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We show that the phase of a condensate in a finite temperature gas spreads linearly in time at long times
rather than in a diffusive way. This result is supported by classical field simulations, and analytical calculations
which are generalized to the quantum case under the assumption of quantum ergodicity in the system. This
superdiffusive behavior is intimately related to conservation of energy during the free evolution of the system
and to fluctuations of energy in the prepared initial state.
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I. INTRODUCTION

Phase coherence is one of the fundamental properties of
Bose-Einstein condensates. It is also a key feature in the
present developments of the research on condensates which,
ten years after the first experimental realization, go in the
direction of integrating this powerful tool into other branches
of physics, of which metrology and quantum information are
two promising examples �1�.

The problem of the condensate phase dynamics due to
atomic interactions at zero temperature has been analyzed by
different authors in theory �2� and in experiment �3–5�. It is
now well understood that an initially prepared relative phase
between two condensates will spread in time due to the cor-
responding uncertainty in the relative particle number as the
relative phase and the relative particle number are conjugate
variables. The phase dynamics of a two component conden-
sate in realistic situations including harmonic traps, non sta-
tionarity and fluctuations in the total number of particles was
analyzed in �6�, where a comparison to the experiments of
�4� is also performed. An important conclusion was that the
zero temperature theory could not account for the coherence
times observed in experiment, which raises the question of
the role of the noncondensed fraction.

In this paper we address the fundamental problem of
phase spreading of a Bose-Einstein condensate in a finite
temperature atomic gas. In order to obtain simple and gen-
eral results, we consider the ideal case of a spatially uniform
condensate at thermodynamic equilibrium, and we assume
that one has access to the first order temporal correlation
function �a0

†�t�a0� of the component a0 of the atomic field in
the condensate mode. In real life, the situation is more com-
plex: The atoms are trapped in harmonic potentials, and the
measurement of phase coherence is a delicate procedure,
usually relying on the interference between two condensates
�4�. In the literature two well distinct predictions exist for the
long time spreading of the condensate phase at finite tem-
perature, either a diffusive behavior �variance growing lin-
early in time� �7–10� or a ballistic behavior �variance grow-
ing quadratically in time� �11�. We study this problem first
with a classical field model �12–17�, where exact numerical
simulations can be performed. We then explain the numerics

analytically, and extend the analytical approach to the
quantum case.

The important result that we obtain is that the variance of
the phase increases quadratically in time. This is at variance
with the prediction of phase diffusion from the “quantum
optics” open system approaches of �7–10� assuming the con-
densate to evolve under the influence of Langevin short
memory fluctuating forces. Our prediction results from two
ingredients: �i� The system is prepared in an initial state with
an energy fluctuating from one experimental realization to
the other, here sampling the canonical ensemble, and �ii� the
system is isolated in its further evolution and therefore keeps
a constant energy. As we shall see, the combination of these
two ingredients prevents some temporal correlation functions
to vanish at long times. Our prediction qualitatively agrees
with the one of �11�, but not quantitatively, as we obtain a
different expression for the long time limit of the variance of
the phase over the time squared. This difference is due to the
fact that we take into account ergodicity in the system result-
ing from the interactions among Bogoliubov modes such as
the Beliaev-Landau processes.

In Sec. II we present the classical field model; numerical
predictions for this model are presented in Sec. III, and ana-
lytical results reproducing the numerics at short or long times
are given in Sec. IV. These analytical results are extended to
the case of the quantum field in Sec. V. We conclude in Sec.
VI.

II. CLASSICAL FIELD MODEL

In this section we develop a classical field model that has
the advantage that it can be exactly simulated numerically.
This will allow us to understand the physics governing the
spreading of the condensate phase and to test the validity of
various approximations, paving the way to the quantum
treatment.

We consider a lattice model for a classical field ��r� in
three dimensions. The lattice spacings are l1, l2, l3 along the
three directions of space and dV= l1l2l3 is the volume of the
unit cell in the lattice. We enclose the atomic field in a spatial
box of sizes L1, L2, L3 and volume V=L1L2L3, with periodic

PHYSICAL REVIEW A 75, 033616 �2007�

1050-2947/2007/75�3�/033616�16� ©2007 The American Physical Society033616-1

http://dx.doi.org/10.1103/PhysRevA.75.033616


boundary conditions. The discretized field has the following
Poisson brackets

i����r1�,�*�r2�� =
�r1,r2

dV
, �1�

where the Poisson brackets are such that df /dt= �f ,H� for a
time-independent functional f of the field �. The field � may
be expanded over the plane waves

��r� = 	
k

ak
eik·r


V
, �2�

where k is restricted to the first Brillouin zone,
k� ��−� / l� ,� / l�� where � labels the directions of space.

We assume that, in the real physical system, the total
number of atoms is fixed, equal to N. In the classical field
model, this fixes the norm squared of the field:

dV	
r

���r��2 = N . �3�

Equivalently the density of the system

� =
N

V
�4�

is fixed for each realization of the field. The evolution of the
field is governed by the Hamiltonian

H = 	
k

Ẽkak
*ak +

g

2	
r

dV �*�r��*�r���r���r� , �5�

where Ẽk is the dispersion relation of the noninteracting
waves, and the binary interaction between particles in the
real gas is reflected in the classical field model by a field
self-interaction with a coupling constant g=4��2a /m, where
a is the s-wave scattering length of two atoms.

In general, we expect the predictions of a classical field
model to be cutoff dependent, i.e., the predictions of our
model may depend on the lattice spacings l�. We use here a
refinement to the usual classical field model, which makes it
cutoff independent for some observables like the condensate
fraction, a quantity expected to play an important role here.
An obvious example of a quantity which will remain cutoff
dependent is the mean value of the Hamiltonian H in thermal
equilibrium.

Let us consider first the noninteracting case �g=0� in
presence of a condensate. For a thermalized classical field
the occupation numbers of the excited plane wave modes are
given by the equipartition formula

�ak
*ak� =

kBT

Ẽk

. �6�

We adjust the dispersion relation Ẽk in order to reproduce the
Bose law for the occupation numbers of the quantum field in
the Bose-condensed regime:

1

e��2k2/2m − 1
=

kBT

Ẽk

, �7�

where �=1/kBT. For all modes with large occupation num-

ber Ẽk��2k2 /2m, while the occupation of modes with
�2k2 /2m�kBT, whose quantum dynamics is not well ap-
proximated by the classical field model anyway, is exponen-
tially suppressed as in the quantum theory.

In the interacting case, one could adapt the same trick of
a modified dispersion relation, by including the fact that the
relevant spectrum is not �2k2 /2m but the Bogoliubov spec-

trum �18�. The resulting Ẽk would now start growing expo-
nentially with k when the Bogoliubov energy ���2k2 /2m�
	�2�g+�2k2 /2m��1/2 reaches kBT.

In the classical field model we restrict our analysis to the
regime kBT��g so that at energies of the order of kBT, the
Bogoliubov energy is dominated by the kinetic term
�2k2 /2m. One can then simply use in the Hamiltonian the

modified dispersion relation Ẽk as given by Eq. �7�. This is
what we did in the simulations of this paper, so that the
classical field � evolves according to the nonlinear equation
�19�:

i��t� = kBT�exp�− �
�2

2m

� − 1� + g���r,t��2�� . �8�

In practice this equation is integrated numerically with the
FFT splitting technique.

We then introduce the density and the phase of the con-
densate mode

a0 = ei�
N0. �9�

In what follows, we concentrate on three physical quantities:
The condensate amplitude correlation function

�a0
*�t�a0�0�� , �10�

the condensate atom number correlation function

��N0�t��N0�0�� where �N0 = N0 − �N0� , �11�

and the variance of the condensate phase change during t:

Var ��t� = ���t�2� − ���t��2 where ��t� = ��t� − ��0� .

�12�

The averages are taken over stochastic realizations of the
classical field, as the initial field samples a thermal probabil-
ity distribution.

III. CLASSICAL FIELD: NUMERICAL RESULTS

We consider a gas of N=4	105 atoms with �g
=700�2 /mV2/3 in a box of non commensurable square
lengths to guarantee efficient ergodicity in the system, in the
ratio L1

2 :L2
2 :L3

2=
2: �1+
5� /2 :
3. We choose the number of
the lattice points in a temperature dependent way, such that
the maximal Bogoliubov energy ���2k2 /2m��2�g
+�2k2 /2m��1/2 on the lattice is equal to 3kBT.

To generate the stochastic initial values of the classical
field we proceed as follows. �i� For each realization, we gen-

SINATRA, CASTIN, AND WITKOWSKA PHYSICAL REVIEW A 75, 033616 �2007�

033616-2



erate a noncondensed field ���r� at temperature T in the
Bogoliubov approximation as explained in �20�. In practice
we generate complex numbers �bk� for each vector k on the
grid according to the probability distribution

P�bk� =
1

�

̃k

kBT
e−��bk�2̃k/kBT�, �13�

where ̃k= �Ẽk�Ẽk+2�g��1/2. With a set of �bk� for a given
realization we build the noncondensed field

���r� = ei� 	
k�0

�bkŨk
eik·r


V
+ bk

*Ṽk
e−ik·r


V
� , �14�

where the initial value of the condensate phase � is randomly
chosen with the uniform law in �0,2��, and where the real

amplitudes Ũk, Ṽk, normalized as Ũk
2− Ṽk

2=1, are given by the
usual Bogoliubov theory, here with the modified dispersion
relation, so that

Ũk + Ṽk = � Ẽk

Ẽk + 2�g
�1/4

. �15�

�ii� We create the classical field with the constraint that the
total number of atoms N is fixed:

��r� =
a0


V
+ ���r� , �16�

where a0=
N−N�ei�, N� is the number of noncondensed
atoms,

N� = 	
r

dV����r��2. �17�

�iii� We let the field evolve for some time interval with the
Eq. �8� to eliminate transients due to the fact that the Bogo-
liubov approximation used in the sampling does not produce
an exactly stationary distribution. After this “thermalization”
period we start calculating the relevant observables, as �
evolves with the same Eq. �8�.

First we investigate the mean condensate phase change
����t�. We find a linear dependence with time, with a slope
slightly different from the value −�g /� naively expected,
e.g., from the zero temperature Gross-Pitaevskii equation.
The slope difference is temperature dependent and is ex-
pected physically to correspond to the discrepancy between
the zero temperature chemical potential �g and the actual
finite temperature one ��T�. This we shall confirm using Bo-
goliubov theory in Sec. IV �see also �21��.

In Fig. 1, we show the real part of the amplitude correla-
tion function of the condensate �a0

*�t�a0�0�� as a function of
time, for a temperature T=0.17Tc, where Tc is the critical
temperature of the ideal gas. The zero-temperature evolution
ei�gt/� is removed so that the oscillations in the figure are due
to the above-mentioned effect ��T���g. Due to the finite
temperature in the system, the correlation function of the
condensate amplitude is smeared out at long times.

Correspondingly the standard deviation of the condensate
phase change increases with time, as we show in Fig. 2 for
five different values of the temperature, up to T=0.65Tc. In

all cases, at long times, we observe a quadratic growth of
Var � contrarily to the phase diffusion behavior �t predicted
in the literature �7–10�.

To complete the physical picture, we show in Fig. 3 the
correlation function of the condensate atom number �11�. At
very short times, see the beginning of the curves in Fig. 3�a�,
the simulation �square symbols� confirms the Bogoliubov
prediction �dashed oscillating line�; at long times, see Fig.
3�b�, the correlation function drops to a value significantly
smaller than the Bogoliubov prediction �fast oscillations are
not shown in the figure�; a key point is that this long time
value of the correlation function of the condensate atom
number is not zero.

One may fear at this stage that the classical field model is
missing some source of damping in the dynamics of the sys-
tem. However it is a well established fact that the classical
field model is able to simulate damping processes, including
the finite temperature Beliaev-Landau processes �22–25�,
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FIG. 1. �Color online� Real part of the condensate amplitude
correlation function �10� normalized to its t=0 value, and divided
by the zero temperature evolution ei�gt/�, as a function of time: In
the vertical axis label, ã0�t� stands for a0�t�ei�gt/�. �a� Short times
behavior and �b� long times behavior. In solid line from an average
over 500 solutions of Eq. �8�, in dashed line �red� the Bogoliubov
approximation �40�. Here the temperature is kBT=3077.3�2 /mV2/3

=0.1711Tc, where Tc is the critical temperature kBTc= �2��2 /m�
	�� /��3/2��2/3 of the ideal gas, the number of particles is N=4
	105, and the coupling constant is such that the zero-temperature
chemical potential is �g=gN /V=700�2 /mV2/3.
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since the interaction among the Bogoliubov modes is in-
cluded in this model �12,13,15,16,20,21,26–29�. More quan-
titatively we now check that the damping times due to the
Beliaev-Landau processes in the simulation are much shorter
than the evolution times considered here. To this end, we
extract from the simulations the temporal correlation func-
tions �bk

*�t�bk�0�� and ��bk�2�t��bk�2�0��− ��bk�2�2, obtained by
projecting the classical field over the corresponding Bogoliu-
bov mode and averaging over many realizations. We show
these correlation functions for the lowest energy Bogoliubov
mode and for an excited Bogoliubov mode in Fig. 4.

We come then into a paradox. On one side, the various
Bogoliubov oscillators bk decorrelate at long times. On the
other side, the variance of the phase change � of the conden-
sate varies quadratically at long times, which implies, as we
shall see in Sec. IV, that the derivative of the phase �̇ does
not decorrelate at long times, although it is a function of the
bk’s; similarly, the fluctuations of the number of condensate
atoms �N0, which are functions of the bk’s, do not decorre-
late at long times.

This paradox will be explained in Sec. IV, and quantita-
tive predictions for long times behavior of the condensate
atom number correlation function and of the variance of the
condensate phase change will be derived. Anticipating these
analytical results, we show in Fig. 5�a� the long time limit of
�Var ��1/2 / t as a function of T /Tc, from the results of the
classical field simulations, but also from the predictions of
the Bogoliubov approximation Eq. �38�, and of the ergodic
theory of Sec. IV. In Fig. 5�b� we show the same results and
predictions for the asymptotic value of the condensate atom
number correlation function.

IV. CLASSICAL FIELD: ANALYTICAL RESULTS

The general procedure used here to obtain analytical re-
sults is the following. In a first step, one expresses the quan-
tity of interest �the number of condensate atoms or the time
derivative of the condensate phase� in terms on the ampli-
tudes bk of the field � over the Bogoliubov modes,

bk�t� = dV	
r

Ũk
e−ik·r


V
e−i��t����r,t� + Ṽk

eik·r


V
ei��t���

* �r,t� ,

�18�

where �� is the component of � orthogonal to the conden-
sate mode. In a second step, one evaluates the correlation
functions of products of bk in various physical limits.

A. Correlation function of the condensate atom number

As the total number of particles is fixed, it is equivalent to
calculate the correlation function of �N0 in Eq. �11� and of
the number of noncondensed particles N�. Injecting the ex-
pansion Eq. �14� for the time dependent noncondensed field
�� over the Bogoliubov modes into Eq. �17� we obtain

N��t� = 	
k�0

�Ũkbk�t� + Ṽkb−k
* �t��2. �19�
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FIG. 2. �Color online� Standard deviation of the condensate
phase change ��t� �12� as a function of time for �a� T=0.08245Tc

�lower curve� and T=0.1711Tc �upper curve�, �b� T=0.29467Tc, �c�
T=0.453Tc, and �d� T=0.6473Tc. Thick solid line �black�: Numeri-
cal solution from the classical field model Eq. �8� averaged over
500 realizations. Thin solid line �red�: A linear fit. The parameters N
and �g have the same values as in Fig. 1.
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FIG. 3. �Color online� Correlation function of the condensate
atom number �11�. �a� Short times; �b� long times. The classical
field results are obtained from an average over 500 solutions of Eq.
�8�; they are represented by symbols in �a� and a solid line in �b�.
The dashed lines �red� are the Bogoliubov approximations �21� �os-
cillating line� and �22� �horizontal line� in �a�, and only �22� in �b�.
The dashed-dotted line �purple� is the Gaussian model. For clarity
in �b� we washed out fast oscillations in the simulation result and in
the Gaussian model, by averaging over consecutive points over a
time width 0.45mV2/3 /�. The horizontal dashed-dotted-dotted line
�blue� in �a� and �b� is the ergodic long time limit prediction, de-
scribed in Sec. IV. The parameters N, T, and �g have the same
values as in Fig. 1.
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Bogoliubov theory. In Bogoliubov theory interaction
among the Bogoliubov modes is neglected so that at all times

bk�t� = bk�0�e−i�kt with �k = ̃k/� . �20�

As Wick’s theorem applies for the initial thermal distribution
we obtain for the correlation function of the condensate atom
number:

��N0�t��N0�0��Bog = 	
k�0

ñk
2��Ũk

2ei�kt + Ṽk
2e−i�kt�2

+ �ŨkṼk�2�ei�kt + e−i�kt�2� , �21�

where ñk=kBT / ̃k is the Bogoliubov mean occupation num-
ber of a mode for the classical field. At very short times, a
good agreement of the Bogoliubov prediction with the simu-
lation is observed in Fig. 3�a�. Smearing out the terms oscil-
lating rapidly at Bohr frequencies 2�k, we obtain a predic-
tion directly comparable to the coarse grained numerical
result of Fig. 3�b�:

��N0�t��N0�0��Bog nonosc = 	
k�0

�Ũk
2 + Ṽk

2�2ñk
2. �22�

This amounts to considering the correlation function of

N�
nonosc�t� = 	

k�0
�Ũk

2 + Ṽk
2�bk

*�t�bk�t� , �23�

deduced from Eq. �19� by eliminating the oscillating terms
such as bkb−k. As can be seen in Fig. 3�b�, Bogoliubov
theory fails at long times. Note that in the thermodynamic
limit, where the above sum is dominated by the low k terms,

one may approximate Ṽk�−Ũk, so that Eq. �22� is roughly
half of the t=0 value of Eq. �21�; in other words, it is ap-
proximately half of the variance of the condensate number.
In the numerical result of Fig. 3, the correlation function
drops by much more than a factor 2.

Gaussian theory. A possible approach to improve Bogo-
liubov theory consists in assuming that the bk are Gaussian
variables with a finite time correlation due to the Beliaev-
Landau mechanism:

��bk
*�t�bk�0���2 = ñk

2e−2�k�t�, �24�

where �k is calculated with time dependent perturbation
theory including the discrete nature of the spectrum as in
�20�. This amounts to weighting each term of Eq. �22� by
exp�−2�k�t��. This assumption is supported by numerical evi-
dence for a single mode, see Fig. 4, and by an analytic deri-
vation in the thermodynamic limit for one or two mode; see
Appendix A. Nevertheless, the resulting prediction for the
correlation function of N0, while looking promising at short
times, see Fig. 3�a�, is in clear disagreement with the simu-
lation at long times, see Fig. 3�b�. Since the assumption of a
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FIG. 4. �Color online� Correlation function of �bk�2 �black solid
line� and modulus squared of the correlation function of bk �green
dashed line�, as obtained from 2000 realizations of the classical
field simulations: �a� For the mode k= �0,0 ,2� /L3� and �b� for the
mode k= �2� /L1 ,10� /L2 ,4� /L3�. We define the correlation func-
tion of a quantity X as Corr X= �X*�t�X�0��− ��X��2. The purple
dashed-dotted line is an exponential function of t, given by Eq.
�24�. It reproduces well the simulation results, and we have checked
that the agreement is good for all vectors k lying in an arbitrarily
chosen plane in k space. The parameters N, T, and �g have the same
values as in Fig. 1.
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FIG. 5. �Color online� �a� Long time limit of �Var ��1/2 / t, in
units of � /mV2/3, as a function of the temperature over the ideal gas
critical temperature. �b� Long time limit of the condensate atom
number correlation function, as a function of T /Tc. In square sym-
bols the numerical results of the classical field simulation �averaged
over 500 realizations�, in dashed line �red� the Bogoliubov predic-
tion, and in dashed-dotted-dotted �blue� line the ergodic prediction.
The parameters N and �g have the same values as in Fig. 1.
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long time decorrelation of bk
*�t� with bk�0� is physically rea-

sonable, one may suspect that the Gaussian hypothesis is not
accurate when a large number of modes are involved as for
the correlation function of N0. This is indeed the case, as we
now show.

Ergodic theory. A systematic way to calculate the long
time limit of the correlation function is to assume that the
non-linear dynamics generated by Eq. �8� is ergodic: at long
times, the bk�t�’s for a given realization of the field explore
uniformly a fixed energy surface in phase space �30�. In the
Bogoliubov approximation for the energy, this means that the
bk�t�’s sample the unnormalized probability distribution

P���bk�� = ��E − 	
k�0

̃kbk
*bk� , �25�

where the Bogoliubov energy E is fixed by the initial value
of the field:

E = 	
k�0

̃kbk
*�0�bk�0� . �26�

First, for a given initial condition of the field, we calculate
the expectation value of N��t� as given by Eq. �19� over the
ergodic distribution Eq. �25�, which is equivalent to the tem-
poral average of N��t� over an infinite time interval. The
terms of the form bb or b*b* have a zero mean, since the
phases of the bk’s are uniformly distributed over 2�, accord-
ing to Eq. �25�. To calculate the expectation value of the b*b
terms, it is convenient to introduce rescaled variables

Bk = � ̃k

E
�1/2

bk. �27�

According to Eq. �25� the real parts and the imaginary parts
of all the Bk are uniformly distributed over the unit hyper-
sphere in a space of dimension 2M, where M=V /dV−1 is
the number of Bogoliubov modes so that we obtain �Bk�2
=1/M where the overline stands for the average over the
ergodic distribution �25�. As a consequence the ergodic av-
erage of N� is

N� =
1

M 	
k�0

�Ũk
2 + Ṽk

2�
E

̃k

. �28�

Note that this ergodic average depends on the t=0 value of
the bk’s via Eq. �26�.

Second, we average the product N�N��0� over the ther-
mal canonical distribution for the initial values bk�0�. This
gives the long time limit of the correlation function of the
number of condensate atoms:

��N0�t → + ���N0�0��ergo =
1

M�	
k�0

�Ũk
2 + Ṽk

2�ñk�2
.

�29�

This prediction is in good agreement with the simulations at
long times, see Fig. 3�b� for a fixed value of the temperature,
and Fig. 5�b� as a function of temperature. Note that, accord-
ing to Schwartz inequality, the ergodic value is lower than
the coarse grained Bogoliubov prediction Eq. �22�, as was
expected physically.

This clearly shows that the existence of infinite time cor-
relations in the number of condensate atoms is a conse-
quence of the conservation of energy during the free evolu-
tion of the system.

To understand the failure of the Gaussian model, we give
the ergodic prediction of the long-time limit of the correla-
tion function of the Bogoliubov mode occupation numbers
nk= �bk�2,

�nk�t → + ��nk��0��ergo − �nk��nk�� =
ñkñk�

M
. �30�

This long-time value is nonzero, contrarily to the Gaussian
model prediction. One may argue that the value Eq. �30�
tends to zero in the thermodynamic limit, so that the error in
the Gaussian model looks negligible for a large system.
However, in calculating the correlation function of a macro-
scopic quantity such as N�, a double sum over the Bogoliu-
bov modes appears, so that the small deviations Eq. �30�
from the Gaussian model prediction sum up to a macroscopic
value. In other words, in the calculation of a given correla-
tion function, one is not allowed to take the thermodynamic
limit before the end of the calculation.

B. Variance of the condensate phase change

To reproduce the approach of the previous subsection for
the phase, one should express the phase change ��t� of the
condensate amplitude a0 as a function of the bk’s. It turns out
that the quantity easily expressed in terms of the bk’s is the
time derivative �̇. The variance of � is then related to the
correlation function C of �̇:

Var � = �
0

t

d��
0

t

d��C��� − ���� , �31�

where time translational invariance in steady state imposes
for a classical field that C depends only on ��−���:

C��� − ���� = ��̇����̇����� − ��̇������̇����� . �32�

If C���→0 fast enough when �→� then Var � grows lin-
early in time. On the other hand, if C��� has a nonzero limit
at long times, then Var � grows quadratically in time �31�.

To express �̇ in terms of the bk’s, we write the equation of
motion for a0:

i�ȧ0 = i��a0,H� = �a0
*H =

g

V

	
r

�*�r��2�r� , �33�

where we used �a0
*�*�r�=1/
V obtained from Eq. �2�. We

split � as in Eq. �16�; we eliminate the condensate amplitude
in the resulting expression for ȧ0 /a0 �i� by using �a0�2=N
−N�, where N� is a function of the bk’s, see Eq. �19�, and
�ii� by introducing the field �32�

��r� = e−i����r� , �34�

which is a function of the bk’s only according to Eq. �14�.
This leads to
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i�
ȧ0

a0
= �g +

g

V
	

r
dV���r�2 + ���r��2�

+
g


V
	

r
dV

�*�r��2�r�

N − N�

. �35�

The real part of the above equation gives −��̇, which is also
−��̇.

Restricting to a weak noncondensed fraction, we drop the
cubic terms in Eq. �35�, to obtain �33�

��̇ � − �g −
1

2

g

V
	

r
dV���r� + �*�r��2

= − �g −
1

2

g

V
	
k�0

�Ũk + Ṽk�2�bk + b−k
* �2. �36�

It turns out that the products bkb−k generate oscillating terms
which do not contribute to a coarse grained time average. It
is thus useful to define

��̇nonosc = − �g −
g

V
	
k�0

�Ũk + Ṽk�2�bk�2. �37�

Bogoliubov theory. By using Eq. �20� and Wick’s theorem
we calculate the correlation function of Eq. �36�. By tempo-
ral integration we obtain the variance of the condensate
phase change

�Var ��Bog = � g

�V
�2

	
k�0

�Ũk + Ṽk�4ñk
2�t2 +

sin2 �kt

�2�k�2 � .

�38�

Qualitatively Bogoliubov theory correctly predicts a qua-
dratic growth of the variance of � at long times. As we show
in Fig. 5�a�, however, it is not fully quantitative: it does not
reproduce the value of the dephasing rate obtained from the
simulations. This is not surprising as in the full nonlinear
theory the bk’s interact and do not follow Eq. �20�.

To be complete, we also give the Bogoliubov approxima-
tion for the correlation function of the condensate amplitude
a0. Neglecting the fluctuations of the modulus of a0, one can
set

�a0
*�t�a0�0�� � �N0��e−i��t�� . �39�

Dropping the oscillating terms in bkb−k and bk
*b−k

* in �̇�t�,
which give a small contribution, we get

�a0
*�t�â0�0��Bog � �N0� �

k�0

1

1 + i
g

�V
�Ũk + Ṽk�2ñkt

. �40�

The resulting expression is plotted as a dashed line in Fig. 1
against the result of the simulation.

Gaussian theory. If we add by hand a decorrelation of the
bk’s and assume Gaussian statistics, we get a diffusive
spreading of the condensate phase change, with the variance
of �nonosc growing linearly at long times:

�Var ��Gauss = � g

�V
�2

	
k�0

�Ũk + Ṽk�4ñk
2� e−2�kt − 1

2�k
2 +

t

�k
� ,

�41�

in clear contradiction with the numerical simulations. This
prediction corresponds to a correlation function C vanishing
at long times, whereas the correct correlation function has a
finite limit; see Fig. 6.

Ergodic theory. As in Sec. IV A we calculate the long
time value of the correlation function for �̇ using the ergodic
assumption. The various steps of the calculation are rigor-
ously the same as in Sec. IV A and lead to

C�� → + ��ergo = � g

�V
�2 1

M�	
k�0

�Ũk + Ṽk�2ñk�2
. �42�

This prediction is in excellent agreement with the simula-
tions: It gives the correct asymptotic value of C, see Fig. 6,
and from the asymptotic expression Var ��C�+��t2 it gives
the correct values of the long time limit of �Var ��1/2 / t, see
Fig. 5�a�, as a function of temperature.

V. QUANTUM TREATMENT: ANALYTICAL RESULTS

So far the classical field model was very useful in reveal-
ing the physical processes governing the long time behavior
of the phase and atom number fluctuations in the condensate.
However it is not a fully quantitative theory, as the long time
limits of the correlation functions considered here depend on
the precise choice of the energy cutoff, that is on the number
of Bogoliubov modes M in the simulation, as is apparent on
Eqs. �29� and �42�. In this section, we therefore adapt the
previous physical reasonings to the quantum field case.

A. The quantum model

We use a straightforward generalization of the classical
field lattice model, taking here for simplicity a cubic lattice,

0 5 10 15 20 25 30
0.000

0.005
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(τ
) n
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os
c

τ [2πmV2/3/h]

FIG. 6. �Color online� Correlation function Cnonosc of the quan-
tity �̇nonosc defined in Eq. �37� calculated from the simulation
�square symbols; the solid line is a guide to the eye�, or using the
Gaussian theory �purple dashed-dotted line going to zero at long
times�. In dashed line �red� the Bogoliubov prediction. In dashed-
dotted-dotted line �blue� the long time prediction �42� of the ergodic
theory. The parameters T, N, and �g have the same values as in Fig.
1.
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as discussed in �20,34,35�. The bosonic field �̂ evolves ac-
cording to the Hamiltonian

H = 	
k

�2k2

2m
âk

†âk +
g0

2 	
r

dV �̂†�̂†�̂�̂ , �43�

where âk annihilates a particle of wave vector k in the first
Brillouin zone. The dispersion relation of the wave is now
the usual one. The total number of atoms is fixed, equal to N.
The coupling constant g0 depends on the lattice spacing l in
order to ensure a l-independent scattering length for the dis-
crete delta interaction potential among the particles �34,35�:

V�r1 − r2� =
g0

dV
�r1,r2

. �44�

Since we consider here the weakly interacting regime, we
can restrict to a lattice spacing much larger than the scatter-
ing length a so that g0 is actually very close to g
=4��2a /m.

To be able to use Bogoliubov theory as we did in the
classical field reasoning, we restrict to the low temperature
regime T�Tc with a macroscopic occupation of the conden-
sate mode. We thus neglect the possibility that the conden-
sate is empty, which allows us to use the modulus-phase
representation of the condensate mode:

â0 � ei�̂
N̂0, �45�

where N̂0= â0
†â0 and where �̂ is a Hermitian “phase” operator

obeying the commutation relation

�N̂0, �̂� = i . �46�

This allows to consider the correlation of the condensate

atom number fluctuation �N̂0� N̂0− �N̂0� but also the vari-

ance of the condensate phase change �̂�t�� �̂�t�− �̂�0�, as we
did for the classical field.

B. Correlation function of the condensate atom number

To predict the correlation function of �N̂0, we use Bogo-
liubov theory at short times and the quantum analog of the
ergodic theory at long times.

In the number conserving Bogoliubov theory �32,36�,
written here for a spatially homogeneous system, one intro-
duces the field conserving the total number of particles

�̂�r� � e−i�̂�̂��r� , �47�

where the noncondensed field �̂� is obtained by projecting

out the component of the field �̂ on the condensate mode.

The field �̂ then admits the modal expansion on the Bogo-
liubov modes

�̂�r� = 	
k�0

b̂kUk
eik·r


V
+ b̂k

†Vk
e−ik·r


V
, �48�

where the real amplitudes Uk, Vk, normalized as Uk
2−Vk

2=1,
are given by the usual Bogoliubov theory,

Uk + Vk = � �2k2/2m

2�g0 + �2k2/2m
�1/4

. �49�

Since the total number of particles is fixed to N, it is

equivalent to consider the fluctuations of N̂0 or of the number
of noncondensed atoms

N̂� = 	
r

dV �̂†�r��̂�r� . �50�

This, together with the expansion �48�, expresses N̂� as a

function of the b̂k’s.
The equilibrium state of the system is approximated in the

canonical ensemble by the Bogoliubov thermal density op-
erator

�̂Bog�T� =
1

ZBog
e−	k�0kb̂k

†b̂k/kBT �51�

where the normalization factor ZBog is the Bogoliubov ap-
proximation for the partition function, and where we have
introduced the Bogoliubov spectrum

k = ��2k2

2m
��2k2

2m
+ 2�g0��1/2

. �52�

Bogoliubov theory. In the Bogoliubov approximation for

the time evolution, the b̂k merely accumulate a phase, at the
frequency �k=k /�, similarly to the classical field case.
From Wick’s theorem one then obtains

1

2
���N̂0�t�,�N̂0�0���Bog = 	

k�0
n̄k�n̄k + 1��Uk

2 + Vk
2�2

+ 2Uk
2Vk

2 cos�2�kt��n̄k
2 + �n̄k + 1�2� ,

�53�

where

n̄k�T� =
1

exp�k/kBT� − 1
�54�

is the mean occupation number of the Bogoliubov mode k.
Note that we have considered here the so-called symmetric
correlation function �as �X ,Y� stands for the anticommutator
XY +YX of two operators� which is a real quantity, equal to
the real part of the nonsymmetrized correlation function. The
time coarse grained version of the prediction �53� is obtained
by averaging out the oscillating terms, which amounts to
considering the correlation function of the temporally
smoothed operator number of noncondensed particles

N̂�
nonosc � 	

k�0
��Uk

2 + Vk
2�b̂k

†b̂k + Vk
2� . �55�

Quantum ergodic theory. Discarding from the start the

oscillating terms in N̂�, as in Eq. �55�, we face here the
problem of calculating the long time limit of �A�t�A�0��,
where A is a linear function of the Bogoliubov mode
occupation numbers,
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A = 	
k�0

Akb̂k
†b̂k. �56�

As the quantum state of the system is given by the Bogoliu-
bov approximation Eq. �51�, we may inject a closure relation
in the Bogoliubov Fock eigenbasis:

�A�t�A�0�� =
1

ZBog
	
�nk�

e−� 	
k�0

knk�	
k�0

Aknk���nk��A�t���nk�� ,

�57�

where the sum is taken over all possible integer values of the
occupation numbers, not to be confused with the mean oc-
cupation numbers �54�.

The nonexplicit piece of this expression is the matrix el-
ement of A�t�, which may be reinterpreted as follows:

��nk��A�t���nk�� = Tr�A��t�� , �58�

where the density operator �, initially a pure state in the
Bogoliubov Fock basis,

��0� = ��nk����nk�� �59�

evolves during t with the full Hamiltonian H. We know that
this evolution involves Beliaev-Landau processes that will
spread � over the various Fock states ��nk���. This evolution is
complex. But we need here the long time limit only, in which
we may assume that an equilibrium statistical description is
possible. Since the system is isolated during its evolution, we
take for ��t→ +�� the equilibrium density operator in the
microcanonical ensemble �37�, and we calculate the expec-
tation value of A with ��t→ +�� as we did for the classical
field model. The calculation can be done in the thermody-
namic limit. As shown in Appendix B, one can calculate to
leading order in this limit the difference between canonical
and microcanonical averages.

Here the microcanonical ensemble has an energy E
=E0

Bog+	k�0 knk, where E0
Bog is the ground state Bogoliu-

bov energy. We introduce the effective temperature Teff such
that the mean energy in the canonical ensemble at tempera-
ture Teff is equal to E,

0 = �HBog��Teff� − E = 	
k�0

k�n̄k�Teff� − nk� , �60�

where �…� stands for an average in the canonical ensemble
and HBog is the Bogoliubov Hamiltonian. Using the results of
Appendix B one gets

Ā�E� − �A��Teff� = −
1

2
kBTeff

2 � �A��
�HBog��

��
�Teff� , �61�

where Ā�E� is the microcanonical average of A at energy E
and where the apex� stands for derivation with respect to
temperature. We further use the fact that, in the thermody-
namic limit, for typical values of the occupation numbers nk,
Teff weakly deviates from the physical temperature T. We
calculate Teff by expanding Eq. �60� up to second order in
Teff−T �38�. Evaluating Eq. �61� with this value of Teff, keep-
ing terms up to the relevant order �38�, gives the desired
result

��nk��A�t → + ����nk��

= �A� + �	
k�0

k�nk − n̄k�� �A��
�HBog��

+
1

2
� �A��

�HBog��
��

	�	
k�0

k�nk − n̄k��2

�HBog��
− kBT2� , �62�

where all the canonical averages are now evaluated at the
physical temperature T �39�.

It remains to inject this expression into Eq. �57�. The re-
sulting average over nk leads to the long time value of the
correlation function:

�A�+ ��A�0�� − �A�2 = � �A��
�HBog��

�2

Var HBog �63�

=
�	

k�0
Akkn̄k�n̄k + 1��2

	
k�0

k
2n̄k�n̄k + 1�

, �64�

where we used Wick theorem and the property dn̄k /dT
=kn̄k�n̄k+1� /kBT2 �40�. Using Schwartz inequality, one can
show that this long time value of the correlation function is
less than its zero time value 	 Ak

2n̄k�n̄k+1�. To be complete,
we present an alternative derivation of our prediction �64� in
Appendix C, based on results obtained in �37�. We also note
that the quantum ergodic calculation directly leads to a pre-
diction of the long time limit for the correlation function of
the Bogoliubov mode occupation numbers; see Eq. �A17�.

Replacing in Eq. �64� the coefficients Ak by their expres-
sion from Eq. �55�, Ak=Uk

2+Vk
2, we obtain the long time

value of the condensate atom number correlation function in
the quantum ergodic theory. Note that, in the thermodynamic
limit, this long time value scales as the volume V, whereas
the t=0 value scales as V4/3.

C. Correlation function of the time derivative
of the condensate phase

As in the classical field case, we first look for an expres-
sion of the first order time derivative of the condensate phase

operator �̂ in terms of the amplitudes of the field �̂ on the
Bogoliubov modes. Taking as a starting point in Heisenberg
picture

i�
d

dt
�̂ = ��̂,H� , �65�

we split the quantum field in a condensate part and a non-
condensed part,

�̂�r� =
â0


V
+ �̂��r� , �66�

and we insert this splitting in the expression of H. Using the
modulus-phase representation of â0 and the commutation re-

lation Eq. �46�, we obtain, using â0
†â0= N̂− N̂�,
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− �
d

dt
�̂ =

g0

V �N̂ −
1

2
+ 	

r
dV �̂†�̂�

+
g0

2V
	

r
dV��̂

N̂0 + 1/2


N̂0�N̂0 + 1�
�̂ + H.c.�

+
g0

2
V
	

r
dV� 1


N̂0

�̂†�̂2 + H.c.� . �67�

The quantity �N̂0+1/2� /
N̂0�N̂0+1� is actually 1

+O�1/ N̂0
2� so it can to a high accuracy be replaced by unity.

Furthermore, as we did in the classical field model, we now

keep the leading terms in �̂, under the assumption of a weak

noncondensed fraction. We can also replace �̂ by �̂ under the

temporal derivative, since �̂�0� is time independent. We ob-
tain �33�

− �
d

dt
�̂ �

g0

V �N̂ −
1

2
+ 	

r
dV��̂†�̂ +

1

2
�̂2 +

1

2
�̂†2�� .

�68�

Taking the expectation value of this expression over the
thermal state in the Bogoliubov approximation leads to an
expression coinciding with the value of the chemical poten-
tial predicted by Eq. �103� of �35�, which includes in a sys-
tematic way the first correction to the pure condensate pre-
diction �g0 �41�:

��T� =
g0

V �N −
1

2
+ 	

k�0
�Uk + Vk�2n̄k + Vk�Uk + Vk�� .

�69�

At this order of the expansion, this analytically shows that

−��d�̂ /dt� is the chemical potential of the system. We now
turn to various predictions for the symmetrized correlation
function of d�̂ /dt,

CS��� =
1

2
�� d

dt
�̂����,� d

dt
�̂��0��� − � d

dt
�̂�2

. �70�

Bogoliubov theory. At a time short enough for the inter-
actions between the Bogoliubov modes to remain negligible,
one can apply Bogoliubov theory to get

CS
Bog��� = � g0

�V
�2

	
k�0

�Uk + Vk�4n̄k�n̄k + 1�

+
1

2
cos�2�kt��n̄k

2 + �n̄k + 1�2�� . �71�

The temporal coarse grained version of this correlation func-
tion is obtained by averaging out the cosine terms, which
amounts to considering a temporal derivative of �̂ freed from

the oscillating terms b̂b̂ and b̂†b̂†:

� d

dt
�̂�

nonosc
= −

g0

�V�N̂ −
1

2
+ 	

k�0
Vk�Uk + Vk�� −

g0

�V
	
k�0

�Uk

+ Vk�2b̂k
†b̂k. �72�

Quantum ergodic theory. We directly apply to the
smoothed temporal derivative �72� the reasoning performed
in the previous subsection. Up to an additive constant, Eq.
�72� is indeed of the form �56�, with Ak=−�g0 /�V��Uk

+Vk�2. From Eq. �64� we therefore obtain the long time be-
havior of the phase derivative correlation function

CS
ergo�+ �� = � g0

�V
�2�	

k�0
�Uk + Vk�2kn̄k�n̄k + 1��2

	
k�0

k
2n̄k�n̄k + 1�

.

�73�

The long time limit of the variance of the phase difference is
then �42�

Var �̂ � CS
ergo�+ ��t2. �74�

Although our conclusion of a ballistic behavior for the phase
agrees qualitatively with �11�, the explicit expression of the
coefficient of t2 differs from the one of �11� due the fact that
we account for interactions among Bogoliubov modes such
as the Beliaev-Landau processes leading to ergodicity in the
system, while in �11� the many-body Hamiltonian is replaced
by the Bogoliubov Hamiltonian in the last stage of the cal-
culation. As can be seen from Eq. �73� using Schwartz in-
equality, ergodicity results in a reduction of phase fluctua-
tions with respect to the Bogoliubov prediction.

In the thermodynamic limit, analytical expressions can be
obtained for this ergodic prediction. In the low temperature
limit kBT��g,

CS
ergo�+ �� �

8�4

15

a2�

V
� kBT

�
�2� kBT

�g
�3

, �75�

where � is the healing length such that �2 /m�2=�g. This
tends to zero at zero temperature �44�. In the high tempera-
ture limit kBT��g,

CS
ergo�+ �� �

12��3/2�2

5��5/2�
a2�

V
� kBT

�
�2

, �76�

where the thermal de Broglie wavelength obeys �2

=2��2 /mkBT and where � is the Riemann zeta function.
Here we have identified g0 to g �43�. In Fig. 7 we give the
quantum ergodic prediction for limt→��Var �̂�1/2 / t calcu-
lated numerically, which is a universal function of kBT /�g
when expressed in the right units.

VI. CONCLUSION

We have investigated theoretically the phase spreading of
a finite temperature weakly interacting condensate. The gas
is assumed to be prepared at thermal equilibrium in the ca-
nonical ensemble, and then to freely evolve as an isolated
system. After average over many realizations of the system,
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we find in classical field simulations that the variance Var �
of the condensate phase change grows quadratically in time.
This nondiffusive behavior is quantitatively explained by an
ergodic theory for the Bogoliubov modes, the key point be-
ing that conservation of energy during the free evolution pre-
vents some correlation functions of the field from vanishing
at long times. We have extended the analytical treatment to
the quantum field case and we have determined the coeffi-
cient of the t2 term in the long time behavior of Var �̂; see
Eq. �73�. This analytical result holds at low temperature T
�Tc and in the weakly interacting regime �a3�1, for a large
number of thermally populated Bogoliubov modes, and re-
lies on the assumption that the �although weak� interaction
among the Bogoliubov modes efficiently mixes them �quan-
tum ergodic regime�.

A physical insight in our result is obtained from the fol-
lowing rewriting

Var �̂�t� �
t2

�2� �T�

�T�H�
�2

Var H , �77�

where Var H is the variance of the energy of the gas, here in
the Bogoliubov approximation and in the canonical en-
semble, ��T� is the chemical potential of the system as given
by Eq. �69�, and �H��T� is its mean energy in the Bogoliubov
approximation.

This formula may also be obtained from the following
reasoning. For a given realization of the system, of energy E,
the long time limit of the condensate phase change �̂�t� can
be shown to behave as

�̂�t� � − �micro�E�t/� , �78�

where �micro is the chemical potential calculated in the mi-
crocanonical ensemble �45�. For a large system, canonical
energy fluctuations around the mean energy �H��T� are weak
in relative value so that one may expand �micro�E� to first
order in E− �H�. Taking the variance of �̂�t� over the canoni-

cal fluctuations of E then leads to Eq. �77�, since
�T� /�T�H���E�micro��H�� for a large system.

This reasoning shows that a necessary condition for the
observation of an intrinsic diffusive spreading of the conden-
sate phase change is a strong suppression of the energy fluc-
tuations of the gas. To this end one may try to prepare the
system in a clever way, starting with a pure condensate and
giving to the system a well defined amount of energy, e.g.,
by a reproducible change of the trapping potential �46�. Al-
ternatively one may try to follow a given experimental real-
ization of the system, measuring the phase of the condensate
in a nondestructive way and replacing ensemble average by
time average.
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APPENDIX A: TEMPORAL CORRELATION FUNCTION
OF THE BOGOLIUBOV MODE OCCUPATION

NUMBERS

Using the master equation approach developed in quan-
tum optics �47,48�, we calculate the temporal correlation

function of the operator b̂q
†b̂q giving the number of Bogoliu-

bov excitations in the mode of wave vector q, in the thermo-
dynamic limit, and including the Beliaev-Landau coupling
among the Bogoliubov modes. This is useful to motivate the
Gaussian model introduced in Sec. IV, and to estimate the
time required for the correlation function �A�t�A�0��− �A�2,
where A is of the form Eq. �56�, to depart from its value
predicted by the Bogoliubov theory.

The idea of the master equation approach is to split the
whole system in a small system S and a large reservoir R
with a continuous energy spectrum. Treating the coupling W
between S and R in the Born-Markov approximation one
obtains a master equation for the density operator �S of the
small system. Here the small system is the considered Bogo-

liubov mode, with unperturbed Hamiltonian HS=qb̂q
†b̂q, and

the reservoir is the set of all other Bogoliubov modes, with
unperturbed Hamiltonian HR=HBog−HS. In the thermody-
namic limit, the reservoir indeed has a continuous spectrum,
whereas the small system has a discrete spectrum. The cou-
pling W between S and R is obtained from the next order
Bogoliubov expansion of the Hamiltonian, that is from the

part of the Hamiltonian cubic in the field �̂,

Hcub = g0�1/2	
r

dV�̂†��̂ + �̂†��̂ . �A1�

Inserting the modal decomposition Eq. �48� in Hcub, we iso-
late the terms that are linear in bq �49�:
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FIG. 7. �Color online� In the regime T�Tc for a weakly inter-
acting Bose gas, quantum ergodic prediction �73� for the long time
limit of �Var �̂�1/2 / t, in the thermodynamic limit. When expressed
in units of �a2� /V�1/2�g /�, �Var �̂�1/2 / t is a function of kBT /�g
only, that is readily calculated numerically �solid line� or that may
be approximated by asymptotic equivalents �75� and �76� in the low
temperature or high temperature limit �green dashed line�. Note that
the dimensionless quantity a2� /V may also be written as

�a3 / �N
4��.
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W = g�1/2�b̂qR† + b̂q
†R� , �A2�

R = V−1/2 	
k,k��0,q

��−q,k+k�Ak,k�b̂k
†b̂k�

† + �q,k+k�Bk,k�b̂kb̂k�

+ �q,k�−k2Ck,k�b̂k
†b̂k�� , �A3�

where the operator R acts on the reservoir only and the
coefficients have the explicit expressions:

Ak,k� = UqVkVk� + �Uq + Vq��UkVk� + Uk�Vk� + VqUkUk�,

Bk,k� = UqUkUk� + �Uq + Vq��VkUk� + UkVk�� + VqVkVk�,

Ck,k� = UqVkUk� + �Uq + Vq��UkUk� + VkVk�� + VqUkVk�.

As a consequence of momentum conservation for the whole
system, the action of R �respectively R†� changes the reser-
voir momentum by −�q �respectively �q�.

Let us denote with a tilde the operators in the interaction
picture with respect to the Bogoliubov Hamiltonian HS+HR.
In the Born-Markov approximation �47,48� the master equa-
tion, for the density operator of the small system in contact
with the reservoir in an equilibrium state, reads �50�

d

dt
�̃S�t� = − �

0

+� d�

�2 TrR�†W̃�t�,�W̃�t − ��,�̃S�t��R
eq�‡� ,

�A4�

where TrR denotes the trace over the modes of the reservoir
and the equilibrium density operator of the reservoir �R

eq is
supposed here to be the Bogoliubov thermal equilibrium at
temperature T. We expand the double commutator; because
of momentum conservation, the resulting terms that contain

two factors b̃q or two factors b̃q
† exactly vanish when one

performs the corresponding traces over the reservoir. Com-
ing back to Schrödinger’s picture we finally obtain

d

dt
�S =

1

i�
�̌qb̂q

†b̂q,�S� + �q
−b̂q�Sb̂q

† + �q
+b̂q

†�Sb̂q

−
1

2
��q

−b̂q
†b̂q + �q

+b̂qb̂q
†,�S� , �A5�

where �,� is the anticommutator and the new mode frequency
is ̌q=q+�
q. The effect of the reservoir on the small sys-
tem is then characterized by a frequency shift 
q of the
mode, whose explicit expression we shall not need here �51�,
and by two transition rates �q

+ and �q
− given by the Fourier

transform of reservoir correlation functions at the mode fre-
quency:

�q
+ =

g0
2�

�2 �
−�

+�

d� e−iq�/� TrR�R̃†���R�R
eq� , �A6�

�q
− =

g0
2�

�2 �
−�

+�

d� eiq�/� TrR�R̃���R†�R
eq� . �A7�

Since the reservoir is here at thermal equilibrium, the two
rates are not independent but �q

−=e�q�q
+. This results from

the Bose law property 1+ n̄k=e�kn̄k. The rates are then con-
veniently characterized by their difference �q��q

−−�q
+. One

finds

�q =
g0

2�

�2��2�
� d3k�4Ck,k�

2 �n̄k − n̄k����q + k − k��

+ 2Bk,k�
2 �1 + n̄k + n̄k����k + k� − q�� , �A8�

where k� stands for �k−q� in the integrand. From �24� one
checks that �q is simply the standard Beliaev-Landau damp-
ing rate for the Bogoliubov mode q, the contribution in C2

corresponding to the Landau mechanism and the one in B2 to
the Beliaev mechanism.

We now proceed with the calculation of the temporal cor-
relation function of two operators AS, BS of the small system,
the whole system being at thermal equilibrium. The quantum
regression theorem �53� states that

�AS�t�BS� = ��AS���t� � TrS�AS�S
eff�t�� �A9�

for t�0, where the effective density operator �S
eff is in gen-

eral not Hermitian nor of unit trace but evolves with the
same master equation as �S with the initial condition

�S
eff�0� = BS�S

eq, �A10�

where �S
eq=e−�HS /ZS is the unit trace equilibrium solution of

Eq. �A5�. Using the invariance of the trace under a cyclic
permutation we obtain

d

dt
��AS�� =

ǐq

�
���b̂q

†b̂q,AS��� +
�q

−

2
���b̂q

†,AS�b̂q + b̂q
†�AS, b̂q���

+
�q

+

2
���b̂q,AS�b̂q

† + b̂q�AS, b̂q
†��� . �A11�

Specializing to AS=BS
†= b̂q

† or b̂q and AS=BS= n̂q� b̂q
†b̂q leads

to linear first order differential equations for ��AS���t� that are
readily solved:

�bq
†�t�bq� = n̄qe�ǐq/�−�q/2�t, �A12�

�bq�t�bq
†� = �n̄q + 1�e�−ǐq/�−�q/2�t, �A13�

�n̂q�t�n̂q� − n̄q
2 = n̄q�n̄q + 1�e−�qt. �A14�

In the classical field limit, where n̄k+1 is assimilated to n̄k,
this justifies the Gaussian theory of Sec. IV. In both the clas-
sical and quantum cases, this shows that the occupation num-
bers decorrelate with the rates �q corresponding to the
Beliaev-Landau processes. These rates have a nonzero value
in the thermodynamic limit.

The present calculation is readily extended to the inclu-
sion of two Bogoliubov modes in the small system, of wave
vectors q and q��q. The coupling of the small system to the
reservoir now takes the form

W2 = g�1/2�b̂qRq
† + b̂q�Rq�

† + H.c.� , �A15�

where the operators R have the same structure as in the
single mode case, except that the double sum over k, k� is
restricted to values different from 0, q, q�. In the resulting
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master equation for the density operator of the two modes,
the only issue is to see if there will be crossed terms between

the two modes, involving, e.g., the product of b̂q
† with b̂q�. By

calculating the trace over the reservoir of the corresponding

product of operators R, e.g., TrR�R̃q���R̃q�
† �R

eq�, we find in
general that all crossed terms vanish, because of momentum
conservation �52�. The master equation therefore does not
couple the two modes, and one obtains

�n̂q�t�n̂q�� − n̄qn̄q� = 0, for q� � q , �A16�

as is assumed in the Gaussian model for the classical field of
Sec. IV.

It is instructive to compare the long time limit of the
predictions Eqs. �A14� and �A16� to the quantum ergodic
prediction. Adapting the reasoning leading to Eq. �64�, we
obtain the quantum ergodic result

�n̂q�+ ��n̂q�� − n̄qn̄q� =
qq�n̄q�n̄q + 1�n̄q��n̄q� + 1�

	
k�0

k
2n̄k�n̄k + 1�

.

�A17�

In the thermodynamic limit this tends to zero, as in the mas-
ter equation approach.

APPENDIX B: DEVIATION OF MICROCANONICAL
AND CANONICAL AVERAGES

We wish to calculate the thermal expectation value of an
observable A in the microcanonical ensemble rather than in
the canonical one. For convenience, we shall parametrize the
problem by the temperature T of the canonical ensemble.
Restricting to the thermodynamic limit, where kBT is much
larger than the typical level spacing of the system, we calcu-
late the first order deviation of the two ensembles.

We start with the usual integral representation of the ca-
nonical ensemble in terms of the microcanonical one:

�A��T� =
� dE Ā�E�eS�E�/kBe−�E

� dE eS�E�/kBe−�E

, �B1�

where the density of states is written in terms of the expo-

nential of the microcanonical entropy S�E�, Ā�E� and
�A��T� stand for the expectation value of A in the microca-
nonical ensemble of energy E and in the canonical ensemble
of temperature T respectively, and �=1/kBT.

In the thermodynamic limit we expect the integrand to be
strongly peaked around the value E0�T� such that

d

dE
�S�E�

kB
− �E�

E=E0�T�
= S��E0�T��/kB − � = 0, �B2�

where f��x� stands for the derivative of a function f with
respect to its argument x. We then expand u�E��S�E� / �kB�
−�E up to third order in E−E0 and we approximate the
integrand as

eu�E� = eu�E0�eS��E0��E − E0�2/2kB�1 +
1

6
�E − E0�3S�3��E0�/kB

+ ¯ � . �B3�

We also expand Ā�E� up to second order in E−E0. Perform-
ing the resulting Gaussian integrals leads to

�A��T� − Ā�E0�T�� =
kB

2�S��E0���Ā��E0�
S�3��E0�
�S��E0��

+ Ā��E0��
+ ¯ . �B4�

This relation can be inverted to first order, to give the micro-
canonical average as a function of the canonical one; to this

order, we can assume that Ā�E0�T��= �A��T� in the right-hand
side of Eq. �B4�. Furthermore, using the implicit equation
�B2� one is able to express the derivatives with respect to
E0 in terms of derivatives with respect to T, e.g.,
S��E0�T��=−1/ �T2E0��T��. This leads to

Ā�E0�T�� − �A��T� = − kBT� �A���T�
E0��T�

+
T�A���T�
2E0��T� � + ¯ .

�B5�

It is actually more convenient to parametrize the result in
terms of the mean canonical energy �H��T� rather than in
terms of E0�T�. Applying Eq. �B5� to A=H allows one to
calculate E0�T�− �H��T� to first order. One then uses the first
order expansion

Ā��H��T�� = Ā�E0�T�� + ��H��T� − E0�T��

	
1

E0��T�
d

dT
�Ā�E0�T��� + ¯ . �B6�

In the first order term of this expression, we can replace

Ā�E0�T�� by the canonical average �A��T�, and we can iden-
tify E0�T� with �H��T�; we can do the same identification in
the right hand side of Eq. �B5�. We obtain �54�

Ā��H��T�� − �A��T� = −
1

2
kBT2 d

dT
� d�A�/dT

d�H�/dT
� + ¯ .

�B7�

APPENDIX C: ALTERNATIVE DERIVATION OF THE
LONG TIME LIMIT OF CORRELATION FUNCTIONS

We present in this section an alternative derivation of the
ergodic result �63� for the correlation function of an Hermit-
ian operator A, here introduced in Eq. �56�. The long time
limit of the correlation function is rigorously defined in terms
of the temporal average

CA�+ �� � lim
t→+�

1

t
�

0

t

d���A���A�0�� − �A�2� . �C1�

We then insert in Eq. �C1� a closure relation using the exact
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N-body eigenstates �m� of the interacting system with
eigenenergies Em. In the absence of degeneracies we obtain a
single sum over m,

CA�+ �� = 	
m

pm�m�A�m�2 − �	
m

pm�m�A�m��2
. �C2�

Here the pm=Z−1 exp�−�Em� are the statistical weights defin-
ing the average in the canonical ensemble. Equation �C2�,
specialized for Ak= �g0 /V��Uk+Vk�2, is equivalent to Eq. �22�
in �11� for the dephasing time, provided one replaces H� by
A there. This makes the link between our approach and the
one of �11�.

The delicate point is now to relate the formal expression
�C2� �involving the unknown exact eigenstates �m�� to an
explicit expression treatable in the Bogoliubov approxima-
tion. If one directly approximates the exact eigenstates by
eigenstates of the Bogoliubov Hamiltonian, �m����nk��, as
done in �11� �see Eq. �61� there�, one obtains the Bogoliubov
result

CA
Bog�+ �� = 	 Ak

2n̄k�n̄k + 1� , �C3�

which is a good approximation for the t=0 value of the cor-
relation function, but not for its long time limit. We argue
that the exact eigenstates are in fact coherently spread over a
large number of Bogoliubov eigenstates of very close ener-
gies, because of the Beliaev-Landau couplings among them.
Following �37�, we thus assume that

�m�A�m� � Ā�Em� , �C4�

where Ā�Em� is the microcanonical ensemble average at the
energy Em, a thermodynamic quantity that is now treatable in
the Bogoliubov approximation as we have already done in
Eq. �62� �55�. After average over the canonical distribution
for the energy Em=E, we then obtain for the correlation func-
tion,

CA�+ �� � ��Ā�E� − �A��2� � � �A��
�HBog��

�2

Var HBog,

�C5�

where �¯� stands for the canonical average at temperature T.
We recover Eq. �63�.
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