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Comprehensive numerical analysis of chirped-solitary-pulse stability in the positive-dispersion regime is
presented. It is found that such a regime allowing generation of femtosecond pulses with energy above the
microjoule level directly from a mode-locked oscillator is unstable against long-period pulsations. Pulsations
are caused by the internal modes of solitary pulse and result in both symmetrical and asymmetrical perturba-
tions of the pulse spectrum. This reduces a region of pulse stability and its coherence.
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I. INTRODUCTION

In the last decade, femtosecond pulse technology has
evolved rapidly and allowed the achievement of few-optical-
cycle pulse generation directly from an oscillator �1�. Appli-
cations of such pulses range from medicine and microma-
chining to the fundamental physics of light-matter interaction
at unprecedented intensity and time levels �2–4�. To achieve
these levels, pulse energies about or above the microjoule
level are required. Such energy frontiers have become
achievable due to chirped-pulse amplification outside an os-
cillator �1,2�. However, this technology is complex and ex-
pensive. Therefore, it is desirable to find a road to direct
over-�J femtosecond pulse generation without need of extra
amplification.

Standard femtosecond pulse oscillators allow pulses with
energy of merely a few nano-joules. A prospective recipe for
increasing the pulse energy is to substantially increase the
oscillator length �5,6�. In this case the pulse energy E is
scalable as E= PavTcav, where Tcav is the oscillator cavity
period, and Pav is the average power, which is limited by the
pump power �e.g., �1–4 W for a Ti:sapphire oscillator�.
However, such a long-cavity oscillator operating in the soli-
tonic regime �7� suffers from strong instabilities �8�. They
result from scalability of the pulse peak power with energy,
when the pulse width is kept at the femtosecond level. This
scalability enhances the nonlinear effects within an oscillator,
with subsequent pulse destruction.

It was found that pulse stretching �up to several picosec-
onds� can provide substantial pulse energy growth �9–11�.
This stretching results from a large pulse chirp, which devel-
ops in an oscillator �a so-called chirped-pulse oscillator
�CPO�� operating in the positive-dispersion regime �PDR�.
As a consequence of the large chirp, the pulse has a high
energy �more than 100 nJ�, but its peak power is reduced
below the instability threshold. This leads to stable operation
of the CPO, whereas the broad spectrum ��100 nm for a
Ti:sapphire oscillator� allows compressing the pulse down to
below 30 fs.

Analysis has demonstrated that the chirped pulse devel-
oped in the PDR can be described as the stationary �solitary�
solution �so-called chirped solitary pulse �CSP�� of the
cubic-quintic nonlinear complex Ginzburg-Landau equation
�CGLE� �12,13�. It is known that this equation is a direct
generalization of the master mode-locking equation
�7,14–16� and provides an adequate description of mode-
locked oscillators �both fiber and solid state�. Therefore, an
investigation of the CSP properties is of interest not only
from the theoretical but also from the practical point of view.

In this work we analyze the CSP stability and its spectral
characteristics numerically and demonstrate that the CSP has
an instability causing pulse spectrum perturbations and peak-
power pulsations. We associate this instability with the inter-
nal modes of the CSP and the spontaneous breaking of its
symmetry. The obtained results are in good agreement with
the experimental data presented in Refs. �10,13�.

II. CSP SOLUTION OF CGLE

A mode-locked oscillator operates under the influence of
five main factors: �i� saturable gain and linear loss, �ii� spec-
tral filtering, �iii� group-delay dispersion �GDD�, �iv� self-
phase-modulation �SPM�, and �v� self-amplitude-modulation
�SAM�. The last factor is decisive for pulse formation and
can be provided by an intracavity passive modulator �e.g., a
semiconductor saturable absorber�, imperfect overlapping
between the pump and oscillator modes inside an active me-
dium �Kerr-lens mode locking �KLM��, or some other
mechanism �for an overview see �7��. If the contribution of
the higher-order dispersions is negligible and the pulse does
not change substantially during one cavity round trip, it is
possible to describe the mode-locking dynamics on the basis
of the cubic-quintic nonlinear CGLE �13,16�:

�A�z,t�
�z

= �� + �� + i��
�2

�t2 + �� − i��P�z,t�

− ��P�z,t�2�A�z,t� , �1�

where A is the slowly varying �in comparison with the light-
wave period� field amplitude, P�	A	2 is the power, z is the*Electronic address: kalashnikov@tuwien.ac.at
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cavity round-trip number, and t is the local time. The param-
eter � describes the contribution of the finite spectral width
of a gain band �e.g., for a Ti:sapphire oscillator ��1.1 fs2

�13��, and � is the net GDD coefficient. The parameter �
describes SPM inside an active medium �for a solid-state
oscillator�, a fiber �fiber oscillator�, or air �solid-state oscil-
lator with a thin disk active medium�. For a solid-state oscil-
lator the maximum value of this parameter is �max
= �2�	0�2n2n0 �	0 is the oscillator central wavelength; n and
n2 are the linear and nonlinear refraction coefficients, respec-
tively� �13�. Both � and 
 are parameters of SAM. The pa-
rameter � describes an effective gain growth with P. For
KLM oscillators such a growth results from a better overlap-
ping between the pump and oscillator beams due to self-
focusing inside an active medium. In this case, the � param-
eter amounts to a few percent of the � value. The parameter

 describes the SAM saturation and confines the maximum
peak power in an oscillator. A rough estimation for its mini-
mum value gives 0.16� �13�.

The parameter � is the net gain, which is the difference
between the saturated gain and the linear net loss. As a result
of the gain saturation, this parameter depends on the energy
E. Since 	��E�	�1 �13�, it is possible to expand it around 0:
��E��	�d� /dE�	E=E*E*�E /E*−1�, where E* corresponds to
the energy stored inside an oscillator in the continuous-wave
�cw� regime. The parameter ��	�d� /dE�	E=E*E* depends on
only the gain and loss coefficients �13�.

As was found in �12,13�, Eq. �1� has a CSP solution when
the GDD is positive. If � /��1 and � /��1, the spectral
power profile of CSP is

p�� 

6��


�

���2 − 2�
2 + �L

2 , �2�

where  is the frequency measured from the gain band cen-
trum, ��x� is the Heaviside function, �2=�P0 /�, �L

2 =��1
+c� /
�−5�P0 /3�, c=�� /��, and P0 is the CSP peak
power. As one can see from Eq. �2�, the CSP spectrum has a
Lorentz profile truncated at ±�.

The obvious stability criterion for a CSP is the vacuum
stability of Eq. �1�, that is, ��0, and, thereby, the cw is
suppressed. Such a criterion defines the minimum GDD re-
quired for CPO stabilization, which agrees with the numeri-
cal simulations and the experimental observations �13�.
However, the experiment �10� demonstrates that the CPO
stability region is substantially narrower than that predicted
theoretically. Hence, there exists an instability of the CSP
besides the obvious vacuum one.

III. CSP STABILITY

To analyze the CSP stability, Eq. �1� was solved by means
of both symmetrized split-step Fourier and finite-difference
methods. The local time and propagation steps were 1 fs
�215 mesh points� and 10−3 of the cavity round trip, respec-
tively. Convergence was controlled by variation of both the
time mesh and propagation step. The minimum propagation
distance z exceeded 3�104 cavity round trips. In the calcu-
lations we have used the parameters of the Ti:sapphire oscil-

lator operating in PDR �see, for example, �13��: �=1.1 fs2,
�=0.04�, 
=0.6�, �=4.55 MW−1, �=0.04.

First, let us consider the CSP stability on the condition
that it is stable against a cw �i.e., ��0�. Such a stabilization
is possible when the GDD is above some threshold value
�13�.

The simulations demonstrate that the CSP is unstable in
the absence of gain saturation, i.e., when ��0 but the �
parameter does not decrease with E growth. Such an insta-
bility has the form of a pulse decay or of its collapselike
growth �self-similar collapse; see Ref. �17��. The last is con-
fined by only SAM saturation �the quintic nonlinear term in
Eq. �1��.

The analytical solution �2� is obviously temporally and
spectrally symmetrical. However, this solution was found to
be unstable even in the presence of gain saturation. To ex-
plore the instability mechanism, first one can suppress the
asymmetrical perturbations by means of imposed symmetri-
zation at every z: the symmetrized A�z , t� equals �A�z , t�
+A�z ,−t�� /2 �t=0 corresponds to the CSP maximum�.

After starting from a small Gaussian pulse seed, the solu-
tion converges to the analytical one. Then, the long-period
�exceeding hundreds of cavity round trips� pulsations appear.
The amplitude of the pulsations increases with the GDD
�Fig. 1; note that the building-up stage is excluded in the
figures�. Since the experiment �10� demonstrates CSP desta-

FIG. 1. Evolution of the CSP peak power for �=50 �a�, 100 �b�,
and 150 �c� fs2. E*=180 nJ, �=0.04�, 
=0.6�. The building-up
stage is excluded.
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bilization with GDD growth, one can suppose that this de-
stabilization results from the numerically observed growth of
the pulse pulsation. Pulsating solitons exist in the negative-
dispersion regime �18–22�, but their counterparts have not
been analyzed in the PDR, to date. In contrast to the
negative-dispersion regime, pulsations in the PDR do not
entail a change of the pulse shape.

The pulsations undergo a set of bifurcations with GDD
growth: a nonregular pulsation �Fig. 1�a�� changes into a
regular one �Fig. 1�b�� and then into quasiregular pulsation
�Fig. 1�c��. To analyze the type of bifurcation, one can use
the technique of phase-space reconstruction based on the
z-delay embedding of the peak-power series. Such a recon-
struction can be made in the coordinates �P0�z� , P0�z
+Z� , P0�z+2Z��, where Z is the propagation lag defined from
the first minimum of the autocorrelation function of the P0�z�
set �23�. The resulting three-dimensional embedding for �
=100 fs2 is shown in Fig. 2. This figure demonstrates the
existence of the Hopf instability, resembling a beating of the
bright solitary-wave solution of the cubic-quintic nonlinear
CGLE near the nonlinear Schrödinger equation limit �24,25�.
Thus, the source of instability considered can be identified
with the edge bifurcation, when the pulsation arises from a
cw perturbation. Such an instability can explain the experi-
mental fact that the CSP exists only within a limited disper-
sion range �10,12,13�. The lower GDD stability threshold
results from the vacuum instability �cw amplification�
whereas the upper one arises from the edge bifurcation, i.e.,
from the pulse pulsation. Variation of the 
 parameter from
0.16� to � does not effect noticeably the pulsation amplitude
or the bifurcation character.

Growth of the � parameter stabilizes the CSP. In practice,
this growth can be provided by a semiconductor saturable
absorber �10,11,13�. It should be noted that the regime with
extremely strong SAM, low pulse energy, and narrow gain
band has been considered in Ref. �26�. Such a regime results
in pulsations with a disturbance of the pulse shape. As the

analysis demonstrates, our regime corresponding to the high-
energy CSP cannot be connected continuously with that of
Ref. �26� only by variation of the SAM parameters, as one
has simultaneously to decrease the GDD and suppress the
gain saturation. Also, the analysis demonstrates a substantial
growth of pulsation due to a higher-order GDD contribution
�i.e., when the � parameter is frequency dependent�.

The most interesting characteristic of the CSP instability
is the pulse spectrum distortion. As was found in the experi-
ment �10,13�, the spectrum profile in PDR is modulated and
this modulation increases with the GDD. The simulations
demonstrate that the CSP pulsation entails its spectrum pro-
file modulation. Figure 3 shows the numerically obtained
spectra �solid curves� in comparison with the analytical ones
�dashed curves�. Growth of the spectrum profile modulation
with the GDD is clearly visible. Such a modulation is ex-
tremely long lived and cannot be attributed to numerical ar-
tifacts. One can suppose that the pulse peak-power pulsation
in combination with the spectrum profile modulation results
from an excitation of the internal modes of a solitary wave
�27,28�. Such modes have been predicted for the negative-
dispersion regime but have not been observed, to date. The
internal mode is not some compound like a higher-order or
interacting soliton �e.g., see �29��, but a perturbation local-
ized �bound� inside the pulse without an outgoing radiation
�unlike the dispersive wave �16��.

IV. SPONTANEOUS SYMMETRY BREAKING

In the previous section, the symmetry of the complex am-
plitude A relative to t=0 was assumed. This leads to a sym-
metrical spectrum in agreement with Eq. �2�. However, an
evenly symmetrized CSP is unstable against edge bifurca-
tion. In the general case, the CGLE allows symmetry break-
ing with an abrupt pulse destabilization �30�. Therefore let us
consider CSP evolution without imposed symmetrization.

Figure 4 shows the peak-power evolution in this case. The
transitional stage is very long ��2�104 round trips� and

FIG. 2. �Color online� Phase-space reconstruction from the CSP
peak-power set �5000 points� for �=100 fs2. Z=35 cavity round
trips. Other parameters correspond to Fig. 1.

FIG. 3. �Color online� Numerical �solid curves� and analytical
�dashed curves� spectra. z=3�104; parameters correspond to
Fig. 1.
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exceeds essentially that for the negative-dispersion solitonic
regime. As in the case with symmetrization, there are only
pulsating solutions and the amplitude excursion grows with
the GDD. The regularity of the pulsations disappears and
their frequency decreases approximately twice. The temporal
profile of P0 �pulse shape� is not distorted as before.

A most interesting property of the regime is the symmetry
breaking in the spectral domain that is shown in Fig. 5. Ear-
lier �see Ref. �11��, it was supposed that the spectral asym-
metry results from only the frequency dependence of the
GDD. However, the simulations demonstrate that this phe-
nomenon can be dynamic in nature.

Thus, the pulsation can be interpreted as beating between
two asymmetrical internal modes of the CSP. The symmetry
breaking and the beating are clearly visible in the spectral
profile �Fig. 6�. But again one has to note that the pulse
shape has no asymmetry.

One can suppose that the revealed instability has a phase
nature and thereby not only confines a region of the CSP
existence but also reduces its spectral coherence. The last is
very important for applications and needs further analysis.

V. CONCLUSION

The stability of the chirped-solitary-pulse solutions of the
CGLE has been investigated numerically. It was found that

the CSP is unstable in the absence of gain saturation, i.e.,
when the source term in the CGLE is energy independent.
Even if the gain saturation contributes to the pulse dynamics,
the CSP suffers from edge bifurcation. This results in �i�
long-period pulsations �both regular and irregular� of the
CPO peak power and �ii� modulation of the CSP spectrum
profile. The instability, which can be attributed to an excita-
tion of internal modes of the solitary pulse, grows with the
GDD and is clearly visible in the experimental spectra. One
can suppose that this instability defines the maximum GDD
providing CPO stabilization so that the CPO operates within
a confined range of the GDD.

Also, it was found that the CSP is unstable against sym-
metry breaking so that the dynamics of the CPO in the PDR
is the beating between asymmetrical internal modes of the
CSP solution of the CGLE. This effect reduces not only the
region of CSP existence but also its spectral coherence. The
proposed way to suppress this instability is similar to that for
suppression of cw amplification �11,13�: the self-amplitude-
modulation has to be intensified, which is possible using a
semiconductor saturable absorber.

10000 20000 30000 40000 50000
0.20

0.21

P 0
(a
rb
.u
ni
ts
)

z

10000 20000 30000 40000 50000

0.312

0.314

P 0
(a
rb
.u
ni
ts
)

z

10000 20000 30000 40000
0.640

0.642

(c)

(b)

P 0
(a
rb
.u
ni
ts
)

z

(a)

FIG. 4. Evolution of the CSP peak power for �=50 �a�, 100 �b�,
and 150 �c� fs2. E*=180 nJ, �=0.04�, 
=0.6�. No imposed
symmetrization.

FIG. 5. �Color online� Numerical �solid curves� and analytical
�dashed curves� spectra. z=5�104. No imposed symmetrization.

FIG. 6. Spectrum profile evolution for �=150 fs2.
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