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Bipartite quantum entanglement for qutrits and higher-dimensional objects is considered. We analyze the
possibility of violation of monogamy inequality, introduced by Coffman, Kundu, and Wootters, for some
systems composed of such objects. An explicit counterexample with a three-qutrit totally antisymmetric state
is presented. Since three-tangle has been confirmed to be a natural measure of entanglement for qubit systems,
our result shows that the three-tangle is no longer a legitimate measure of entanglement for states with three
qutrits or higher-dimensional objects.
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Quantification of quantum entanglement plays an impor-
tant role not only in quantum information processing and
quantum computation �1� but also in describing quantum
phase transition in various interacting quantum many-body
systems �2�. In the last 10 years a number of entanglement
measures for qubit systems have been studied extensively, in
which the well-known one with an elegant formula is con-
currence derived analytically by Wootters �3�, and the en-
tanglement of formation �EOF� �4,5� is a monotonically in-
creasing function of the concurrence. However, at least so far
it is believed that there exists a drawback that they are con-
fined into the qubit systems since the used spin-flip is only
applicable to qubits �8�; because of which generally only a
lower bound of concurrence can be achieved for states com-
posed of qutrits or higher-dimensional objects. The seminal
paper by Coffman, Kundu, and Wootters �6� provided a basis
for the quantification of three-party entanglement by intro-
ducing the so-called residual tangle, and a general mo-
nogamy inequality in the case of n qubits has been proved
�7�.

Since the monogamy inequality has been established,
whether it can be generalized to qutrits or higher-
dimensional objects remains still open. In this Brief Report,
we will first show that the monogamy inequality can be vio-
lated for some quantum composed of qutrits or higher-
dimensional objects, and then offer an explicit example of an
antisymmetric state to show this violation. Therefore the
main idea here is to show that the monogamy inequality
characterized by the concurrence cannot be generalized to a
quantum state apart from qubits. This result gives a caveat
when we are studying genuine multipartite entanglement for
such states where the residual entanglement or three-tangle is
defined.

For completeness we recall the original monogamy in-
equality. Consider a triple of spin-1 /2 particles A, B, and C,
and its density matrix is denoted by �ABC, the distribution of
entanglement among them is constrained by the following
inequality:

CAB
2 + CAC

2 � CA�BC�
2 , �1�

where CAB and CAC are the concurrences of the state �ABC
with traces taken over the particles C, B. CA�BC� is the con-
currence of �A�BC� with the particles B and C regarded as a
single object. In this case the particle A can be viewed as a
focus such that the three-tangle can be defined as

�ABC = CA�BC�
2 − CAB

2 − CAC
2 , �2�

which is independent on the choice of the focus mainly be-
cause it is invariant under the permutations of the particles.
The three-tangle has found wide applications in the research
of genuine multiparticle entanglement �9� since it satisfies
necessary conditions that a natural entanglement measure for
pure state must require �10�. �1� �ABC is invariant under local
unitary operations. �2� �ABC�0 for all pure states. �3� �ABC is
an entanglement monotone �11�, i.e., it does not increase on
average under local quantum operations assisted with classi-
cal communication.

Now one may naturally ask what will happen as a general
M �N�Q system is concerned. It is in our great interest to
know whether Eq. �1� remains valid since it determines jus-
tification of �ABC as an natural entanglement measure. In or-
der to get the answer, we review some progresses on the
quantification of entanglement of a bipartite M �N system.
Actually only a few special classes of higher-dimensional
states can give a closed-form expression of EOF �12,13�.
Through analytical or numerical approaches generally only a
lower bound of concurrence or EOF can be obtained
�14–16�. The unavailability of exact entanglement makes us
suspect the validity of corresponding monogamy inequality
in Eq. �1� for higher-dimensional tripartite systems.

In what follows we show there exists a possibility that Eq.
�1� does not necessarily hold always for qutrits or higher-
dimensional objects. For a pure bipartite M �N system the
squared concurrence can be expressed as C2

=��=1
M�M−1���=1

N�N−1��C���2 �17�, where C��= ���L� � L���*�, and
L�, L� are generators of SO�M� and SO�N�, respectively. For
mixed state � of such system the squared concurrence is
given as the convex roof,*Electronic address: ouyongcheng@163.com
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C2��� = inf �
i

piC
2��	i��, � = �

i

pi�	i��	i� , �3�

where pi�0 and � consists of all possible decompositions
into pure states �	i�. According to �14,16� we can obtain a
lower bound C2��� for the mixed state as

C2��� 	 

1 − �
i�1


i�2
� C2��� , �4�

where 
i are the singular values of ��=1
M�M−1���=1

N�N−1�z��A�� in
decreasing order. For details of terms z�� and A��, see
�14,16�. Note that the choice of the phase of z�� is important
for the tightness of the bound and in general it needs a com-
plicated numerical optimization procedure for the bound. For
the simplest 2�2 systems, Eq. �4� becomes equal and ana-
lytical. Moreover, the lower bound can also be written as an
analytical expression

C2��� = �
j�i

�
i=1

M−1

Cij
2 ��� , �5�

for the more complicated 2�M systems �18�, where Cij���
=max�0,
1

ij −
2
ij −
3

ij −
4
ij� and 
ij are the square roots of the

four largest eigenvalues of the matrix �1/2Sij�*Sij�1/2 �18�. It
does not need numerical optimization for the bound of con-
currence of the 2�M systems.

Let us consider the tripartite 2�M �N system ABC.
Choose the particle A with two dimensions as a focus, it then
follows from Eq. �4� that the lower bound of the squared
concurrences in AB and AC satisfies

CAB
2 � CAB

2 , CAC
2 � CAC

2 . �6�

Combining the two inequalities in Eq. �6� gives

CAB
2 + CAC

2 � CAB
2 + CAC

2 . �7�

On the other hand, the authors in �16� have proven that the
sum of the lower bound in CAB

2 and CAC
2 is not greater than the

squared concurrence between A and BC

CAB
2 + CAC

2 � CA�BC�
2 . �8�

From the observation of Eqs. �7� and �8�, it is possible for us
to find some states making Eq. �8� equal but Eq. �7� strict
inequality, thus resulting in the violation of the monogamy
inequality

CAB
2 + CAC

2 � CA�BC�
2 . �9�

Note that Eq. �7� can only be an equality for the 2�2�2
systems, making the monogamy inequality in Eq. �1� hold
for each state in such a system. In practice it is a formidable
task to find the state satisfying Eq. �9� because of the require-
ment of a complicated convex roof for the concurrence of a
higher-dimensional mixed state. Fortunately we find a state
in the following, permitting us to easily calculate the concur-
rence of the mixed state.

Finally we present the explicit example that the mo-
nogamy inequality dose not work. Consider the pure totally
antisymmetric state on a three-qutrit system ABC,

��� =
1
�6

��123� − �132� + �231� − �213� + �312� − �321�� .

�10�

It is obvious that antisymmetric subspace V�HA � HB, HA
� HC, and HB � HC is spanned by the vectors

�x�ij 	
1
�2

��23� − �32�� ,

�y�ij 	
1
�2

��31� − �13�� ,

�z�ij 	
1
�2

��12� − �21�� , �11�

where ij�� AB ,AC ,BC�. If A is chosen as a focus, then

�AB =
1

3
��x�AB�x� + �y�AB�y� + �z�AB�z�� ,

�AC =
1

3
��x�AC�x� + �y�AC�y� + �z�AC�z�� ,

�A�BC� =
1

3
��x�BC�x� + �y�BC�y� + �z�BC�z�� . �12�

Since �A�BC� is pure, it is readily to check CA�BC�
2 =4/3. For

mixed states �AB and �BC we have to make an infimum for
their concurrences. Generally, it is difficult, however, the
system �10� is a special case. For arbitrary pure states
�	�AB=c1�x�+c2�y�+c3�z� with �c1�2+ �c2�2+ �c3�2=1, their re-
duced density matrix �A	TrB�	�AB�	� has the same spec-
trum 1/2 ,1 /2 ,0� �19�, implying any two antisymmetric
states �	�AB can be transformed into each other by local uni-
tary transformations. As a result, C2��	�AB�=1. While �AB in
Eq. �9� can be decomposed into

�AB = �
i

pi�	i�AB�	i� . �13�

Why the system �10� is special lies in C2��	i�AB�=1 for each
�	i�AB such that CAB

2 =�ipi=1. Analogously, CAC
2 =�ipi=1.

Therefore we obtain

CAB
2 + CAC

2 = 2 �
4

3
= CA�BC�

2 , �14�

which is not superseded by the monogamy inequality in Eq.
�1�. In the similar way, it is confirmed that CBA

2 +CBC
2

�CB�AC�
2 and CCA

2 +CCB
2 �CC�AB�

2 also violate the correspond-
ing monogamy inequalities. Perhaps this violation is not a
paradox by considering that the EOF cannot yet satisfy the
monogamy inequality due to the concave log function �6�.

Summarizing, we have shown that the monogamy in-
equality in qubit systems cannot be generalized to higher-
dimensional objects such that a caveat is provided when the
three-tangle is defined since it may exhibit a negative value
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for some state. However, in general the monogamy inequal-
ity in Eq. �1� also works, for example, for a state ���ABC

= 1
�3

��111�+ �222�+ �333��, we obtain CAB
2 +CAC

2 =0�4/3
=CA�BC�

2 , satisfying the monogamy inequality. Consequently,
the conditions of whether the monogamy inequality for
higher dimensional objects is violated or not is still open.
As stated in �7�, the constrains by the monogamy inequality
in Eq. �1� on the entanglement shared by parties lie at

the heart of the success of many information-theoretic pro-
tocols, correspondingly the impacts on such protocols im-
posed by this violation of monogamy inequality deserve fur-
ther investigations.
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