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The first-order quantum corrections to the static structure factor of vortex lattices in a rapidly rotating
quasi-two-dimensional Bose-Einstein condensate are calculated. Furthermore, we estimate the melting filling
fraction by using a criterion similar to that used in thermal melting related to the Debye-Waller factor of the
smallest reciprocal lattice vector.
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I. INTRODUCTION

Rapidly rotating Bose-Einstein condensates have attracted
increasing interest recently. Due to the analogy between the
Hamiltonian for a rotating condensate in a harmonic trap and
that for charged particles in a magnetic field, Landau levels
can be conveniently used as the complete set of single-
particle wave functions. The rapidly rotating limit makes the
lowest Landau level �LLL� primarily occupied �1�, which
brings huge simplicity to the theoretical handling of rapidly
rotating condensates. For condensates in the LLL, various
states, ranging from well-organized vortex lattices �mean-
field quantum Hall regime� to a series of highly correlated
quantum Hall liquids �2–4�, have been identified using the
filling fraction �, the ratio of particle numbers N to vortex
numbers Nv. It is worth mentioning that, while the generally
accepted criterion for the LLL approximation requires the
average interaction energy per particle to be smaller than the
Landau level spacing, calculations on type-II superconduct-
ors �5� and a recent numerical work on rotating gases �6�
both indicated that this condition may be too restrictive.

The Gross-Pitaevskii energy functional provides accurate
descriptions for the condensates in the mean-field quantum
Hall regime �1,7–9�, beyond which, however, quantum fluc-
tuations become more and more important, eventually lead-
ing to the melting of the vortex lattice. In the rapidly rotating
limit, Sinova et al. �10� first obtained the quadratic
collective-excitation spectrum of a quasi-two-dimensional
�2D� gas within the LLL approximation. This softer spec-
trum, or Tkachenko mode in the quantum Hall limit �13�, is
responsible for the lack of Bose-Einstein condensation of the
system in the thermodynamic limit. Nevertheless, as was
pointed out in Refs. �10,13�, at zero temperature the single-
vortex displacement does not exhibit divergent fluctuations
even though the condensate fraction does, which indicates
that the vortex lattice can still have positional long-range
order before quantum melting in realistic systems. Several
authors �10–12� have studied quantum melting of the vortex
lattice by using elastic theory and the Lindemann criterion
�14,15�. The filling fraction at which the lattice melts was
estimated to be of the order of 10 �10,11�. A numerical cal-
culation based on the exact-diagonalization method also in-
dicated a similar result, ��6 �16�. Another interesting work
�17� using the vortex-coordinate approach suggests coopera-
tive ring exchange as the mechanism of quantum melting of

the same system and predicts a melting ��2.
We attempt, in this paper, to tackle the problem of vortex

lattice melting from a somewhat different angle, which fo-
cuses on the fluctuation effect on the static structure factor
rather than single-vortex displacement. The structure factor,
or equivalently the density-density correlation itself, is an
important theoretical quantity for describing Bose-Einstein
condensates �18� and has received considerably theoretical
�19–23� and experimental �24,25� investigation for nonrotat-
ing condensates.

As is well known from solid state physics, for a crystal
the thermal fluctuations diminish the intensity of the Bragg
peaks but do not eliminate the peaks altogether �26�. The
effect of these fluctuations is entirely contained in the
Debye-Waller factor, the ratio of the structure factor at tem-
perature T to its value at zero temperature. A phenomeno-
logical melting criterion related to the Debye-Waller factor
of the smallest reciprocal lattice vector has been discussed in
both a Yukawa system �27� and type-II superconductor vor-
tex matter �28�. This criterion states, in the present case, that
the vortex lattice is expected to melt when the reduction of
the intensity of the Bragg peak due to quantum fluctuations
reaches a certain fraction of its mean-field value.

In this paper, we calculate the effect of quantum fluctua-
tions on the static structure factor of vortex lattices in a
quasi-2D Bose-Einstein condensate, based on which we also
estimate the melting filling fraction by using a criterion akin
to that used in thermal melting related to the Debye-Waller
factor. Our result is consistent with some other estimates
�10,11,16�. The rest of the paper is organized as follows. In
Sec. II we introduce the model and briefly review the mean-
field and perturbation theories. In Sec. III a calculation of the
static structure factor up to the first-order quantum correction
is carried out thoroughly. The melting of the vortex lattice is
discussed in Sec. IV.

II. MEAN-FIELD THEORY AND PERTURBATION
FRAMEWORK

For completeness we will rederive, using the notation
given in Ref. �5�, some of the results obtained in Ref. �10�.
Our starting point is the rotating-frame Hamiltonian �16� of
the boson gas in an axisymmetric trap �with trap frequencies
�� and �z� rotating with angular velocity −�ẑ,
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where a hard-core potential of strength g is used to describe
the two-body interaction in the low-energy limit. The kinetic
part of this Hamiltonian is reminiscent of that for charged
particles in a magnetic field, whose eigenfunctions are the
well-known Landau wave functions. In the rapidly rotating
limit �→��, the system approaches the quasi-two-
dimensional limit and, assuming a strong confinement in the
z direction, the Hamiltonian is reduced to a quasi-2D one. By
first switching to the Landau gauge and then using the func-
tional integral formalism, the partition function of this sim-
plified model can be expressed as

Z =	 D�*D�e−S��*,��, �2�

where S is the action �29�

S��*,�� = 	
0

1/T

d�	 dx
�*� �

��
−

	2

2m
D2 − 
�� +

1

2
g���4� ,

�3�

T is the temperature, 
 is the chemical potential, D2
��x

− iby�2+�y
2, and b=2m� /	.

The usual static mean-field equation can be obtained
when the stationary approximation is applied,

H� − �
� + g���2� = 0, �4�

where H
−�	2 /2m�D2−	2b /2m, �
=
−	2b /2m. Within
the LLL approximation the solution of this equation is the
well-known Abrikosov solution and can be written as

� = �
 = ��2��

a �
l=−�

�

exp
i��l�l − 1�
2

+
2��bx

a
l�

−
1

2
�y�b −

2�

b
l�2� , �5�

where a /�b=�4� /�3b is the lattice spacing. The conden-
sate wave function � should minimize the free energy and
one can then find the mean-field value of �:

�0 =��


�g
, �6�

where �= �b /2���celldx�
�4.
Perturbation theory of the weakly interacting Bose gas

�30,31� can be used here to calculate the quantum corrections
to �. First one parametrizes the quantum field � in terms of
the time-independent condensate � and a quantum fluctua-
tion field �, �=�+�, and decomposes the action into a
classical term, an unperturbed free term, and a perturbation
term:

S = Sc��*,�� + S free��*,�� + Spert��*,�� , �7�

where the perturbation part of the action Spert includes all the
cubic and quartic terms of �. Next one diagonalizes the un-
perturbed part of the action to obtain the propagator, which
will be detailed below. Then by using the loop expansion the
free energy density can be given by

F�
,�� = �
i

Fi�
,�� , �8�

where the subscript i denotes the contribution of the ith-order
one-particle irreducible loop diagrams. The first quantum
correction for � to its mean-field value �0 is �30�

�1 = − � �F1�
,��
��

�
�=�0

�� �2F0�
,��
��2 �

�=�0

. �9�

The unperturbed part of the action includes all the quadratic
terms of � and can be written as

S free��*,�� =	 d�	 dx
�*� �

��
−

	2

2m
D2 − 
��

+ 2g���2���2 +
1

2
g�2�*2 +

1

2
g�*2�2� .

�10�

Within the LLL we expand � in a basis of quasimomentum k
eigenfunctions,


k�x� =�2��

a
�

l=−�

�

�exp
i��l�l − 1�
2

+
2���bx − ky/�b�

a
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−
1
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and

��x,�� =�T

A
�

�m,k

k�x�e−i�m�a��m,k� , �12�

where A is the area of the gas, the frequency �m=2m�T, and
the quasimomentum k is summed over the triangular-lattice
Brillouin zone. For brevity, hereafter ��m ,k� is denoted by p.
Then S free can be transformed into the quasimomentum and
frequency representation

S free�a*,a� = �
p
��− i�m − �
�a*�p�a�p� + 2�kg�2a*�p�a�p�

+
1

2
�k

*g�2a*�− p�a*�p� +
1

2
�kg�2a�− p�a�p��

�13�

where
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−k
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The above action can be diagonalized by introducing the
Bogoliubov transformation a�p�=ukb�p�+vkb

*�−p�, where
uk and vk satisfy

�uk�2 + �vk�2 =
2g�2�k − �


��2g�2�k − �
�2 − �g�2��k��2
,

�uk��vk� =
g�2��k�

2��2g�2�k − �
�2 − �g�2��k��2
,

uk = − �uk�, vk = �vk�e−i�k. �15�

The diagonalized free action is

S free = �
p

��− i�m + ��k��b*�p�b�p�� . �16�

Therefore the propagator corresponding to the free action is

�b*�p�b�p�� =
1

− i�m + ��k�
, �17�

where ��k� is the dispersion relation

��k� = g�2
�2�k −
�


g�2�2

− ��k�2�1/2

, �18�

which gives the zero-order excitation spectrum at �=�0,

�0�k� =
�


�
�̃0�k� =

�


�
��2�k − ��2 − ��k�2�1/2, �19�

as was obtained first by Sinova et al. �10�. In particular,
when k→0,

�0�k� � 0.0836
2�

b

�


�
k2. �20�

This gapless spectrum is softer than the usual Goldstone
modes in the homogeneous Bose system and will lead to a
logarithmically infrared divergency of the order parameter
even at zero temperature in the thermodynamic limit.

The mean-field and one-loop contributions to the free en-
ergy density are given, respectively, by

F0�
,�� = − �
�2 +
1

2
�g�4 �21�

and

F1�
,�� =
g�2

2
	 dk

�2��2
�2�k −
�


g�2�2

− ��k�2�1/2

.

�22�

So we get the first-order quantum correction to �,

�1 = −
1

4
��g

�

�1/2	 dk

�2��2� �2�k − ��
�̃0�k�

+
�̃0�k�

�
� , �23�

and the average particle density up to the first-order quantum
correction,

n̄�
� = −
�

�

�F0�
,�0� + F1�
,�0�� =

�


�g
−

1

2
	 dk

�2��2

�̃0�k�
�

,

�24�

which lacks divergent fluctuations as does the single-vortex
displacement.

III. STATIC STRUCTURE FACTOR

The static structure factor is defined by

S�q� =
1

N
	 dx e−iq·x	 dy eiq·y���x,����y,��� , �25�

where �
���2 and � � indicates the quantum average. Within
the LLL approximation the mean-field part of S�q� is

Smf�q� =
1

N
�0

4	 dx e−iq·x�
�x��2	 dy eiq·y�
�y��2

=
1

n̄2N��


�g
�2

exp�−
q2

2b
��

Km

�q,Km
, �26�

where we have used the following formula �32�:

	 dx 
�x�
k
*�x�exp�− ix · q�

= A�
Km

�q−k,Km
exp��i

2
�m1

2 − m1��
�exp�−

q2

4b
−

iqxqy

2b
+

ikxqy

b
� , �27�

where the reciprocal lattice vector Km=m1d̃1+m2d̃2, and d̃1

= �2��b /a��1,−1/�3�, d̃2= �0,4��b /a�3� are the reciprocal
lattice basis vectors. The first-order quantum corrections to
S�q� consist of four terms S1 , . . . ,S4, each of which will be
calculated explicitly here. The first term is

STATIC STRUCTURE FACTOR AND QUANTUM MELTING… PHYSICAL REVIEW A 75, 033620 �2007�

033620-3



S1�q� =
1
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T
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where Eqs. �15�–�20� are used and a frequency summation is performed. Using the formula �27� we get

S1�q� = −
1
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�
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b
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q2

2b
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where k is restricted to the first Brillouin zone and q=k+Km. The second and third fluctuation terms can be calculated in a
similar way:
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and
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where �k is replaced by A�dk / �2��2 in the last line. The final term comes from the quantum correction of the condensate,

S4�q� = 4��


�g
�3/2 1
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�x��2�
�y��2�1. �32�

Substituting Eq. �23� into Eq. �32� one obtains
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Combining the four terms, the static structure factor up to
first-order quantum correction within the LLL can be put as

S�q� = Smf�q� + �
i=1

4

Si�q� =
N

n̄2��


�g
�2

exp�−
q2

2b
��

Km

�q,Km

+
�


�g
exp�−

q2

2b
�� f1�q� +

N

n̄2�
Km

�q,Km
�f2�Km� + f3�� ,

�34�

where

f1�q� =
1

n̄
�
�2�k − �� − ��k�cos� kxky + k � Km

b
+ �k��

�
1

�̃0�k�
− 1� ,

f2�Km� = −	 dk

�2��2�
1 − cos�k � Km

b
��2�k − �

�̃0�k�

+ cos�k � Km

b
�� ,

f3 = −	 dk

�2��2

�̃0�k�
�

. �35�

Now we discuss the small-quasimomentum behavior of the
static structure factor. Although each of the four terms
S1 , . . . ,S4 exhibits infrared divergency at any of the peaks,
the sums of S1, S2 and S3, S4 do not. For example, in the
function f1�q�, it can be shown �32� that cos��kxky +k
�Km� /b+�k�→1− �k�Km�2 when k→0. Thus the 1/k2

singularity from 1/ �̃0�k� will be canceled by �k�Km�2, not-
ing that �k ,�k→� at the same time. Similarly, the function
f2�Km� is also not divergent.

IV. QUANTUM MELTING OF THE VORTEX LATTICE

The above calculation Eq. �35� indicates that the quantum
fluctuations will reduce the intensity of the Bragg peaks of
the static structure factor, and it will be shown below that the
reduction is dependent only on the filling fraction �:

� =
N

Nv
=

2�n̄

b
. �36�

We denote the ratio of the intensity of the Bragg peak up to
first-order quantum correction at, say, the smallest reciprocal

lattice vector K1 to its mean-field value by �,

� = 1 +
f2�K1� + f3

�
/�g
= 1 + 2�

f2�K1�/b + f3/b

� − �f3/b
, �37�

where Eq. �24� is used. Using rescaled quasimomenta q
→�bq, k→�bk, one can find that f2�K1� /b and f3 /b are
both constants independent of b, implying that the filling
fraction � can be used as the only parameter to control the
fluctuation effects on the structure factor. Although the criti-
cal ratio � at which the vortex lattice is assumed to melt is
not known a priori in our case, the numerical simulation of
the Yukawa gas indicated a melting � of �60% �27�. More-
over, for a triangular vortex lattice of a high-Tc supercon-
ductor the melting � was found to be �50% �28� by using an
equation similar to Eq. �37� and the exact melting tempera-
ture, which was calculated according to a direct comparison
of the free energy of the solid phase to that of the liquid
phase. Therefore we use this value and invert Eq. �37� to
estimate the melting filling fraction. Our numerical calcula-
tion indicates that the vortex lattice melts due to quantum
fluctuation for ��6, consistent with some other estimates
�10,11,16�.

V. CONCLUSION

We have studied the effect of quantum fluctuations on the
static structure factor of vortex lattices in a Bose-Einstein
condensate in the rapidly rotating limit. We find that the soft-
ness of the collective excitation does not cause fluctuation
divergency of the static structure factor. Our results also con-
firm the filling fraction � to be the characteristic parameter
controlling the melting of the lattice. We have shown that, in
addition to the vortex-coordinate approach and the generally
used elastic theory, the study of the structure factor can also
be used to investigate the melting of the vortex lattice. Our
estimate for the melting filling fraction, ��6, is consistent
with the exact-diagonaliztion calculation as well as the elas-
tic theory estimates.
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