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Thermal entanglement of a two-qubit Heisenberg chain in the presence of the Dzyaloshinski-Moriya �DM�
anisotropic antisymmetric interaction and entanglement teleportation when using two independent Heisenberg
chains as the quantum channel are investigated. It is found that the DM interaction can excite entanglement and
teleportation fidelity. The output entanglement increases linearly with increasing value of the input; its depen-
dences on the temperature, DM interaction, and spin coupling constant are given in detail. Entanglement
teleportation will be better realized via an antiferromagnetic spin chain when the DM interaction is turned off
and the temperature is low. However, the introduction of the DM interaction can cause the ferromagnetic spin
chain to be a better quantum channel for teleportation. A minimal entanglement of the thermal state in the
model is needed to realize the entanglement teleportation regardless of whether the spin chains are antiferro-
magnetic or ferromagnetic.
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I. INTRODUCTION

Entanglement is one of the most fascinating features of
quantum mechanics and plays a central role in quantum-
information processing. In recent years, there has been an
ongoing effort to characterize qualitatively and quantitatively
the entanglement properties of condensed matter systems and
apply them in quantum information. The quantum entangle-
ment in solid state systems such as spin chains is an impor-
tant emerging field �1–8�. Spin chains are natural candidates
for the realization of entanglement compared with other
physics systems. The Heisenberg chain, the simplest spin
chain, has been used to construct a quantum computer �9�.
By suitable coding, the Heisenberg interaction alone can be
used for quantum computation �10–12�. In addition, quantum
teleportation has been extensively investigated both experi-
mentally and theoretically. Since decoherence from the envi-
ronment always impacts on the degree of entanglement, the
resource of maximally entangled states is hard to prepare in a
real experiment. Certainly, a mixed entangled state as the
resource is approximately near to the real circumstances. As
an important source of entanglement, thermal entanglement
has been widely investigated in many previous studies. Also
entanglement teleportation via thermal entangled states of a
two-qubit Heisenberg XX chain has been reported �13�. Yeo
et al. �14� studied the influence of anisotropy and magnetic
field on quantum teleportation via a Heisenberg XY chain.
But only the spin-spin interaction was considered in those
studies; the effects of spin-orbit coupling on the entangle-
ment and teleportation are rarely included. These are the mo-
tivations of this Brief Report.

Here, we investigate the influence of spin-orbit coupling
on thermal entanglement. The information transmission by a
pair of thermal mixed states in a two-qubit Heisenberg chain

in the presence of the Dzyaloshinski-Moriya �DM� aniso-
tropic antisymmetric interaction is investigated. A minimal
entanglement in the quantum channel is needed to transfer
entanglement information. Thermal entanglement will be in-
vestigated in Sec. II. The entanglement teleportation of two-
qubit pure states and its fidelity are derived in Secs. III and
IV. In Sec. V a discussion concludes the paper.

II. THE EFFECT OF DM INTERACTION ON THERMAL
ENTANGLEMENT

In this paper, we consider the Heisenberg model with DM
interaction, which can be described by

HDM =
J

2
���1x�2x + �1y�2y + �1z�2z� + D� · ��� 1 � �� 2��;

�1�

here J is the real coupling coefficient and D� is the DM vector
coupling. The DM anisotropic antisymmetric interaction
arises from spin-orbit coupling �15,16�. The coupling con-
stant J�0 corresponds to the antiferromagnetic case and
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FIG. 1. �Color online� Thermal concurrence for the spin channel
when T=0.5. T is plotted in units of the Boltzmann constant k. We
work in units where D and J are dimensionless.
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J�0 to the ferromagnetic case. For simplicity, we choose

D� =Dz�. Then the Hamiltonian HDM becomes

HDM =
J

2
��1x�2x + �1y�2y + �1z�2z + D��1x�2y − �1y�2x��

= J��1 + iD��1+�2− + �1 − iD��1−�2+� . �2�

Without loss of generality, we define �0� ��1�� as the ground
�excited� state of a two-level particle. The eigenvalues and
eigenvectors of HDM are given by

HDM�00� =
J

2
�00� ,

HDM�11� =
J

2
�11� ,

HDM� + � = �J�1 + D2 −
J

2
	� + � ,

HDM�− � = �− J�1 + D2 −
J

2
	�− � , �3�

where �± �= �1/�2���01�±ei� �10�� and �=arctan D.
As thermal fluctuation is introduced into the system, the

state of a typical solid state system at thermal equilibrium
�temperature T� is ��T�= �1/Z�e−�H, where H is the Hamil-
tonian and Z=tr e−�H is the partition function. In the standard
basis 
�11�, �10�, �01�, �00��, the density matrix ��T� can be
expressed as

��T� =
1

Z�
e−�J/2 0 0 0

0
1

2
e��J−��/2�1 + e���

1

2
ei�e��J−��/2�1 − e��� 0

0
1

2
e−i�e��J−��/2�1 − e���

1

2
e��J−��/2�1 + e��� 0

0 0 0 e−�J/2

 , �4�

where Z=2e−�J/2�1+e�J cosh ��� /2��, �=1/kT, and �
=2J�1+D2. In the following calculation, we will write the
Boltzmann constant k=1. The entanglement of two qubits
can be measured by the concurrence C, which is defined as
C=max�0,2 max�	i�−�i

4	i� �17�, where 	i are the square
roots of the eigenvalues of the matrix R=�S�*S, � is the
density matrix, S=�1y � �2y, and the asterisk stands for the
complex conjugate. The concurrence is available no matter
whether � is pure or mixed. Note that we are working in
units where D and J are dimensionless.

Based on the definition of concurrence, we can obtain the
concurrence at finite temperature:

Cchannel � C���T�� =
2

Z
max�1

2
�e��J−��/2�1 − e���� − e−�J/2,0	 .

�5�

The concurrence C=0 indicates vanishing entanglement. The
critical temperature Tc above which the concurrence is zero
is determined by the nonlinear equation

eJ/T sinh
�

2T
= − 1 if J � 0,

eJ/T sinh
�

2T
= 1 if J � 0, �6�

which can be solved numerically. When D=0, i.e., �=2J, it
is found that Tc=2J / ln 3 for J�0, but there is no entangle-

ment at any temperature for J�0. These accord with the
conclusions in Ref. �18�. Figure 1 demonstrates the depen-
dence of thermal entanglement on J and D at T=0.5. Al-
though there is no entanglement for the ferromagnetic case
when D=0, when D increases, entanglement will be inspired
and the area of J for which C=0 will decrease. The entangle-
ment can reach a maximum value by adjusting the DM in-
teraction constant for the two cases.

III. THERMAL ENTANGLEMENT TELEPORTATION

For the entanglement teleportation of a whole two-qubit
system of a thermal mixed state in a Heisenberg spin chain,
the standard teleportation through mixed states can be re-
garded as a general depolarizing channel �19,20�. Similar to
standard teleportation, entanglement teleportation for the
mixed channel of an input entangled state is destroyed and
its replica state appears at the remote place after applying a
local measurement in the form of linear operators. We con-
sider as input a qubit in an arbitrary pure state �
�in
=cos�� /2� �10�+ei� sin�� /2� �01� �0��� ,0���2�.
Here different values of � describe all states with different
amplitudes, and � stands for the phase of these states. The
output state is then given by �21�

�out = �
ij

pij��i � � j��in��i � � j� , �7�
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where �i �i=0,x ,y ,z� signify the unit matrix I and three
components of the Pauli matrix �� , respectively, pij
=tr�Ei��T��tr�Ej��T��, �ijpij =1, and �in= �
�in�
�. Here E0

= ��−���−�, E1= ��−���−�, E2= ��+���+�, E3= ��+���+�, in

which ��±�= �1/�2���01�± �10��, ��±�= �1/�2���00�± �11��.
It follows that the concurrence of the initial state �
�in is

Cin=2 �sin �� /2� cos �� /2�ei��. We calculate the measure of
entanglement for the teleported state �out to be

C��out� � Cout = max�2
Cine
�J�sinh���/2��2 − 2�1 + D2�cosh���/2��

Z2�1 + D2�
,0	 . �8�

From Eq. �8�, it can be seen that Cout increases linearly with
increasing Cin. The result can also be seen from Figs. 2�a�
and 3.

The quantity Cout as a function of Cin is plotted in Fig. 2
when the DM interaction D, the temperature T, and the cou-
pling coefficient J are changed. Figure 2�a� is a plot of Cout
as a function of Cin and T when D=0 and J=1, for which the
critical temperature of the channel concurrence Tc=2J / ln 3
=2/ ln 3�1.82. From Fig. 2�a�, we know that Cout remains
zero when T�1, so a minimal entanglement of the thermal
mixed state must be provided in this quantum channel in
order to realize entanglement teleportation. When the initial
state is in a maximum entangled state, which corresponds to
Fig. 2�b�, Cout exists regardless of the sign of J. For J�0,
first the output entanglement increases with increasing D
from zero to a certain value that is much smaller than Cin and
then it begins to fall to zero. However, Cout decreases mono-
tonically with increasing D for J�0. It may be advantageous
for increasing Cout and the channel entanglement Cchannel to
introduce the DM interaction for J�0; however, when J
�0 the DM interaction can only cause Cchannel to increase.
As the DM interaction increases, Cout will decrease to zero
when D is large for both J�0 and J�0. This is due to the
fact that Cout=max�−4 cosh��� /2� /Z2 ,0�=0 when D→�.
The maximum value of Cout is much smaller than that of the
channel entanglement. Under general circumstances, the out-
put entanglement of a two-qubit state �
�in will decrease via
the quantum channel. These results can be found by compar-
ing Fig. 2 with Fig. 1 �22�.

Figure 3 shows the dependence of Cout on Cin and spin
coupling J for a given DM interaction and temperature. As

the channel concurrence shows, Cout behaves obviously dif-
ferently for J�0 and J�0. For J�0, only when �J � �0.5 is
Cout nonvanishing when the initial state is a maximum en-
tangled state. If 0�Cin�1, �J� must be larger in order to
realize entanglement teleportation. We can see that Cchannel
�0.597 for J=−0.5 in the same conditions in Fig. 3; these
results show again that a minimum entanglement must be
provided. The same conclusion can be obtained for J�0.

IV. THE FIDELITY OF ENTANGLEMENT
TELEPORTATION

To characterize the quality of the teleported state �out, it is
often quite useful to look at the fidelity between �out and �in
defined by �23�

F��in,�out� = 
tr����in�1/2�out��in�1/2��2. �9�

The concept of fidelity has been a useful indicator of the
teleportation performance of a quantum channel when the
input state is a pure state. The average fidelity FA of telepor-
tation can be formulated as

FA =

�
0

2

d��
0



F sin � d�

4
. �10�

If our model is used as the quantum channel, FA can be
expressed as

H aL D= 0;J = 1
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FIG. 2. �Color online� Teleported thermal concurrence Cout as a
function of the input concurrence Cin, DM interaction D, spin cou-
pling J, and temperature T. T is plotted in units of the Boltzmann
constant k. We work in units where D and J are dimensionless.
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FIG. 3. �Color online� Teleported thermal concurrence Cout as a
function of the input concurrence Cin and spin coupling J when
temperature T=0.1 and DM interaction D=1. T is plotted in units of
the Boltzmann constant k. We work in units where D and J are
dimensionless.
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FA =
2�1 + D2� + e2�J�1 + 2D2 + �3 + 2D2�cosh ���

6�1 + D2��1 + e�J cosh���/2��2 .

�11�

This is the maximal fidelity achievable from ��T�. In order to
transmit �
�in with better fidelity than any classical commu-
nication protocol, we require Eq. �11� to be strictly greater
than 2/3 ��0.667�. When D=0, this requirement becomes
e2�J�11.

The average fidelity FA is plotted as a function of spin
coupling J and temperature T when D=0 in Fig. 4. When
D=0, FA is larger than 2/3 if 0�T�2J / ln 11. So FA is
always smaller than 2/3 for J�0 at any temperature. How-
ever, for J�0, FA can become 1 at near zero temperature and
begins to fall to 2 /3 at the point T=2J / ln 11. This means
that the entanglement teleportation of the mixed channel is
inferior to the classical communication when J�0 without
DM interaction. Figure 5 gives the dependence of FA on the
DM interaction D and spin coupling J. By introducing the
DM interaction, FA can be larger than 2/3 for J�0 �for
example, T=0.1, J� �−0.5,−1��. For J�0, FA decreases
monotonically with increasing D. When the DM interaction
is very strong, FA approaches infinitely close to the value of

2 /3 for both cases. These results show that we must
strengthen the DM interaction to be a certain value in order
to use ferromagnetic spin chain as a quantum channel for
entanglement teleportation, which is contrary to antiferro-
magnetic spin chain.

V. CONCLUSIONS

We have investigated the thermal entanglement of a two-
qubit spin chain with DM anisotropic antisymmetric interac-
tion and entanglement teleportation via the model. The en-
tanglement can reach a maximum value by adjusting the DM
interaction constant for the ferromagnetic and antiferromag-
netic cases. By introducing the DM interaction, the output
entanglement and fidelity can be increased for the ferromag-
netic case, contrary to the antiferromagnetic case. When the
DM interaction is very strong, the average fidelity of en-
tanglement teleportation will approach a fixed value that is
the maximal one for classical communication. A minimal
entanglement of the thermal state in the model is needed to
realize the entanglement teleportation.
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FIG. 4. �Color online� Average fidelity FA as a function of spin
coupling J and temperature T when D=0. T is plotted in units of the
Boltzmann constant k. We work in units where D and J are
dimensionless.
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FIG. 5. �Color online� Average fidelity FA as a function of J and
D for a given temperature. T is plotted in units of the Boltzmann
constant k. We work in units where D and J are dimensionless.
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