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We present a theoretical study of the pathway of harmonic generation in bichromatic linearly polarized laser
fields. A “harmonic-collapse” phenomenon is observed in the power spectrum for a particular value of the
amplitude ratio of two components of the external field. We employ an offset frequency shift to the additional
field to distinguish the harmonic pathway and then to explain the harmonic-collapse phenomenon. The har-
monic intensity as a function of the relative amplitude ratio and, furthermore, the fine structure of the harmonic
spectrum can be well understood on the basis of a pathway analysis.
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High-order harmonic generation �HHG� in intense laser
fields has drawn great interest in recent decades for its ability
to provide an efficient source of coherent extreme ultraviolet
�XUV� and soft x-ray radiation. A lot of theoretical methods
have been used to study the process of harmonic generation
�1–5�. The main features of HHG such as an extended pla-
teau comprising harmonics of comparable intensity and a
sharp cutoff at the end of the plateau have been interpreted
by using the semiclassical three-step model �6�. By adding
an additional field to the fundamental one, the nonlinear
spectra exhibit many new features—for example, with the
combination of a fundamental field and its second order har-
monic, both even and odd harmonics can be generated by
sum and difference frequency mixing �7,8�. With respect to a
comparison of the harmonic emission time and the classical
return time, time-frequency analysis �9� of two-color high-
order harmonic generation using quantum mechanical meth-
ods gives out strikingly coincident results with the semiclas-
sical three-step model providing the two driving fields of
commensurate intensity.

Discussions of the pathway of HHG in the bichromatic
case have been mentioned in several papers. Some harmon-
ics which cannot be observed in the monochromatic case can
be generated in a bichromatic field by several possible path-
ways which should fulfill angular momentum conservation
�10,11�. Gaarde et al. considered a two-color field consisting
of a strong laser field and a much weaker field of variable
frequency and calculated the harmonic spectrum generated
by different sum and difference frequency mixing processes
separately, in both the single-atom regime and propagation
regime �12�. In a recent paper �13�, an experimental study of
nonlinear wave-mixing processes in extreme ultraviolet driv-
ing field by Misoguti et al. shows that the strong fundamen-
tal and the weak second-harmonic fields result in a nonlinear
four-wave difference frequency-mixing process.

In this paper, we present a quantum mechanical calcula-
tion of HHG in a bichromatic field, whose two components
are collinearly polarized along the z axis. We use the split-
operator �4� pseudospectral method to solve the time-
dependent Schrödinger equation �TDSE� of the hydrogen
atom in spherical polar coordinates �5�. Once we obtain the
time-dependent wave functions ��r� , t� in the external laser
field, the time-dependent dipole moments in the acceleration
form can be derived as

da�t� = ���r�,t�� −
z

r3 + E�t����r�,t�� �1�

and the HHG power spectrum is calculated from the Fourier
transform of the dipole moments:

P��� = � 1

tf − ti

1

�2	
ti

tf

da�t�e−i�tdt�2

. �2�

It has been pointed out that the harmonic spectrum calcu-
lated by the Fourier transform of the acceleration form of the
dipole moments can avoid spurious background radiation
�14�. It is extremely important to use the acceleration form of
the dipole moments in our calculation for the position where
the harmonic peaks appear should be determined precisely.

The bichromatic laser field can be described as a time-
dependent electric field

E�t� = E0 sin2
 �

�p
t��sin��1t� + � sin��2t�� , �3�

where �p is the pulse duration, the sin2 part of Eq. �3� de-
scribes the temporal envelop of the pulse, and � is the am-
plitude ratio of the additional field to the fundamental field.
The parameters of the laser field are set as E0=0.045 a.u.
�7.08�1013 W/cm2�, the fundamental field frequency �1

=3.0�0 ��1=1064 nm�, where �0=0.0143 a.u., the addi-
tional field frequency �2=5.0�0 ��2=638 nm�, and the pulse
duration �p=20�

2�
�0

, which means 60 periods of the funda-
mental field. The amplitude ratio varies in different sce-
narios.

Figure 1 shows the power spectra of HHG under the
bichromatic laser field with respect to different amplitude
ratios. The insets are magnified views. In Fig. 1�a� the am-
plitude ratio is set to be �=0.2, while in Fig. 1�b�, �=0.35,
and in Fig. 1�c�, �=0.7. The abscissa denotes the photon
energy of the generated radiation in units of �0, while the y
axis is the denary logarithm of the harmonic intensity. We
treat the harmonic with the frequency n�0 as the nth-order
harmonic. Only odd-order harmonics with the frequency
�2n+1��0 can be observed for the reflection symmetry is
preserved �8�. Here, we focus on the 15th-order harmonic
generation. In Figs. 1�a� and 1�c�, this order harmonic peak
can be clearly observed. But when �=0.35, the 15th-
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harmonic intensity is extremely weak and the harmonic peak
is submerged in the background radiation in Fig. 1�b�. We
regard this phenomenon as “harmonic collapse” in the power
spectrum of the bichromatic field. However, the shape of
whole high-order harmonic is similar to other calculations;
the harmonic collapse is only present at a certain position for
a particular amplitude ratio of the two components of the
laser field.

In order to interpret this phenomenon, we investigate the
pathway of harmonic generation, and the quantum interfer-
ence between different pathways maybe the reason for the
harmonic collapse. A frequency variation is added to the ad-
ditional field:

�2 = 5.0�0 + 	� , �4�

where 	� is much smaller than �0. Figure 2 shows the
power spectra of HHG when the frequency of the additional
laser field is set to be �a� �2=5.0�0 �same as in Fig. 1�, �b�
�2=4.9�0, and �c� �2=5.1�0 �	�= ±0.1�0�, respectively.
Other parameters are set the same as in Fig. 1. According to
the frequency variation of the additional field, the harmonic
peaks have frequency shifts, they appear near �2n+1��0, and
some peaks still have almost the same intensity with the
peaks generated in case �a�. We have calculated harmonic
generation for 	� varying from 0.01�0 to 0.1�0; similar
phenomena are observed. Here we choose 	� to be 0.1�0
for the sake of simplicity in discussion.

In Fig. 2�A�, the harmonic of frequency 13�0 �13th-order

FIG. 1. The acceleration form power spectra scale from 0 to
40�0 for the amplitude ratio �a� �=0.2, �b� �=0.35, and �c� �
=0.7. Other parameters are chosen as E0=0.045 a.u., �1=3.0�0,
�2=5.0�0, and �p=20�

2�
�0

. The insets are magnified views scaling
from 12�0 to 18�0.

FIG. 2. The acceleration form power spectra for the amplitude
ratio �A� �=0.2, �B� �=0.35, and �C� �=0.7 and the frequency of
the additional laser field �a� �2=5.0�0 �solid line�, �b� �2=4.9�0

�dashed line�, and �c� �2=5.1�0 �dotted line� for comparison, while
other parameters are chosen the same as in Fig. 1.
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harmonic� is generated in case �a�, while the main harmonic
peaks appear at 12.8�0 and 13.2�0 with respect to different
additional field frequencies �2=4.9�0 and �2=5.1�0. The
offset frequency shifts in cases �b� and �c� are 0.2�0, which
means 2 times 	�. So the additional field contributes two
photons to the 13th-harmonic generation. The harmonic of
13�0 is generated by absorbing one photon from the funda-
mental field �1�3�0� and two photons from the additional
field �2�5�0�. The leading pathway of target atom H ab-
sorbing photons from the bichromatic field to generate 13th-
order harmonic can be denoted by

H + 
�3��0� + 2
�5��0� → H + 
�13��0� . �5�

There are secondary pathways to generate the 13th
harmonic—for example,

H + 6
�3��0� − 
�5��0� → H + 
�13��0� . �6�

Through this difference frequency mixing process �12�, the
harmonic peak should appear at 13.1�0 in case �b� �2
=4.9�0 and 12.9�0 in case �c� �2=5.1�0. These subpeaks
can also be observed in the harmonic spectra, but they are
weaker by an order of magnitude in intensity comparing with
the main peaks. The harmonic peaks still appear at 15�0 in
cases �b� and �c� though the additional field frequency
changed to be 4.9�0 and 5.1�0. So the 15th-order harmonic
is generated by absorbing five photons from the fundamental
field:

H + 5
�3��0� → H + 
�15��0� . �7�

A similar analysis can be applied to the 17th harmonic; its
leading pathway can be written as

H + 4
�3��0� + 
�5��0� → H + 
�17��0� . �8�

The leading pathway of the 13th- and 17th-order har-
monic remains unchanged in Figs. 2�B� and 2�C�. But to the
15th harmonic, in Fig. 2�C�, the main harmonic peaks appear
at 14.7�0 in case �b� and 15.3�0 in case �c�, which means the
leading pathway of the 15th harmonic changed to be

H + 3
�5��0� → H + 
�15��0� . �9�

In Fig. 2�B�, the 15th-order harmonic peak cannot be ob-
served in case �a� but there are harmonic peaks appearing at
14.7�0 and 15�0 in case �b� and 15.3�0 and 15�0 in case �c�.
So we can conclude that the two different pathways denoted
by formulas �7� and �9� have commensurate contributions to
the 15th-order harmonic generation, and the interference of
two pathways decreases the 15th-harmonic intensity. While
in cases �b� and �c�, the frequency variation of the additional
field destroys the coherence condition of the two pathways,
so the harmonic collapse phenomenon disappears and the
harmonic peaks generated by different pathways are pre-
served in the power spectrum.

The harmonic collapse phenomenon can be observed in
other order harmonics. For example, in the low-amplitude
ratio region, the 29th harmonic’s leading pathway is

H + 8
�3��0� + 
�5��0� → H + 
�29��0� , �10�

and the leading pathway changes to be

H + 3
�3��0� + 4
�5��0� → H + 
�29��0� �11�

when the additional field becomes stronger. The coherence of
the two different pathways causes the decrease of the 29th
harmonic. A similar phenomenon can be observed in the 35th
harmonic, whose two different leading pathways can be de-
noted by

H + 10
�3��0� + 
�5��0� → H + 
�35��0� �12�

and

H + 5
�3��0� + 4
�5��0� → H + 
�35��0� . �13�

Figure 3 gives an overview of the 15th-, 29th-, 33rd-, and
35th-order harmonic intensities when the amplitude ratio of
the additional field to the fundamental field set to different
values. The additional field frequency is set to be �2
=5.0�0. The leading pathway of the 33rd harmonic is

H + 6
�3��0� + 3
�5��0� → H + 
�33��0� , �14�

and it remains unchanged in the region �=0.2�0.7. In Fig.
3, the intensity line of the 33rd harmonic �open circles� rises
with the larger amplitude ratio. However, the intensity lines
of the 15th, 29th, and 35th harmonics �solid curves� show a
“valley” shape. To these order harmonics, they have different
leading pathways at the two ends of the intensity line. In the
middle region, the coherent effect of two different pathways
decreases the harmonic intensity. For example, as has been
depicted in Fig. 2�A�, the 15th-order harmonic has the inten-
sity of the same order of magnitude comparing with its
neighboring harmonics for its leading pathway can be distin-
guished from other pathways in the region �=0.1–0.2; the
intensity line shows a decline in the region �=0.2–0.35
though the additional field becomes stronger; the harmonic
intensity reaches its minimum when �=0.35 and the har-
monic collapse phenomenon appears; in the region �
=0.35–0.7, the pathway denoted by formula �9� gradually
becomes dominant in the 15th-order harmonic generation
and the harmonic intensity increases as the increasing inten-
sity of the additional field.

FIG. 3. Intensities of the 15th-, 29th-, 33rd-, and 35th-order
harmonics as functions of the amplitude ratio for the additional field
frequency �2=5.0�0.
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When other parameters of the external field changed, for
example, for different amplitude of the field E0 or different
pulse duration �p of the laser pulse, or when the two field
components have a relative phase difference and different
shape of laser pulse, the harmonic collapse phenomenon can
still be observed, but the amplitude ratio where the harmonic
peak is missing changes. A detailed study of HHG and its
pathways in these different scenarios still needs to be done.

In summary, we investigated the pathway of harmonic
generation in two collinearly polarized laser fields with fre-
quency ratio 3:5. The frequency shift of harmonic peaks
caused by the additional field frequency variation illustrates
the pathway of harmonic generation. To most orders of har-
monic generation, there exists a leading pathway which con-
tributes most to the harmonic intensity, and the harmonic
peak can be clearly observed. But when two different path-
ways have commensurate contributions to the harmonic gen-
eration simultaneously, the harmonic intensity is much
weaker compared with its neighboring harmonics. Especially

when the relative intensity of the two components of the
bichromatic field is suitable, the harmonic peak can be sub-
merged in background radiation and the “harmonic collapse”
phenomenon is observed. However, the shape of whole high-
order harmonic is similar to other calculations; the harmonic
collapse is only present at a certain position for a particular
amplitude ratio of the two components of the laser field. By
using an offset frequency shift of the additional field to de-
stroy the coherent condition of the two pathways, we can see
that the harmonic peaks generated through different path-
ways appear �as seen in Fig. 2�. Therefore, this harmonic
collapse may be caused by the quantum interference of dif-
ferent pathways. An advanced study is in progress.
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