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We report results of a systematic analysis of the stability of dissipative optical solitons, with intrinsic
vorticity S=0 and 1, in the three-dimensional complex Ginzburg-Landau equation with the cubic-quintic
nonlinearity, which is a model of a dispersive optical medium with saturable self-focusing nonlinearity and
bandwidth-limited nonlinear gain. The stability is investigated by means of computation of the instability
growth rate for eigenmodes of small perturbations, and the results are verified against direct numerical simu-
lations. We conclude that the presence of diffusivity in the transverse plane is necessary for the stability of
vortex solitons �with S=1� against azimuthal perturbations, while zero-vorticity solitons may be stable in the
absence of the diffusivity. On the other hand, the solitons with S=0 and S=1 have their stability regions at both
anomalous and normal group-velocity dispersion, which is important to the experimental implementation. At
values of the nonlinear gain above their existence region, the solitons either develop persistent intrinsic
pulsations, or start expansion in the longitudinal direction, keeping their structure in the transverse plane.
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I. INTRODUCTION

Solitons, which are represented by localized solutions of
nonlinear partial differential equations �1�, are ubiquitous
self-supporting objects found in media of very different
physical nature. Among various realizations of solitons in
fundamental and applied physics, especially important are
those in nonlinear optics �2–7�. In integrable systems, which
provide for a strongly idealized description of physical me-
dia, the solitons preserve their shape upon interaction and
may be viewed as “nonlinear modes” of the corresponding
model. In more realistic nonintegrable systems �conservative
or dissipative ones�, solitons �or, strictly speaking, solitary
waves� may also be regarded as nonlinear modes, even if
their properties are different from those of their counterparts
in integrable models. In conservative media, the solitary
waves are supported by stable balance between diffraction
and/or dispersion and nonlinearity, whereas, in the presence
of dissipation, gain and loss must also be balanced. In the
former situation, solitons �in integrable and nonintegrable
models alike� form continuous families with one or more
intrinsic parameters, whereas in the latter case the condition
of the balance between gain and loss results in a solitary-
wave solution �dissipative soliton �DS� �8–10�� having its
amplitude and velocity fixed by coefficients of the governing
equations, i.e., stationary soliton solutions are isolated ones.

A necessary condition for the full stability of a DS is the
stability of its background, i.e., zero solution. Therefore, the
systems supporting stable DSs are necessarily bistable, fea-
turing two competing attractors: The DS itself, and the zero
solution. A border between their attraction basins is a sepa-
ratrix, which is represented by an additional unstable DS.
Thus stable DSs may only appear in pairs with their unstable

counterparts. Known examples of models that feature such
solution pairs, available in an exact analytical form, are the
one-dimensional �1D� nonlinear Schrödinger �NLS� equation
which includes linear loss and parametric-gain terms �11�,
and a system of linearly coupled 1D cubic and linear com-
plex Ginzburg-Landau �CGL� equations �12�. Contrary to
that, models admitting a single DS solution, such as the cu-
bic CGL equation per se �13�, do not give rise to stable
pulses.

Generally, CGL equations are universal models to de-
scribe the dynamics of dissipative physical media close to
the onset of pattern-forming instabilities �14–16�. In this and
related capacities, the CGL equations find applications in di-
verse branches of physics, such as superconductivity, fluid
dynamics, plasmas, chemical-reaction waves, nonlinear op-
tics, and others �14–17�. In addition to the above-mentioned
DSs �alias solitary pulses�, these equations give rise to solu-
tions of other kinds, such as shocks, sources, sinks, and vari-
ous pulsating states. These solutions describe physically sig-
nificant patterns in laser cavities �18�, hydrodynamic flows
�19�, nonlinear optics �17,20–22�, and hot plasmas �13,23�.

A model which supports stable DSs and is more generic
than the above-mentioned specific ones �based on the
damped parametrically driven NLS equation �11�, or the sys-
tem of coupled cubic and linear CGL equations �12,24��, is
provided by an equation of the CGL type with the cubic-
quintic �CQ� nonlinearity. Note that the CQ nonlinearity is a
quite generic one in both optical and atomic systems �for a
recent study of a four-level atomic system with electromag-
netically induced transparency with giant CQ nonlinearities
of opposite signs, see Ref. �25��. The CGL equation with CQ
nonlinearities was first introduced, in the 2D form, by Petvi-
ashvili and Sergeev �26�, and later considered in many other
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papers; see, e.g., Refs. �24,27–31� and references therein. In
addition to stationary solitary pulses, more sophisticated so-
lutions to the CQ CGL equations in one dimension, such as
exploding �erupting� solitons and fronts �32�, and “creeping
solitons� �33�, were found too.

The CGL equation with the CQ nonlinearity makes it pos-
sible to find stable localized solutions in the 2D and 3D
geometry. In particular, stable 2D states in the form of spiral
solitons �ones with “spin,” i.e., intrinsic vorticity, S=1 and 2�
were found by means of numerical methods in Refs. �34�.
Stable DS solutions in three dimensions, which resemble
“light bullets,” i.e., 3D �spatiotemporal� solitons, which were
predicted in several conservative models of nonlinear optics,
but have not yet been created in the experiment �6�, were
reported recently, for both anomalous and normal group-
velocity dispersion �GVD� �35,36� �anomalous GVD is a
necessary condition for the existence of solitons in any con-
servative model in any dimension �6�, while stable solitary
pulses were found before in 1D dissipative models with nor-
mal GVD �37��. In the case when the domination of the
normal GVD does not allow the existence of DSs, the pro-
cess of the temporal elongation of 3D pulses into expanding
“rockets” was investigated too �36�. Another issue of interest
is a possibility to form complexes �“molecules”� of solitons
in dissipative systems. In particular, the concept of an “opti-
cal soliton molecule” was introduced to describe quasistable
aggregates of solitons in 3D conservative models �38�. How-
ever, such “molecules” in conservative media are subject to
gradual decay on a long propagation scale.

An especially challenging problem is the stability of 3D
solitons with intrinsic vorticity �alias vortex tori, so called
due to their doughnutlike shape�, against both the supercriti-
cal collapse in the 3D space, caused by the self-focusing
nonlinearity, and the specific splitting instability of vortical
solitons �6,39,40�. Stable 3D solitons with spin �alias topo-
logical charge� S=1 were found in conservative models that,
to arrest the collapse, rely on competing nonlinearities, such
as cubic-quintic or quadratic-cubic �40�. Stability of local-
ized vortices was also explored in the 3D Gross-Pitaevskii
equation with the self-attractive cubic nonlinearity and an
isotropic trapping potential �41�. It is also relevant to men-
tion that many types of stable 3D solitons with intrinsic vor-
ticity were found in the discrete NLS equation with the cubic
nonlinearity �42�. In the context of 3D vortical-soliton states,
remaining issues are the stability of multicharged vortex tori
with S�1 �stable higher-order vortex solitons were found in
2D models �43,44��, and the search for stable vortical soli-
tons in 3D dissipative media. The above-mentioned results of
Ref. �34�, where stable 2D vortex solitons, with a spiral
phase field, were found for S=1 and 2, suggest that the CQ
CGL equation may be a relevant model to generate vortex
DSs in the 3D case too. Indeed, stable 3D spinning solitons
�vortex tori�, with both S=1 and S=2, have been reported in
this model �45�. Those results present not only the first spe-
cies of stable spinning solitons in a 3D dissipative medium,
but also the first example of stable higher-order �S�1� vor-
tex solitons in any 3D model. In addition, stable fundamen-
tal, alias spinless �S=0�, 3D spatiotemporal solitons
�35,36,46�, as well as double-soliton complexes, including
rotating ones �47�, have been found in an optical model
based on the CQ CGL equation.

The aim of this paper is to explore physically significant
properties of the 3D solitons in the CGL model with the CQ
nonlinearity. In particular, our objective is to find out what
ingredients of the model are crucial to the stability of the
spinless and spinning solitons. In this connection, it is nec-
essary to mention that the underlying equation features the
CQ nonlinearity in both its conservative and dissipative
parts; see Eq. �1� below. As mentioned above, in conserva-
tive models, such as the CQ NLS equation, the quintic self-
defocusing term is necessary to suppress the supercritical
collapse, the trend to which is caused, in the 3D space, by the
self-focusing cubic nonlinearity �6�. In Ref. �45�, it has been
demonstrated that the saturation of the self-focusing nonlin-
earity �through the quintic term� in the conservative part of
the CGL equation is not necessary for the stability of 3D
fundamental and vortex DSs, because the trend to collapse is
suppressed by the quintic term in the dissipative part of the
equation. However, the results were reported in Ref. �45�
only with nonzero diffusivity in the transverse plane, and
anomalous GVD in the longitudinal �temporal� direction ��
�0 and D�0 in Eq. �1�; see below�. For the experimental
creation of the solitons, it is important to know the sensitivity
of the stability to these two factors. In particular, setting �
=0 renders the model Galilean invariant in the transverse
directions, which makes it possible to create moving solitons
and study collisions between them �48�. The sign of the
GVD is important too, as the experiment is usually con-
ducted in a vicinity of the zero-dispersion point of the carrier
wavelength; hence both signs are relevant.

In this work, we demonstrate that the diffusivity is indeed
necessary for the stability of the vortex solitons against split-
ting �while the zero-vorticity solitons may be stable in the
absence of the diffusivity�. We demonstrate too that stable
dissipative solitons, with zero and nonzero vorticity alike,
exist at both anomalous and normal GVD. In fact, the stabil-
ity region of vortex dissipative solitons is larger in the latter
case, which suggests that the solitons may be created in an
expanded range of the carrier wavelength �on both sides of
the zero-dispersion point�. In addition, we demonstrate that,
at values of the nonlinear gain above the upper border of the
existence region for stationary 3D dissipative solitons, they
start either intrinsic pulsations, or permanent expansion in
the temporal �longitudinal� direction, while keeping their
structure in the transverse plane.

The paper is organized as follows: After introducing the
CQ CGL model in Sec. II, in Sec. III we report results of
systematic analysis demonstrating the existence and stability
of both spinless and spinning solitons in both the normal-
and anomalous-GVD regimes. Stability borders for these
states are accurately delineated. Direct numerical simulations
of the evolution of perturbed solutions show full agreement
with predictions based on computation of instability eigen-
values from the linearized equations for small perturbations.
The paper is concluded by Sec. IV.

II. CUBIC-QUINTIC GINZBURG-LANDAU MODEL

We consider a model of a bulk �3D� optical medium de-
scribed by the following equation for a local amplitude, U, of
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the electromagnetic field propagating along axis z
�35,36,45,46�:

iUz + �1

2
− i���Uxx + Uyy� + �D

2
− i��Utt + �i� + �1 − i���U�2

− �� − i���U�4�U = 0. �1�

Here, the coefficients which are scaled to be 1/2 and 1 ac-
count, respectively, for the diffraction in transverse plane
�x ,y� and the self-focusing Kerr nonlinearity, ��0 is the
above-mentioned effective diffusivity in the transverse plane
�the optical model contains the diffusion term if the electro-
magnetic field generates free carriers, which may occur in
semiconductor waveguides �34,49�, or ionizes the medium,
which happens in the case of the propagation of very strong
pulses in air �50��. A CGL model including a spatial diffusion
term has also been derived from the Maxwell-Bloch equa-
tions, in the case of a laser in the bad cavity configuration
�51�. Variants of this model of Swift-Hohenberg type �52� or
involving two contrapropagating waves �53� relate the con-
stant � to the laser detuning. Further, positive parameters �,
�, and � represent, respectively, the linear loss, nonlinear
gain, and its saturation, which are ordinary ingredients of the
CQ CGL equation �26�; ��0 accounts for the above-
mentioned self-defocusing quintic correction to the Kerr
term �saturation of the optical nonlinearity�. Notice that non-
zero quintic nonlinear terms may arise in a laser cavity even
if the susceptibility 	�5� of the optical materials used is neg-
ligible. This has been demonstrated in the 1D case of a fiber
laser mode-locked by nonlinear rotation of the polarization
�54�; however, � was zero in this situation. D is the GVD
coefficient �D
0 and D�0 correspond to the normal and
anomalous dispersion�, and ��0 is its counterpart account-
ing for the spectral filtering, i.e., bandwidth-limited character
of the gain.

Solutions to Eq. �1� in the form of vortical DSs are looked
for as

U�z,x,y,t� = ��z,r,t�exp�iS�� , �2�

where r and � are the polar coordinates in plane �x ,y�, S is
the above-mentioned integer spin �vorticity�, and complex
function ��z ,r , t� obeys the propagation equation

i�z + �1

2
− i����rr +

1

r
�r −

S2

r2 �� + �1

2
D − i���tt

+ �i� + �1 − i�����2 − �� − i�����4�� = 0 �3�

�due to the complexity of �, the intrinsic phase fields of the
vortical solitons has the form of rotating spirals in the trans-
verse plane �34��. Solutions to Eq. �3� must decay exponen-
tially at r , �t�→, and as r�S� at r→0.

To find relevant solutions, we simulated Eq. �3� forward
in z, starting with an arbitrary axially symmetric input pulse
�typically, a Gaussian� corresponding to vorticity S, in the
form of

�0�r,t� = A0rS exp�−
1

2
� r2

r0
2 +

t2

t0
2�	 ,

with real constants A0 ,r0 , t0, in anticipation of self-trapping

of the pulse into a stable DS �attractor�. The thus found
established DS can be eventually represented in the form of

��z,r,t� = ��r,t�exp�ikz� , �4�

where propagation constant k is, as a matter of fact, an ei-
genvalue determined by parameters of Eq. �3� �including S�.
A standard Crank-Nicholson scheme of the numerical inte-
gration was used, with typical transverse and longitudinal
step sizes �r=�t=0.1 and �z=0.005. The nonlinear finite-
difference equations were solved by dint of the Picard itera-
tion method, and the resulting linear system was then
handled with the help of the Gauss-Seidel iterative proce-
dure. To achieve good convergence, ten Picard and four
Gauss-Seidel iterations were typically needed. Wave number
k was finally found as a value of the z derivative of the phase
of ��z ,r , t�. The solution was reckoned to achieve a station-
ary form if k ceased to depend on z, r, and t, up to five
significant digits.

III. SOLITON SOLUTIONS AND THEIR STABILITY

A. Stationary and nonstationary solitons

In Fig. 1 we show the existence and stability domains for
spinless �S=0� and spinning �S=1� DSs in the plane of �� ,��
�i.e., quintic-loss and cubic-gain coefficients in Eq. �1�� for
zero diffusivity, �=0, and different values of � and GVD
coefficient D, the other parameters being �=0.5 and �=0.4.
As might be expected, the existence domains are larger in the
case of the anomalous GVD; nevertheless, the solitons exist
too with normal GVD. In Fig. 1, the S=0 solitons are stable
in the entire existence domain between black lines in each

FIG. 1. �Color online� The existence and stability domains of
dissipative solitons with S=0 and S=1 for �=0 �zero diffusivity� in
the plane of the quintic-loss and cubic-gain coefficients, �� ,��, for
�a�, �b� normal and �c�, �d� anomalous GVD. Other parameters are
�=0.5 and �=0.4. The S=0 solitons are stable in the domains be-
tween black curves. The S=1 solitons exist and are unstable in the
domains between red �dark-gray� curves.
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panel, whereas the S=1 vortex solitons exist and are always
unstable �recall that the results in Fig. 1 pertain to the zero
value of diffusivity �� in regions between red �dark-gray�
curves in each panel �a�–�d� �details of the linear stability
analysis for these solutions are presented below�. Beneath
the lower curves in each panel of Fig. 1, the input pulses
corresponding to S=0 and S=1 decay to nil, whereas above
the upper borders they either feature nearly periodic evolu-
tion, converging to pulsating solitons �breathers�, spinless or
spinning ones �see below�, or expand indefinitely in the time
domain but remain localized in the spatial domain �see below
too�. Note that the stable solitons �ones with S=0, in this
case� are strong attractors, as they self-trap from a large
variety of inputs.

Typical radial and temporal cross sections of stable soli-
tons with S=0 and S=1 are shown in Figs. 2�a�–2�d� for �
=0, �=1, �=0.1, and two representative values of �, in both
the normal- and anomalous-GVD regimes. In the case of the
normal GVD and for large values of the nonlinear-gain co-
efficient, �, near the existence border, the solitons display a
characteristic flat-top shape; see panel �d� in Fig. 2.

As mentioned above, the spinning and spinless DSs may
continue to exist above the upper borders in Fig. 1, but in the

form of pulsating, rather than stationary, solitons. To illus-
trate this point, in Fig. 3 we show the total energy of a
pulsating vortex soliton with S=1,

E = 

0



r dr

0

2�

d�

−

+

dt�U�r,�,t��2

� 2�

0



r dr

−

+

dt���r,t��2 �5�

�see Eq. �2��, as a function of propagation distance z, for �
=0, �=0.1 �=2.05, �=1, and normal GVD, D=−0.2. Note
that this soliton features regular �single-period� shape vibra-
tions, between the cross sections shown in Figs. 3�b� and
3�c�. In the case of anomalous GVD, the energy of spinless
�S=0� and spinning �S=1� pulsating solitons is shown, as a
function of the propagation distance, in Fig. 4. In this case,
contrary to the situation with the normal GVD, the E�z�
curves reveal complex �multiple-period� pulsations.

Another possible outcome of the evolution above the up-
per borders in Fig. 1 is conversion of the soliton into an
expanding pattern filling the space between two fronts mov-
ing in opposite directions along the temporal axis, while the
pattern’s shape remains stationary in the �x ,y� plane. This
possibility is illustrated by Fig. 5, which displays typical
cross-section shapes, in the transverse �r� and temporal �t�
directions, of the pattern generated, in this case, by an initial
zero-vorticity solitary pulse.

The families of the 3D spinless and spinning solitons in
the CQ CGL model, and their stability, are represented, in
Figs. 6 and 7, by dependences of the soliton’s energy on the
cubic-gain coefficient, �, at zero ��=0� and finite ��=0.1�
values of diffusivity coefficient �. The stability of the solu-
tions was identified through the computation of the instabil-

FIG. 4. The soliton’s energy versus the propagation distance for
pulsating solitons at �=2.33: �a� S=0 and �b� S=1. Other param-
eters are �=0, �=0.1, �=1, and D=1 �anomalous GVD�.

FIG. 2. Cross-section shapes of typical stable solitons with S
=0 in the transverse �r� and temporal �t� directions, for values of D
and � indicated in the panels, including cases of �a�, �b� anomalous
and �c�, �d� normal GVD. Other parameters are �=0, �=1, and �
=0.1.

FIG. 3. �Color online� �a� The soliton’s en-
ergy, defined in Eq. �5�, versus the propagation
distance for a pulsating vortex dissipative soliton
with S=1, at �=0, �=0.1 �=2.05, �=1, and nor-
mal GVD, D=−0.2. Panels �b� and �c� display the
soliton’s cross-section shapes in the transverse �r�
and temporal �t� directions, at positions with the
maximum and minimum energy �points A and B,
respectively, in panel �a��, between which the
soliton oscillates.
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ity growth rate for eigenmodes of small perturbations, as
described in detail below.

As mentioned above, the S=0 solitons may be stable at
zero diffusivity, but all the spinning solitons, with S=1, are
unstable in this case, while a part of their family is stable, as
marked by arrows �stability borders� in Fig. 7, at �=0.1. It is
noteworthy that there is one stability border in the case of
normal GVD, Fig. 7�a�, and two borders �with the stability
region located between them� if the GVD is anomalous, Fig.
7�b�. Moreover, although the anomalous character of the
GVD is a necessary condition for the existence of solitons in
conservative media, we conclude from Fig. 7 �as also con-
firmed by Fig. 9, see below� that the stability region for the
vortex DSs is larger in the case of normal GVD than for
anomalous chromatic dispersion. On the other hand, the satu-
ration of the self-focusing nonlinearity, accounted for by pa-
rameter ��0 in Eq. �1�, is not crucial to the stability: As
seen in Figs. 6 and 7, both the spinless and spinning solitons
may be stable at �=0.

B. Stability analysis: Infinitesimal and finite perturbations

To study the stability of the stationary solitons in an ac-
curate form, a perturbed solution to Eq. �1� was looked for as

U = ���r,t� + f�r,t�exp��z + iJ��

+ g*�r,t�exp��*z − iJ���exp�ikz + iS�� ,

where ��r , t� is the function defined in Eq. �4�, J is an integer

azimuthal index of the infinitesimal perturbation, � is the
instability growth rate �which may be complex�, and � stands
for the complex conjugation. The substitution of this expres-
sion in Eq. �1� leads to linearized equations,

�i� + i� − k�f + �f tt + ��frr + r−1fr − r−2�S + J�2f� + 2����2f

+ ��2g + 3����4f + 2����2�2g = 0, �6�

�− i� − i� − k�g + �*gtt + �*�grr + r−1gr − r−2�S − J�2g�

+ 2�*���2g + �*��*�2f + 3�*���4g + 2�*���2��*�2f = 0,

�7�

where ���D /2− i��, ��1/2− i�, ��1− i�, and ��−�
+ i�. Equations �6� and �7� are supplemented by boundary
conditions demanding that the solutions vanish exponentially
at r→ , �t�→, and as r�S+J� and r�S−J� at r→0.

Results of the linear stability analysis are summarized in
Figs. 8 and 9, where, fixing �=1, we vary the nonlinear gain
� and GVD coefficient D, and display the instability growth

FIG. 5. Typical cross-section shapes in the �a� transverse �r� and
�b� temporal �t� directions of the expanding zero-vorticity pattern
formed by two fronts running along the temporal direction. Here,
�=0,�=2.2, �=0.1, �=1, and D=−0.2 �normal GVD�.

FIG. 6. �Color online� The energy of the nonspinning �S=0� and
spinning �S=1� solitons versus the nonlinear-gain parameter, �, for
zero diffusivity, �=0, and �=1: �a� D=−0.2 and �b� D=1. Here
and in Fig. 7, red �dark gray� and black branches �or parts thereof�
represent unstable and stable solutions, respectively.

FIG. 7. �Color online� The same as in Fig. 6, but for spinning
solitons, with S=1, at nonzero diffusivity, �=0.1. Other parameters
are the same as in Fig. 6. Stable and unstable portions of the solu-
tion branches are marked by symbols “s” and “u” �in addition to the
different colors�. Arrows indicate stability borders.

FIG. 8. The largest instability growth rate versus � for spinning
solitons with S=1 in the case of zero diffusivity, �=0. �a� D=1,
�=0.1, �b� D=−0.2, �=0.1, �c� D=1, �=0, and �d� D=−0.2, �=0.
Other parameters are �=1, �=0.5, and �=0.4.
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rate, i.e., the largest value of Re���, found as the eigenvalue
of Eqs. �6� and �7�, versus � for zero and nonzero diffusivity
�. Figures 8 and 9 demonstrate that the perturbation with
azimuthal index J=2 is the dominant one. In the case of �
=0, the spinning solitons are unstable in the entire domain of
their existence, as per Fig. 8. However, for ��0, stability
domains for the spinning solitons are found, with both nor-
mal and anomalous GVD �in Ref. �45�, only the case of
anomalous GVD was investigated in detail�. As mentioned
above �see Figs. 7�a� and 7�b��, in the case of normal GVD
there is a single stability border, marked by the vertical arrow
in Fig. 9�a�, whereas the stability interval has two borders in
the case of anomalous GVD �the vertical arrow in Fig. 9�b�
marks the center of the stability interval of the S=1 solitons�.

The predictions of the linear stability analysis were veri-
fied in direct simulations of Eq. �1�. To this end, initial con-
ditions for a perturbed soliton were taken as U�z=0�
=��r , t��1+q��exp�iS��, where ��r , t� is the stationary solu-
tion as per Eq. �4�, q is a small perturbation amplitude, and �
is a random variable uniformly distributed in the interval of
�−0.5,0.5�. In the simulations, it was observed that those
perturbed spinning solitons which were predicted to be un-
stable either completely decay, or split into a set of spinless
solitons, if slightly perturbed. Typical examples of the split-
ting of S=1 solitons �in both the normal- and anomalous-

GVD regimes� into two pulses with S=0 due to the azi-
muthal instability are shown in Fig. 10. The outcome agrees
with the fact that the strongest instability mode for these
solitons is, pursuant to Fig. 8, the one with J=2; hence it
should indeed split into two fragments.

It has also been verified that those spinning solitons �with
S=1� which were predicted above to be linearly stable are
indeed stable against the addition of finite random perturba-
tions. Examples of self-healing of stable spinning solitons
with the initial relative perturbation amplitude at the level of
10% are displayed in Fig. 11, for the normal and anomalous
GVD in parallel.

IV. CONCLUSIONS

In this work, we have expanded the studies of 3D dissi-
pative vortex solitons with the toroidal shape in the complex
Ginzburg-Landau equation with the cubic-quintic nonlinear-
ity, which were recently initiated in Ref. �45�. The cubic-
quintic complex Ginzburg-Landau equation provides for a
model of dispersive bulk optical media with saturable self-
focusing nonlinearity, nonlinear gain, and spectral filtering.
An important issue is the dependence of the stability of the
vortex solitons on physical parameters. In Ref. �45�, it was
found that the saturation of the self-focusing Kerr nonlinear-
ity is not an essential condition for the stability of fundamen-
tal and vortex solitons, as the supercritical collapse induced
by the Kerr nonlinearity in the 3D medium may be effec-
tively suppressed by the dissipative part of the model. How-
ever, the role of the effective diffusivity in the transverse
plane, and of the sign of the group-velocity dispersion in the
longitudinal �temporal� direction—anomalous or normal—
remained unknown. In this work, using the accurate linear-
stability analysis and direct simulations of perturbed solitons,
we have found that the diffusivity is necessary for the stabil-
ity of the vortex solitons against splitting �while zero-
vorticity solitons may be stable in the absence of the diffu-
sivity�. On the other hand, stable dissipative solitons, with
zero and nonzero vorticity alike, exist with both anomalous

FIG. 9. The same as in Fig. 8 but for �=0.1 and �=0.1. �a� D
=−0.2; �b� D=1. The other parameters are as in Fig. 7. The value of
�cr is the stability border in �a�; in �b�, the arrow indicates the center
of the stability interval, rather than its border.

FIG. 10. �a�–�c� Isosurface plots illustrating the perturbation-
induced splitting of unstable vortex tori �spinning solitons� with S
=1, at �=0, �=2, �=1, �=0.1, for normal GVD, D=−0.2. Panels
�a�, �b�, and �c� display configurations at z=0, z=420, and z=430,
respectively. �d�–�f� The same for the anomalous GVD, D=1, and
�=1.9. Panels �d�, �e�, and �f� pertain to z=0, z=200, and z=205,
respectively. To plot this and the next figure, the simulations were
performed on a 3D cubic grid with the linear size of �−10.5,10.5�.

FIG. 11. �a�, �b� The recovery of a perturbed stable spinning
soliton with S=1, at �=0.1, �=1, and �=0.1, in the case of normal
GVD, with D=−0.2 and �=2.1. Panels �a� and �b� show the shape
of the vortex torus at z=0 and z=300, respectively. �c�, �d� The
same in the case of anomalous GVD, with D=1 and �=2.3.
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and normal group-velocity dispersion, the stability region of
dissipative solitons with nonzero vorticity being wider in the
latter case.

It has also been found that, at values of the nonlinear gain
above the upper border of their existence region, the three-
dimensional dissipative solitons either develop intrinsic pul-
sations �regular or multiple-periodic ones, in the cases of the
normal and anomalous group-velocity dispersion, respec-
tively�, or start expansion in the temporal �longitudinal� di-

rection, keeping the fixed structure in the transverse plane.
The latter effect may be used, in principle, to grow photonic
channels and multichannel arrays in bulk optical media.
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