which the rank of � is equal to the product of the ranks
of the states of Alice’s and Bob’s subsystems; �ii� all mixtures of tripartite product states that are mutually
orthogonal on S.
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I. INTRODUCTION

In the approach to quantum theory wherein a quantum
state encodes an observer’s knowledge of a system, different
observers may assign different quantum states. It is then
natural to ask which pairs of quantum states are compatible
in the sense that they can be simultaneously assigned by a
pair of observers �1,2�. Another natural question concerns
pooling �2–7�: what is the quantum state that ought to be
assigned to a system by someone who learns only the quan-
tum states assigned to it by two distinct observers?

The way in which we have just posed the pooling
problem—the standard way to do so—presumes that no fur-
ther assumptions need to be specified in order for there to be
a unique solution. That this is not necessarily the case be-
comes clear when we examine carefully the notion of pool-
ing states of knowledge in classical probability theory. Such
an analysis is particularly appropriate given that the problem
of pooling quantum states was originally conceived as an
analog of classical pooling.

The classical pooling result may be stated in the following
way. Suppose that Alice and Bob share a prior probability
distribution p�s� over a space of hypotheses. Suppose further
that the data they acquire before updating their distributions
is obtained independently. Specifically, if a denotes Alice’s
data and b denotes Bob’s data, then these are assumed to be
conditionally independent given s:

p�a,b�s� = p�a�s�p�b�s� . �1.1�

In these circumstances, Alice, upon learning a, updates her
description from p�s� to p�s �a�� p�a �s�p�s� and Bob, upon
learning b, updates his description from p�s� to p�s �b�
� p�b �s�p�s�. A third party who has access to both data a and
b, whom we shall call the overseer and name Oswald, would
update his description from p�s� to p�s �a ,b�, where

p�s�a,b� �
p�s�a�p�s�b�

p�s�
, �1.2�

as one easily verifies by applying Bayes’ theorem to Eq.
�1.1�. In fact, Eq. �1.2� holds only for those values of s for

which p�s��0; for values of s for which p�s�=0, Oswald
assigns p�s �a ,b�=0. The important point to note is that the
overseer’s probability distribution depends only on the prior
distribution and Alice’s and Bob’s posterior distributions.
Therefore, another party, who only has knowledge of these
three distributions, can reconstruct Oswald’s distribution.
This person, whom we shall call the pooler and name Pene-
lope, need not know any additional details of how Alice and
Bob came to update the prior in the way that they did.

However, the formula �1.2� does not hold in general, as
discussed in Sec. II B. In such cases, Oswald, who is aware
of how the data were acquired, can still use Bayes’ theorem
to update his distribution. But Penelope, who only has the
prior distribution and Alice’s and Bob’s posterior distribu-
tions at her disposal, has insufficient information to recon-
struct Oswald’s state of knowledge. It is only under special
circumstances, such as when Eq. �1.1� holds, that she is able
to do so.

The lessons of classical pooling for quantum pooling are
several. First, we have seen that in the one case where the
pooler can reconstruct the overseer’s posterior distribution,
she must use not only Alice and Bob’s distributions, but also
the prior distribution. Consequently, we expect that in the
quantum case she will require not only Alice’s and Bob’s
quantum states, but also the “prior” quantum state—the one
that they both assigned prior to the measurements. Second, in
order to tackle the pooling problem, it has been useful to
imagine an overseer who knows every aspect of the protocol
and the collected data, because his posterior is guaranteed to
be uniquely specified by Bayes’ theorem. This suggests that
in the quantum case, we again ought to consider an overseer
of this nature, because the quantum state that the overseer
must assign after the measurements—the “posterior” quan-
tum state—will be uniquely specified by quantum theory
�through the quantum update rule�. If this state is a function
only of Alice’s state, Bob’s state, and the prior state, then
Penelope can succeed in her task of reconstructing Oswald’s
posterior state. Third, we expect that there are limited cir-
cumstances in which the pooler can succeed in this fashion.

Most of the previous work on pooling has not taken this
approach. Typically, the prior quantum state is not specified
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in the problem, nor is it specified how Alice and Bob ac-
quired their data �2,4,5�; the notion of pooling that is dis-
cussed in these papers is therefore distinct from the one con-
sidered here. On the other hand, Jacobs �3,6� and Brun in
Ref. �7� have emphasized the importance of the method of
data acquisition for pooling knowledge about a system, have
taken care to specify a prior quantum state �they both assume
a completely mixed state�, and have used the device of an
overseer to evaluate pooling strategies. The pooling problem
that Jacobs considers is nonetheless distinct from the one
considered here. This is because the two states to be pooled
in his approach are not simultaneous descriptions of a single
system. Rather, they are descriptions of a single system at
two times, between which there is an intervening direct mea-
surement on the system, a measurement which may well in-
validate the applicability of the earlier description �8�. How-
ever, a particular instance of state pooling considered by
Brun in Ref. �7� �wherein Alice and Bob obtain conditionally
independent data about the outcome of a measurement on the
system� does fall within the general framework described
above.

In the present paper, we consider the specific case where
Alice’s and Bob’s data are obtained by measurements upon
two different shares of a tripartite system prepared in a quan-
tum state known to them both. Based upon these data, they
calculate updated states for the third share. We identify two
classes of tripartite states for which Alice’s and Bob’s up-
dated states, together with their initial state �for this third
share�, enable Penelope to reconstruct Oswald’s state, in
analogy to Eq. �1.2�. This is illustrated in Fig. 1. We also
show that our formula fails in more general cases, as one
would expect. We discuss the relation of our results to state
compatibility, and generalize our results to the case of arbi-
trarily many parties.

II. POOLING QUANTUM STATES FROM
INDIRECT MEASUREMENTS

The scenario we consider is as follows �9�. There is a
tripartite system ABS for which Alice possesses the A share
and Bob possesses the B share. They both initially describe
the tripartite system by the �possibly mixed� quantum state W
defined on HA � HB � HS, and thus they both initially de-
scribe the third system S by the same reduced state �
�TrAB�W�. Alice makes a generalized measurement on A,
and Bob makes a generalized measurement on B. After reg-
istering the outcome of her measurement, Alice updates her
description of the system S to a new quantum state which we
denote by �. Likewise, after registering the outcome of his
measurement, Bob updates his description of S to a new
quantum state which we denote by �. Quantum theory
uniquely specifies how Alice and Bob ought to update their
descriptions. �Strictly speaking, Alice only requires the re-
duction of W to AS and Bob only requires the reduction to
BS, as is indicated schematically in Fig. 1.�

The overseer, Oswald, knows everything there is to know:
the initial state W, what measurements Alice and Bob made,
and the outcomes they obtained. After learning all of this
information, the overseer updates his description of S to the

state �. Again, quantum theory uniquely specifies how the
overseer ought to update his description.

The pooler, Penelope, is not given any information about
what measurements are made by Alice and Bob, nor their
outcomes. Rather, she is told only the identity of the initial
quantum state for S as well as the quantum states that Alice
and Bob assign to S at the end of their measurements. In
other words, the pooler is given only �, �, and �. Her task is
to “pool” the information contained in � and � �and possibly
also �� to obtain a single quantum state that will represent
what she predicts about the outcomes of future experiments
on S.

By analogy with the classical case, we expect that the
quantum pooling problem only has a solution when Alice’s
and Bob’s data satisfy some condition of independence. Al-
though we do not determine the most general condition here,
we do illustrate two simple classes of states W for which the
quantum pooling problem can be solved. Class �i� is the class
of pure tripartite states in which the rank of � is maximal �in
a sense defined below�. Class �ii� is the class of mixtures of
product states that are mutually orthogonal on S.

We show that for both classes, Oswald’s quantum state �
can be written as a simple function of �, �, and �, namely,

� � ��−1� �2.1�

{Fb}{Ea}

b
A B

S

a

ρS → ω

Penelope

Alice Bob

Oswald

ρS → βρS → α

ρS → ?

{Fb}{Ea}

b
A B

S

a

ρS → ω

Penelope

Alice Bob

Oswald

ρS → βρS → α

ρS → ?

FIG. 1. �Color online� Schematic of the pooling problem we
consider. All parties seek to update the quantum state they assign to
system S based on the information they acquire. Each party has
access to only certain information, represented by the contents of
the circle in which he or she is enclosed. All information about S is
ultimately derived from indirect measurements on S, that is, mea-
surements upon systems �A and B� that are correlated with S. The
prior knowledge about A, B, and S of the different parties derives
from a single tripartite state, but each party has the reduced state for
only those systems contained in his or her circle. Alice performs a
measurement on A �represented by a POVM �Ea�� with outcome a,
and updates her state for S to �. Bob does likewise, mutatis mutan-
dis. Oswald, the overseer, learns everything known to Alice and
Bob and updates his state to �. Penelope, the pooler, learns only the
manner in which Alice and Bob update their states. The question we
address is: what state should she assign to S?
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=��−1� , �2.2�

where �−1 is the inverse of � on its support �10�. To obtain
the precise form of �, one need only normalize the right-
hand side of this expression. Penelope can obviously con-
struct this state, and so for these classes, she succeeds in the
pooling task.

A. Class (i)

Let W���	
��, where ��	 is a tripartite state. We define
HX �X=A ,B ,S� to be the support of W on subsystem X. That
is, if dX is the rank of the reduced state of the subsystem X,
this is also the dimensionality of HX. Now restrict to the
class of pure states where dS=dAdB. Note that this is the
maximal value dS can take, given dA and dB, because �from
the purity of W� dS=dAB	dAdB. By the Choi-Jamiolkowski
isomorphism �11�, any ��	 satisfying this condition can be
written as

��	 = �
e=1

dA

�
f=1

dB

�e, f	 � ���U�e, f	� . �2.3�

Here ��e , f	� is a complete orthonormal basis for HA � HB,
and U is a unitary operator from HA � HB to HS, so that
U†U= IA � IB.

Alice’s generalized measurement can be represented by a
positive-operator-valued-measure �POVM� �Ea�. If she gets
result a then the relevant POVM element �also called an
effect� is the positive operator Ea � I on HA � HB. She up-
dates her description of S from � to

� � TrAB��Ea � I���	
���

= �
e,f ,e�,f�


e�, f��Ea � I�e, f	��U�e, f	
e�, f��U†��

= ��U�Ea � I�TU†�� , �2.4�

where MT denotes the transpose of M in the basis �e , f	 and
where we have made use of the completeness of this basis.
Note that the update rule for indirect measurements has the
POVM element sandwiched between square roots of the
state. This is the opposite of what occurs with direct mea-
surements where the state is typically sandwiched between
square roots of the POVM element. Equation �2.4� is an in-
stance of the Hughston-Jozsa-Wootters theorem �12� gener-
alized to POVM measurements �13,14�. The trace of the
right-hand side of Eq. �2.4� is the probability for Alice to
have obtained the result she did, and � is simply the right-
hand side divided by this quantity.

Similarly, if the POVM that Bob measures is �Fb�, the
effect corresponding to the result b is I � Fb on HA � HB.
Then he updates his description of S from � to

� � ��U�I � Fb�TU†�� . �2.5�

The overseer, upon being told Alice’s and Bob’s outcomes,
updates his description of S from � to

� � ��U�Ea � Fb�TU†�� . �2.6�

It follows from the above results that

� � ��U�I � Fb�T�Ea � I�TU†��

= ��U�I � Fb�TU†U�Ea � I�TU†��

= ��U�Ea � I�TU†���−1��U�I � Fb�TU†�� � ��−1� .

�2.7�

Here we have made use of the fact that U†U is the identity
operator on HA � HB, the fact that �AB�T=BTAT, and the fact
that ���−1�� is the identity operator on HS �by virtue of the
rank condition on ��.

Thus we have shown that Penelope should pool the states
according to Eq. �2.1�. The proof of the second identity �2.2�
is identical, except that the order of �I � Fb� and �Ea � I�
�which commute� is inverted in the first line of Eq. �2.7�.

1. Example

To aid the reader’s understanding, we now give an ex-
plicit application of the above case. Consider the following
state in HA � HB � HS:

��	 � �0	�0	�0	 + �0	�1	�1	 + �1	�0	�2	 + �1	�1	�3	 , �2.8�

which satisfies the rank condition for class �i� states since
dS=4 and dA=dB=2. It is obvious that if Alice and Bob
measure in the logical ��0	, �1	� basis then the pooling for-
mula will hold, as each of them holds independent classical
information about the logical state of S. It is less obvious that
Eq. �2.1� holds regardless of the measurements they make.

Suppose, for example, that Alice and Bob both measure in
the ��+ 	, �−	� basis, where �± 	� �0	± �1	. Say they both obtain
the result +. Then it is easy to verify that Alice’s updated
state for S is

� � � ��0	 + �2	� � ��1	 + �3	� . �2.9�

Here, following Ref. �15�, we are using the following nota-
tion, that for an arbitrary ray �r	, we have ��r	� + �r	
r�.
Similarly, Bob’s new state assignment is

� � � ��0	 + �1	� � ��2	 + �3	� , �2.10�

while Oswald’s state �which is pure� is

� � � ��0	 + �1	 + �2	 + �3	� . �2.11�

Now for the state �2.8�, �� I, from which it is easy to verify
that Eq. �2.1� holds.

2. Pure states for which the pooling formula fails

If a pure state does not satisfy the rank condition for class
�i� states, then in general the pooling formula does not hold.
This can be seen from the Greenberger-Horne-Zeilinger state

��	 = �0	�0	�0	 + �1	�1	�1	 . �2.12�

Here dS=dA=dB=2 so that dS�dAdB. As with state �2.8�, if
Alice and Bob both measure in the logical basis then the
pooling formula will hold. But in contrast with state �2.8�,
this is no longer true if they measure in other bases.

Suppose, as above, that Alice and Bob both measure in
the ��+ 	, �−	� basis, and both obtain the result +. Then it is
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easy to verify that Alice and Bob obtain no information
about S:

� = � = � � � �0	 � �1	 = I . �2.13�

By contrast, Oswald’s updated state assignment is pure:

� � � ��0	 + �1	� . �2.14�

Clearly Eq. �2.1� fails.

B. Class (ii)

Class �ii� states are separable mixed states of the form

W = �
s

p�s��
s � �s � �s� , �2.15�

where 
s, �s and �s are normalized �possibly mixed� quantum
states defined on HA, HB, and HS, respectively. We also
require that the the different �s be defined on different sub-
spaces:

�s�s� = 0 if s � s�. �2.16�

It follows that the initial state of system S is

� = �
s

p�s��s. �2.17�

When Alice’s measurement reveals the outcome associated
with the effect Ea � I, she updates her description of S to

� = �
s

p�s�a��s, �2.18�

where p�s �a�� p�s�TrA�Ea
s�. Similarly, when Bob’s mea-
surement reveals the outcome associated with the effect
I � Fb, he updates his description of S to

� = �
s

p�s�b��s, �2.19�

where p�s �b�� p�s�TrB�Fb�s�. Oswald, upon learning a and
b, updates his description to

� = �
s

p�s�a,b��s, �2.20�

where p�s �a ,b�� p�s�TrA�Ea
s�TrB�Fb�s�. Noting that
p�s �a ,b�� p�s �a�p�s �b� / p�s� and that �, �, and � commute,
it follows that Penelope can construct � from �, �, and �
according to Eq. �2.1�.

In Sec. II A 2 we gave a pure state example for which the
pooling formula �2.1� fails. It is also simple to find a mixed
state example. It suffices to consider the tripartite state W
=�a,b,sq�a ,b ,s� �a	
a � � �b	
b � � �s	
s�, where �a	, �b	, and �s	
form orthonormal bases for systems A, B, and S. For the case
of measurements Ea= �a	
a� and Fb= �b	
b�, it is clear that the
problem becomes essentially classical. Specifically, Eqs.
�2.18�–�2.20� hold, but where p�s�, p�s �a�, p�s �b� and
p�s �a ,b� are now defined from q�a ,b ,s�. Given that �, �,
and � commute, the condition for the quantum pooling for-
mula, ����−1�, to hold is that the classical pooling for-
mula, p�s �a ,b�� p�s �a�p�s �b� / p�s�, holds. However, as

mentioned in the Introduction, there are joint probability dis-
tributions q�a ,b ,s� for which the latter fails. For example,
suppose a is correlated imperfectly with s, but b is perfectly
correlated with a. Then the information in a and b is redun-
dant: p�s �a ,b�= p�s �a�= p�s �b�. But the pooling formula
multiplies p�s �a� and p�s �b�, yielding a distribution that is
too narrow in general. Explicit instances using Gaussian dis-
tributions are easy to construct.

III. DISCUSSION

A. Connection to compatibility

Two classical probability distributions are compatible if
and only if their supports on the space of hypotheses �the
regions to which they assign nonzero probability� have some
overlap. The same concept was applied to quantum states by
Brun, Finkelstein, and Mermin �BFM� �1�: two quantum
states are compatible if and only if the intersection of their
supports on the Hilbert space is not null �16�. This condition
is equivalent to the requirement that one can find a quantum
state that appears with nonzero weight in some convex de-
composition of � and also in some convex decomposition of
�. Specifically, there must exist a state � and nonzero
weights p and q such that

� = p� + �1 − p���, � = q� + �1 − q��� �3.1�

for some states �� and ��.
It is easy to verify that a pair of quantum states �, � for S

that are acquired by indirect measurements �as we have been
considering� are compatible according to the BFM criteria.
In the two cases we have considered above it is also easy to
verify that Penelope’s state � �which is Oswald’s state� does
lie in the intersection of the supports of Alice’s and Bob’s
states. Consequently, � is incompatible with all states that
are incompatible with either Alice’s or Bob’s states. This
requirement for pooling has been previously emphasized by
Jacobs �3� and by Herbut �5�.

B. Generalization to an arbitrary number of parties

The above results of Sec. II are straightforward to gener-
alize to an arbitrary number N of parties: Alice, Bob,…,
Zane. In the context of classical probability theory, if the
parties’ data are conditionally independent,

p�a,b�s� = p�a�s�p�b�s� ¯ p�z�s� , �3.2�

then

p�s�a,b, . . . ,z� �
p�s�a�p�s�b� ¯ p�s�z�

p�s�N−1 . �3.3�

The quantum pooling formula for N parties, which is the
generalization of Eq. �2.1�, is

� = ��−1��−1
¯ � , �3.4�

where � is Zane’s posterior quantum state. By proofs analo-
gous to those presented for the two-party case, this formula
can be shown to apply if the initial N-partite quantum state
W is pure with dS=dAdB¯dZ, or if it is of the form W
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=�sp�s���s � �s � ¯�s � �s�, with �s�s�=0 for s�s�, as
above.

IV. CONCLUSION

Assuming quantum states are states of knowledge, one
should sometimes be able to pool the quantum states of dif-
ferent observers. We have argued that it is critical to deter-
mine whether, from the prior quantum state and Alice’s and
Bob’s posterior quantum states, one can reconstruct the
quantum state that would be assigned by an overseer who
knew all the details of the experiment and was given all of
the data. If this is the case, then the pooled quantum state is
simply the state assigned by the overseer. We have consid-
ered the scenario wherein Alice and Bob acquire their data
by indirect measurements on the system, specifically, by
measurements upon distinct ancillas. We have shown two
forms of the initial tripartite state for which the pooler can
reconstruct the state of the overseer. Finally, we have dem-
onstrated the connection to the notion of compatibility and
the generalization to multiple parties.

To end, we note that the classes of states we have identi-
fied do not contain all states for which the pooling formula
holds �17�. To generalize our results further, one could hope

to obtain insight from the classical case. As noted in the
Introduction, conditional independence of Alice’s and Bob’s
data, Eq. �1.1�, is a sufficient condition for the applicability
of the classical pooling formula, Eq. �1.2�. However, it is not
a necessary condition, so in seeking the most general condi-
tions under which the quantum pooling formula holds, one is
not simply seeking a quantum analog of the conditional in-
dependence of Alice’s and Bob’s data. Further investigations
into these issues are underway �17�.
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