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The superfluid density is a fundamental quantity describing the response to a rotation as well as in two-fluid
collisional hydrodynamics. We present extensive calculations of the superfluid density �s in the BCS-BEC
crossover regime of a uniform superfluid Fermi gas at finite temperatures. We include strong-coupling or
fluctuation effects on these quantities within a Gaussian approximation. We also incorporate the same fluctua-
tion effects into the BCS single-particle excitations described by the superfluid order parameter � and Fermi
chemical potential �, using the Nozières–Schmitt-Rink approximation. This treatment is shown to be necessary
for consistent treatment of �s over the entire BCS-BEC crossover. We also calculate the condensate fraction Nc

as a function of the temperature, a quantity which is quite different from the superfluid density �s. We show
that the mean-field expression for the condensate fraction Nc is a good approximation even in the strong-
coupling BEC regime. Our numerical results show how �s and Nc depend on temperature, from the weak-
coupling BCS region to the BEC region of tightly bound Cooper pair molecules. In a companion paper �Phys.
Rev. A 74, 063626 �2006��, we derive an equivalent expression for �s from the thermodynamic potential,
which exhibits the role of the pairing fluctuations in a more explicit manner.
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I. INTRODUCTION

In the last few years, the BCS-BEC crossover in two-
component Fermi superfluids has become a central topic in
ultracold atom physics �1–4�. This crossover is of special
interest since the superfluidity continuously changes from the
weak-coupling BCS-type to the Bose-Einstein condensation
�BEC� of tightly bound Cooper pairs, as one increases the
strength of a pairing interaction �5�. Thus the BCS-BEC
crossover enables us to study fermion superfluidity and bo-
son superfluidity in a unified manner.

The superfluid density �s is a fundamental quantity which
describes the response of a superfluid which arises from a
BEC �6�. The superfluid density was first introduced by Lan-
dau as part of the two-fluid theory of superfluid 4He �7�. At
T=0, the value of �s always equals the total carrier density n.
�In the BCS-BEC crossover, n is the total number density of
fermions.� This property is satisfied in both the Fermi super-
fluids and Bose superfluids, irrespective of the strength of the
interaction between particles. This is quite different from
what is called the condensate fraction Nc, which describes
the number of Bose-condensed particles �7,8�. For example,
in superfluid 4He, only about 10% of atoms are Bose con-
densed even at T=0, due to the strong repulsion between the
4He atoms �for a review, see Ref. �9��. In contrast, all the
atoms contribute to the superfluid density at T=0: namely,
�s�T=0�=n.

In a companion paper, we have discussed some analytical
results for the superfluid density �s in the BCS-BEC cross-
over regime of a uniform superfluid Fermi gas �10�. Going
past the weak-coupling BCS theory, we derived an expres-
sion for �s in the Gaussian fluctuation level in terms of the
fluctuations in the Cooper channel. The resulting expression
for the normal fluid density, �n�n−�s, is given by the sum

of the usual BCS normal fluid density �n
F and a bosonic fluc-

tuation contribution �n
B. While the superfluid density from

fermions dominates in the weak-coupling BCS regime, the
bosonic fluctuation contribution �n

B becomes dominant in the
strong-coupling BEC regime. Since �n

B is absent in the mean-
field BCS theory, inclusion of fluctuations in the Cooper
channel is clearly essential in considering the superfluid den-
sity in the BCS-BEC crossover.

In Ref. �10�, our expression for �s was obtained using the
thermodynamic potential in the presence of a superfluid flow.
In the present paper, we derive a second expression for �s by
calculating the effect of pairing fluctuations on the single-
particle Green’s function with a supercurrent. In this paper,
we use this expression to numerically calculate �s in the
entire BCS-BEC crossover regime at finite temperatures.
However, this expression for �s �given in Sec. III� is equiva-
lent to the result derived in Ref. �10�. In calculating the su-
perfluid order parameter � as well as Fermi chemical poten-
tial �, we include the effect of the pairing fluctuations
following the approach given in Ref. �4�. This self-consistent
treatment of � and � is crucial in calculating �s as a function
of the temperature in the BCS-BEC crossover.

Besides the superfluid density, we also calculate the con-
densate fraction Nc describing the number of Bose-
condensed particles �8�. Nc is of special interest in superfluid
Fermi gases, since it can be observed experimentally. Indeed,
a finite value of Nc is the signature of the BCS-BEC super-
fluid phase �5�. In this paper, we show that strong-coupling
pair fluctuations have little effect on Nc in the BCS-BEC
crossover. We note that Nc has been recently calculated at
T=0 within a simple mean-field BCS approach �11� and us-
ing Monte Carlo �MC� techniques �12�. In this paper, we
present detailed results for Nc at finite temperatures in the
BCS-BEC crossover, based on the Nozières–Schmitt-Rink
�NSR� theory of fluctuations �2�.
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The present paper is organized as follows. In Sec. II, the
BCS Green’s functions are solved numerically for the super-
fluid order parameter � and chemical potential � self-
consistently. This is done for the entire BCS-BEC crossover
region and at finite temperatures. In Sec. III, we calculate the
superfluid density �s treating the strong-coupling pair fluc-
tuation effects within a Gaussian approximation �2–4,13,14�.
Numerical results for �s are presented in Sec. IV. In Sec. V,
we define and calculate the condensate fraction Nc.

Throughout this paper, we take �=kB=1. We also set the
volume V=1, so that the number of atoms, N, and the num-
ber density n are the same.

II. BCS-BEC CROSSOVER IN THE SUPERFLUID PHASE

In superfluid Fermi gases, current experiments make use
of a broad Feshbach resonance to tune the magnitude and
sign of the pairing interaction �5�. In this case, the superfluid
properties can be studied by using the single-channel BCS
model, described by the Hamiltonian

H = �
p,�

�pcp�
† cp� − U �

p,p�,q

cp+q↑
† cp�−q↓

† cp�↓cp↑. �2.1�

Here, cp�
† is a creation operator of a Fermi atom with pseu-

dospin �= ↑ ,↓ �which describes the two atomic hyperfine
states�. The Fermi atoms have kinetic energy �p=�p−�
= p2 /2m−�, measured from the Fermi chemical potential �.
−U describes a pairing interaction between different Fermi

atoms. The magnitude and sign of U can be tuned using the
Feshbach resonance using an external magnetic field. The
weak-coupling BCS limit corresponds to U→ +0. We only
consider a uniform gas in this paper.

Nozières and Schmitt-Rink first discussed the BCS-BEC
crossover behavior of the Hamiltonian in Eq. �2.1� to deter-
mine Tc �2� based on a Gaussian approximation for pair fluc-
tuations �3,13�. The NSR theory has been extended to the
superfluid phase below Tc �4,14,15�. In the extended NSR
theory, the superfluid order parameter � and chemical poten-
tial � are determined from the coupled equations �4,14�

1 = U�
p

1

2Ep
tanh

	Ep

2
, �2.2�

N = NF
0 −

1

2	

�

��
�
q,
n

ln det�1 + U�̂�q,i
n�� . �2.3�

Here, Ep=��p
2 +�2 describes Bogoliubov single-particle ex-

citations. In Eq. �2.3�,

NF
0 = �

p
�1 −

�p

Ep
tanh

	

2
Ep	 �2.4�

is the number of Fermi atoms in the mean-field approxima-
tion. The second term in Eq. �2.3� describes contribution

from bosonic collective pair fluctuations �16,17�, where �̂ is
a �2�2�-matrix correlation function given by �4�

�̂�q,i
n� =
1

4
�
11

0 + 
22
0 + i�
12

0 − 
21
0 � 
11

0 − 
22
0


11
0 − 
22

0 
11
0 + 
22

0 − i�
12
0 − 
21

0 �
	 . �2.5�

The correlation functions 
ij
0 are given within the mean-field

approximation by �18�


ij
0 �q,i
n� =

1

	
�
p,�n

Tr��iĜ0�p + q/2,i�n + i
n�� jĜ0�p

− q/2,i�n�� , �2.6�

where

Ĝ0�p,i�m� =
i�m + �p�3 − ��1

�i�m�2 − Ep
2 �2.7�

is the �2�2�-matrix single-particle Green’s function �19�
�where �m is the fermion Matsubara frequency� and � j are
the Pauli operators. For detailed expressions of 
ij

0 , we refer
to Refs. �4,18�.

We solve Eq. �2.2� together with Eq. �2.3� to give � and �
self-consistently. As usual, we need to introduce a high-
energy cutoff �c in these coupled equations. This cutoff can
be formally eliminated by introducing the two-body s-wave
scattering length as �3�,

4�as

m
� −

U

1 − U�
p

�c 1

2�p

. �2.8�

Using as in place of U, one can rewrite Eqs. �2.2� and �2.3�
in the form

1 = −
4�as

m
�
p
� 1

2Ep
tanh

	

2
Ep −

1

2�p
	 , �2.9�

N = NF
0 −

1

2	

�

��
�
q,
n

ln det
1 −
4�as

m
��̂�q,i
n� +

1

2�p
	� ,

�2.10�

where the momentum sums are now no longer divergent. The
weak-coupling BCS regime and the strong-coupling BEC re-
gime are, respectively, given by �kFas�−1�−1 and �kFas�−1

�1 �where kF is the Fermi momentum�. The region −1
� �kFas�−1�1 is referred to as the “crossover regime.”
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Figure 1 shows our self-consistent solutions of the
coupled equations �2.9� and �2.10� in the BCS-BEC cross-
over at finite temperatures. We note that these calculations
reproduce the NSR results for Tc �3�.

When one enters the crossover region, Fig. 2 shows that
the order parameter � deviates from the weak-coupling BCS
result. In the strong-coupling BEC regime, although the su-

perfluid phase transition approaches the value Tc=0.218TF
�3�, ��T=0� continues to increase. As a result, the ratio
2��T=0� /Tc in the BEC regime is larger than the weak-
coupling BCS universal constant 2��T=0� /Tc=3.54. We re-
call that on the BEC side of the crossover, where � is nega-
tive, the energy gap is not equal to � �4,14�.

The chemical potential is strongly affected by fluctuations
in the Cooper channel and becomes negative in the BEC
regime, as shown in Fig. 1�b�. In the strong-coupling BEC
regime, � approaches �=−1/2mas

2 �20�. Although �
strongly depends on the magnitude of the interaction, Fig. 3
shows that the temperature dependence of � is very weak in
the entire BCS-BEC crossover. Our results in the unitarity
limit are in quite good agreement with quantum Monte Carlo
simulations �12,21� as well as a more self-consistent version
of NSR theory �22�.

In Fig. 1, the apparent first-order phase transition in
the BEC regime is an artifact of the approximate NSR theory
we are using. The reason is as follows. In the BEC regime
�where ��−�F�, the single-particle BCS excitations Ep

=��p
2 +�2 have a large energy gap given by Eg���2+�2

�
�
. This energy gap still exists at Tc, where �=0. In this
regime, we can set tanh�	Ep /2��1 in Eq. �2.2�. Then, Eq.
�2.9� reduces to the expression �=−1/2mas

2 and Eq. �2.10�
becomes �10�

N

2
= Nc0 −

1

	
�
q,
n

D�q,i
n�ei�
n = Nc0

+
1

2�
q
��q

B + UMNc0

�q
coth

	

2
�q − 1	

� Nc0 + Nd. �2.11�

Here, �q
B=q2 /2M �M =2m� and

�q = ��q
B��q

B + 2UMNc0� �2.12�

is the Bogoliubov excitation spectrum in an interacting gas
of Bose molecules. D in Eq. �2.11� is the Bose Green’s func-
tion, describing Bogoliubov excitations:
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FIG. 1. �a� Off-diagonal mean-field � and �b� Fermi chemical
potential � in the BCS-BEC crossover. The pairing interaction is
measured in terms of the inverse of the two-body scattering length
as, normalized by the Fermi momentum kF. In these panels, the
dotted line shows Tc as a function of �kFas�−1. In the strong-
coupling regime, the apparent first-order behavior of the phase tran-
sition is an artifact of the NSR Gaussian treatment of pairing fluc-
tuations �see text�.
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FIG. 2. Calculated values of the superfluid order parameter � as
a function of temperature. “BCS” labels the weak-coupling BCS
limit. The bendover near Tc is an artifact of our NSR Gaussian
treatment of fluctuations.
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For comparison, in the unitarity limit ��kFas�−1=0�, MC results
�12,21� give � /�F=0.44–0.49 and an improved version of NSR
theory �22� gives � /�F=0.4–0.47 just below Tc.
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D�q,i
n� =
i
n + �q

B + UMNc0

�i
n�2 − �q
2 , �2.13�

where UM =4�aM /M �where in our theory aM =2as and M
=2m� is the effective s-wave repulsive interaction between
Cooper pairs. The condensate fraction Nc0 defined in Eq.
�2.11� is given by

Nc0 � �
p

�2

4�p
2 =

�2m3/2�2

16��
�

. �2.14�

In Sec. V, we prove that Nc0 as defined in Eq. �2.14� corre-
sponds precisely to the formal definition for the condensate
fraction in a Fermi superfluid in the BEC limit. Nd as defined
in Eq. �2.11� is the number of molecules which are not Bose
condensed, again in the BEC limit.

Equations �2.11� and �2.12� show that the strong-coupling
BEC limit corresponds to the Popov approximation for a
weakly interacting molecular Bose gas �23�. As is well
known �see, for example, Ref. �24��, the Popov approxima-
tion gives a spurious first-order phase transition at Tc. This is
the origin of the bendover or first-order phase transition evi-
dent in Fig. 1 �25� and other figures in this paper. It is well
known how to overcome this problem; namely, one has to
include many-body renormalization effects due to the inter-
action UM �24,26�. Including such higher-order corrections
past the NSR Gaussian fluctuations considered in this paper
is also crucial for determining the correct value of effective
interaction UM. The molecular scattering length aM =2as
which is obtained in Eq. �2.11� is characteristic of the NSR
treatment of fluctuations �3�. The correct result aM =0.6as
�27� requires going past the Gaussian approximation �26,28�.
In this paper, in contrast, we only treat pairing fluctuations
within NSR theory. However, within this approximation, we
calculate the superfluid density �and condensate fraction Nc
in Sec V� in a consistent manner.

As discussed in Ref. �24�, the Popov approximation be-
comes invalid in the small region close to Tc given by

�t �
Tc − T

Tc
� � 1

6�2	1/3

�kFaM� = 0.26�kFaM� . �2.15�

Although we plot numerical results in the present paper in
the whole temperature region for completeness, we empha-
size that the restriction in Eq. �2.15� also holds in the BEC
regime. We note that the region defined in Eq. �2.15� be-
comes narrow as one enters deeper into the BEC regime,
simply because the molecular scattering length aM �as be-
comes small. Thus, one obtains �t�0.26 at �kFas�−1=2 �the
case shown in Fig. 2, for example� but �t�0.1 at �kFas�−1

=5. As Fig. 2 shows, the bendover occurs over an increas-
ingly small region as we go deeper in the BEC region.

Although Eq. �2.11� was obtained in the strong-coupling
BEC regime, we note that the condensate fraction Nc in Eq.
�2.14� is the mean-field approximation for a Fermi super-
fluid. This is consistent with the result found in Sec. V that
the mean-field expression for the condensate fraction Nc is a
good approximation even in the strong-coupling BEC regime
�at least within NSR theory�. The number of molecules Nd in
the noncondensate given in Eq. �2.11�, in contrast, is due to

the pairing fluctuations. This is discussed in more detail in
Sec. V.

III. SUPERFLUID DENSITY AND THE SINGLE-PARTICLE
GREEN’S FUNCTION

In Ref. �10�, our discussion of the superfluid density �s
started from the thermodynamic potential ��vs� in the pres-
ence of an imposed superfluid velocity �or phase twist� vs.
Here we give an alternative formulation of �s in terms of
how the single-particle Green’s function is altered in the
presence of a supercurrent. Our numerical calculations in
Sec. IV are based on this expression, but it can be proven to
be equivalent to the one discussed in Ref. �10�. The result we
obtain in this section gives further insight and is convenient
for numerical calculations.

When a supercurrent flows in the z direction with the
superfluid velocity vs=Qz /2m, the supercurrent density Jz is
given by

Jz = �
p,�

pz

m
�cp�

† cp,�� = nvs +
1

	
�

p,�m

pz

m
Tr�ĝ�p,i�m�� .

�3.1�

Here ĝ�p , i�m� is the �2�2�-matrix single-particle thermal
Green’s function in the presence of vs. When the second term
in Eq. �3.1� is expanded to O�vs�, it can be written as Jz

=�svs, where the superfluid density �s is defined by

�s = n +
2

	
�

p,�m

pz
�

�Qz
Tr�ĝ�p,i�m��Qz→0 � n − �n. �3.2�

The second line defines the normal fluid density �n.
In the mean-field approximation, the supercurrent state is

described by the �2�2�-matrix single-particle thermal
Green’s function given by �29�

ĝ0�p,i�m� =
1

�i�m − �p� − �̃p�3 + ��1

, �3.3�

where the superfluid order parameter for the current-carrying
state, ��r�=�eiQ·r �Q= �0,0 ,Qz��, has been used. The effects
of the supercurrent vs appear in the Doppler shift term �p

�Q ·p /2m and in �̃p��p− �̃, with �̃��−Q2 /8m. How-

ever, we do not have to take this dependence of �̃p on � into
account in calculating �n in Eq. �3.2� because it is second
order O�vs

2�.
Substituting Eq. �3.3� into Eq. �3.2�, one obtains the well-

known mean-field result

�n
F = −

2

3m
�
p

p2�f�Ep�
�Ep

. �3.4�

In addition to �n
F as given by Eq. �3.4�, the correction to ĝ0

to first order in vs gives rise to an additional fluctuation con-
tribution �n

B to the normal fluid density. This should be con-
sistent with the number equation �2.3�, for the vs=0 state,
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N = �
p

1 +
1

	
�

p,�m

Tr��3Ĝ�p,i�m�� , �3.5�

where the renormalized single-particle Green’s function Ĝ,

Ĝ�p,i�m� = Ĝ0�p,i�m� + Ĝ0�p,i�m��̂�p,i�m�Ĝ0�p,i�m� ,

�3.6�

involves the correction from the lowest-order quasiparticle
self-energy due to coupling with collective fluctuations:

�̂�p,i�m� =
U

	
�
q,
n

1

��q,i
n�
��1 + U�11�q,i
n���+

�Ĝ0�p + q,i�m + i
n��− + �1 + U�22�q,i
n���−

�Ĝ0�p + q,i�m + i
n��+ − 2U�12�q,i
n��+

�Ĝ0�p + q,i�m + i
n��+� . �3.7�

Here, ��q , i
n��det�1+U�̂�q , i
n�� and �±���1± i�2� /2
and �i are Pauli matrices. In obtaining this result, we have
carried out the � derivative on �ij in Eq. �2.3� by using the
identity

�Ĝ0

��
= − Ĝ0�3Ĝ0. �3.8�

For example,

��11

��
= −

1

	
�

p,i�m

�Tr��3Ĝ0�p,i�m��−

�Ĝ�p + q,i�m + i
n��+Ĝ0�p,i�m��

+ Tr��3Ĝ0�p + q,i�m + i
n��+Ĝ�p,i�m��−

�Ĝ0�p + q,i�m + i
n��� . �3.9�

In the presence of a supercurrent, the Green’s function
analogous to Eq. �3.6� is given by

ĝ�p,i�m� = ĝ0�p,i�m� + ĝ0�p,i�m��̂�p,i�m�ĝ0�p,i�m� ,

�3.10�

where �̂ is given by Eq. �3.7� but with ĝ0 in Eq. �3.4� replac-

ing Ĝ0. Substituting Eq. �3.10� into Eq. �3.2�, we obtain

�n = �n
F + �n

B. �3.11�

The Fermi contribution is given by Eq. �3.4�, while the
bosonic fluctuation contribution �n

B is given by

�n
B = −

2

	
�

p,�m

pz
�

�Qz
Tr�ĝ0�p,i�m��̂�p,i�m�ĝ0�p,i�m��Qz→0

=
2

	
�

p,�m

pz
�

�Qz
Tr��̂�p,i�m�

�ĝ0�p,i�m�
�i�m

	
Qz→0

, �3.12�

where we have used the identity

�ĝ0

�i�m
= − ĝ0ĝ0. �3.13�

Substituting Eq. �3.7� �with Ĝ0→ ĝ0� into Eq. �3.12� and us-
ing the identity

�ĝ0

��p
= −

�ĝ0

�i�m
, �3.14�

we find

�n
B =

2

	2 �
p,�m

�

�Qz
�
q,
n

p−
z U

��q,i
n�

� Tr��1 + U�11�q,i
n���+ĝ0�p+,i�m + i
n��−

�
�ĝ0�p−,i�m�

�i�m

+ �1 + U�22�q,i
n���−ĝ0�p+,i�m + i
n��+
�ĝ0�p−,i�m�

�i�m

− 2U�12�q,i
n��+ĝ0�p+,i�m + i
n��+
�ĝ0�p−,i�m�

�i�m
	

Qz→0

= −
2m

	

�

�Qz
�
q,
n

U

��q,i
n���1 + U�11�q,i
n��
��22�q,i
n�

�Qz

+ �1 + U�22�q,i
n��
��11�q,i
n�

�Qz

− 2U�12�q,i
n�
��12�q,i
n�

�Qz
	

Qz→0
, �3.15�

where p±�p±q /2. The correlation functions �ij�q , i
n� ap-
pearing in Eq. �3.15� are defined in Eq. �2.5� in terms of the
single-particle Green’s functions ĝ0 in the presence of a su-
percurrent. In Eq. �3.15�, the Qz derivative only acts on Qz in
the Doppler shift term �p=Q·p /2m in ĝ0 in Eq. �3.3�. It does
not act on the Qz in the shifted chemical potential �̃=�
−Q2 /8m.

To summarize, the total normal fluid density �n associated
with fermionic and bosonic degrees of freedom is given by
the sum of their contributions:

�n = −
2

3m
�
p

p2�f�Ep�
�Ep

−
2m

	

�

�Qz
�
q,
n

U

��q,i
n���1

+ U�11�q,i
n��
��22�q,i
n�

�Qz
+ �1

+ U�22�q,i
n��
��11�q,i
n�

�Qz

− 2U�12�q,i
n�
��12�q,i
n�

�Qz
	

Qz→0
. �3.16�

We note that the superfluid density �s can be also obtained
from a current correlation function �30,31�. The present deri-
vation based on calculating the change in the single-particle
Green’s function from Eqs. �3.2� and �3.10� is equivalent to
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calculating the current correlation function to first order in
vs, taking into account both self-energy and current vertex
corrections. In Eq. �3.2�, the Qz derivative of the first term in
Eq. �3.10� gives the bare current response function. The Qz
derivative of ĝ0 in the second term in Eq. �3.10� gives the

self-energy corrections, while the Qz derivative of �̂ gives
the vertex corrections. See also Appendix A of Ref. �10� for
further discussion.

IV. NUMERICAL RESULTS FOR SUPERFLUID DENSITY

In this section, we present numerical results for the super-
fluid density �s=n−�n, starting from the expression for �n
given in Eq. �3.16�. As we have noted earlier, the expression
for �s=n�n derived in Ref. �10� would give identical results.
We emphasize that these numerical results for �s use the
renormalized values of both � and � �4� which determine the
BCS quasiparticle spectrum over the entire BCS-BEC cross-
over.

Figure 4 shows the calculated superfluid density �s in the
BCS-BEC crossover. The spurious first-order behavior near
Tc in the strong-coupling regime is also seen in the self-
consistent solutions for � and � in Fig. 1. As discussed in
Sec. II, this behavior near Tc would be removed through a
more sophisticated treatment of fluctuations, which could
lead to the correct second-order phase transition. We plot our
calculated results for �s close to Tc, in spite of this problem.
We note that the predicted value of Tc in the NSR theory of
the BCS-BEC crossover is in good agreement with better
theories �22�. The NSR bendover is much less in evidence in
the case of a narrow Feshbach resonance, as considered in
Ref. �4�. One can prove analytically that our expression in
Eq. �3.16� gives �s=n at T=0 and also that �s vanishes as
�→0 �normal phase�. Getting these two limits correctly �as
shown in Fig. 4� is very important in any theory of the su-
perfluid density.

Figure 5 shows �s as a function of temperature in the BCS
regime, unitarity limit, and the BEC regime. We note that �s
in the BEC regime ��kFas�−1=2� is in good agreement with
the superfluid density �s of a weakly interacting gas of N /2
Bose molecules described by Bogoliubov-Popov excitations
in Eq. �2.12�, as one expects in the extreme BEC limit. More
precisely, in this limit one can show �see Ref. �10� for de-
tails� that

�s = n − �n � n − �n
B, �4.1�

where �n
B is given by the Landau formula for the normal fluid

of an interacting Bose gas:

�n
B = −

2

3M
�
q

q2�nB��q�
��q

. �4.2�

Here, M =2m is the Cooper-pair mass and nB��q� is the Bose
distribution function. The excitation energy �q is given by
Eq. �2.12�, calculated with the correct values of � and �. The
curve labeled by BEC in Fig. 5 corresponds to the result
obtained using Eqs. �4.1� and �4.2�. This shows the impor-
tance of a consistent treatment of fluctuation effects in cal-
culating �s, �, and �.

As one approaches the weak-coupling BCS regime, pair
fluctuations become weak, so that in this limit the fermionic
contribution �n

F becomes dominant. Thus one has

�s = n − �n � �n
F, �4.3�

where �n
F is given by the Landau formula for the normal fluid

in Eq. �3.4� with the BCS quasiparticle energies Ep. The
curve labeled by BCS in Fig. 5 corresponds to the result
obtained using Eqs. �4.3� and �3.4�.

V. CONDENSATE FRACTION IN
THE BCS-BEC CROSSOVER

In this section, we calculate the condensate fraction Nc in
the BCS-BEC crossover. The condensate fraction Nc in the
superfluid phase is most conveniently defined �8� as the
maximum eigenvalue of the two-particle density matrix,
�̃2�r ,r� ,r� ,r�����↑

†�r��↓
†�r���↓�r���↑�r���, where ���r� is

a fermion field operator. The condensate fraction Nc is given
as the maximum eigenvalue, of order N. When only one
eigenvalue is O�N�, one finds

�̃2�r,r�,r�,r�� = Nc�0
*�r,r���0�r�,r�� , �5.1�

T /εF

0 0.1 0.2 0.3 -2
-1

0
1

20.2
0.4
0.6
0.8

1

(kFas)
-1

ρs /n

FIG. 4. Calculated superfluid density �s in the BCS-BEC cross-
over. The self-consistent solutions for � and � shown in Fig. 1 are
used. The dashed line shows Tc, where �s vanishes. 0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

ρ s
/n

T / Tc

(kFas)
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(kFas)
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FIG. 5. Superfluid density �s as a function of temperature in the
BCS region �solid circles�, unitarity limit �solid triangles�, and BEC
regime �open circles�. “BCS” labels the mean-field BCS result,
given by �s=n−�n

F with �=�F. “BEC” gives �s for a dilute Bose
gas with N /2 bosons described by the excitation spectrum in Eq.
�2.12�.
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where terms of order O�1� have been ignored. Here �0�r ,r��
is the �normalized� two-particle eigenfunction of �̃2 with the
eigenvalue Nc. The off-diagonal long-range order of a Fermi
superfluid �8� is characterized as, for large separation of
�r ,r�� and �r� ,r��,

�̃2�r,r�,r�,r�� = ��↑
†�r��↓

†�r�����↓�r���↑�r��� . �5.2�

Comparing Eqs. �5.1� and �5.2�, the condensate fraction Nc is
seen to be the normalization factor of the Cooper-pair wave
function, ��r ,r�����↓�r��↑�r��� �see, for example, Ref.
�12��,

Nc =� drdr�
��r,r��
2. �5.3�

In physical terms, the maximum eigenvalue Nc describes the
occupancy of two-particle states.

In a uniform Fermi superfluid, the BCS mean-field ap-
proximation gives

��r,r�� = �
p

�cp↑
† c−p↓

† �eip·�r−r�� = �
p

1

2Ep
tanh

	

2
Epeip·�r−r��.

�5.4�

In the strong-coupling BEC regime �where ��−�F�, we can
set tanh 	Ep /2=1 in Eq. �5.4�. In this case, substituting Eq.
�5.4� into Eq. �5.3�, the mean-field expression for the con-
densate fraction ��Nc0� in the BEC regime reduces to

Nc0 = �
p

�2

4Ep
2 � �

p

�2

4�p
2 . �5.5�

In obtaining this expression, we have used the fact that 
�

�� in the BEC regime �14�.

More generally, in terms of the single-particle Green’s
functions, one can write Eq. �5.3� as

Nc =
1

	2 �
p,�m,�m�

G21�p,i�m�G12�p,i�m� � . �5.6�

To calculate the strong-coupling effects on Nc, we substitute

Eq. �3.6� into Eq. �5.6�. Since this Green’s function Ĝ= Ĝ0

+ Ĝ0�̂Ĝ0 only includes first-order self-energy corrections, we

only retain the correction terms to Nc to O��̂�, giving

N0 = Nc0 + �Nc. �5.7�

Here, the mean-field component Nc0 is the BCS Fermi qua-
siparticle contribution

Nc0 �
1

	2 �
p,�m,�m�

G0
21�p,i�m�G0

12�p,i�m� � = �
p

�2

4Ep
2 tanh2 	Ep

2
.

�5.8�

The first-order fluctuation contribution �Nc is given by

�Nc =
1

	2 �
p,�m,�m�

�G0
21�p,i�m�Tr��−Ĝ0�p,i�m� ��̂�p,i�m� �Ĝ0�p,i�m� �� + Tr��+Ĝ0�p,i�m��̂�p,i�m�Ĝ0�p,i�m��G0

12�p,i�m� �� .

�5.9�

The correction term �Nc in Eq. �5.9� is not important in
the weak-coupling BCS regime, where fluctuation effects
clearly can be ignored. Figure 6 shows that �Nc is also neg-
ligibly small in the strong-coupling regime. Thus Nc is well
approximated by the mean-field expression in Eq. �5.8� over
the entire BCS-BEC crossover, at least in our NSR-type ap-
proximation. We recall that the same pair fluctuations made a
large contribution to �s as we went from the BCS to BEC
region. The difference is that, by definition, �Nc in Eq. �5.9�
arises from self-energy corrections to the single-particle
anomalous Green’s function G12. There is no distinct bosonic
contribution, such as �n

B in the normal fluid density. Thus it is
not unexpected that the fluctuations are a small correction to
Nc.

We note, however, since fluctuations in the Cooper chan-
nel are taken into account in the equation of state in Eq.
�2.10�, they modify the condensate fraction Nc given by Eq.
�5.8�. For example, let us consider the BEC regime at T=0,
where the gap equation gives �=−1/2mas

2. In this limit, the
number equation reduces to

N = Nc0 + Nd, �5.10�

where Nc0 is given by Eq. �2.14� and �taking the T→0 limit
of Eq. �2.11��

Nd =
1

2�
q
��q

B + UMNc0

Eq
B − 1	 �

8

3��
�Nc0aM�3/2

�5.11�

gives the quantum depletion from the molecular condensate
due to the effective interaction UM between Cooper pairs.
Recently, the mean-field result in Eq. �5.8� has been used to
study the condensate fraction Nc in a superfluid Fermi gas at
T=0 �11�. In this case, the gap and number equations in the
mean-field approximation for the BCS-BEC crossover re-
duce to

1 = −
4�as

m
�
p
� 1

2Ep
−

1

2�p
	 , �5.12�
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N = �
p
�1 −

�p

Ep
	 . �5.13�

In the BEC regime, while Eq. �5.12� again gives �=
−1/2mas

2, Eq. �5.13� reduces to N /2=Nc0 in Eq. �2.11�. As
expected, the depletion Nd at T=0 from the condensate due
to the interaction between Cooper pairs is omitted when the
BCS-BEC crossover is described by mean-field approxima-
tion �11�.

Figure 7 shows the condensate fraction in the BCS-BEC
crossover regime at T=0. Because of the omission of the
quantum depletion effect, the simple mean-field �MF� result
given in Ref. �11� is larger than our result �Nc0�. In the region
�kFas�−1�1.5, our results are well described by the conden-
sate fraction for a superfluid molecular Bose gas given by
Eqs. �5.10� and �5.11� �labeled BEC in Fig. 7�.

Figure 7 also compares our T=0 results with those ob-
tained by quantum MC simulations �12�. The latter calcula-
tion gives results consistent with aM =0.6as �27�. In contrast,
our NSR theory gives the larger mean-field molecular scat-
tering length aM =2as. As a result, we overestimate the mag-
nitude of the depletion and thus our values for Nc are smaller
than the MC calculation in the BCS-BEC crossover regime.
The measurement of the depletion deep in the BEC regime
would be a useful way of determining the magnitude of aM.

Figure 8 shows the condensate fraction in the BCS-BEC
crossover at finite temperatures. In the weak-coupling BCS
regime, the condensate fraction Nc is very small even far
below Tc, because only atoms very close to the Fermi surface
form Cooper pairs which are Bose condensed. In this regime,
Fig. 9 shows that the temperature dependence of Nc is very
well described by the weak-coupling BCS result. In the
crossover region, the temperature dependence of Nc deviates
from the simple BCS result, as shown by the case �kFas�−1

=0 in Fig. 9. In the BEC limit, Fig. 8 shows that the conden-
sate fraction at T=0 approaches N /2, reflecting the fact that
all atoms form Cooper pairs which are Bose condensed. In
this regime, Fig. 9 shows that the temperature dependence of
Nc agrees with the condensate fraction for a dilute Bose gas
in the Popov approximation given by Eq. �2.11�. Figure 7
shows that the BEC picture is a very good approximation
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FIG. 6. Condensate fraction Nc in the strong-coupling BEC re-
gime. The solid line shows Nc0 and the dashed line includes the
small correction �Nc from self-energies due to pairing fluctuations.
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FIG. 7. Calculated condensate fraction Nc in the BCS-BEC
crossover at T=0 �solid line�. In this figure, as well as in Figs. 8 and
9, we only show Nc0. “MF” shows the condensate fractionin the
case when � and � are determined in the mean-field results in Eqs.
�5.12� and �5.13�. “BEC” shows the result for a Bose gas described
by Eqs. �5.10� and �5.11�. The solid circles shows recent Monte
Carlo results for Nc �12� for comparison.
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FIG. 8. Condensate fraction Nc as a function of temperature in
the BCS-BEC crossover. In this calculation, the self-consistent so-
lutions for � and � in Fig. 1 are used.
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when �kFas�−1�1.5. The fact that Nc agrees with the Popov
theory for a weakly interacting molecular Bose gas shows
that the superfluid phase transition in this regime is domi-
nated by the thermal depletion of Cooper pair condensate,
and not by the dissociation of Cooper pairs characteristic of
the weak-coupling BCS regime.

VI. CONCLUSIONS

In this paper, we have calculated the superfluid density �s
and condensate fraction Nc in the BCS-BEC crossover re-
gime of a uniform superfluid Fermi gas at finite tempera-
tures. We have included strong-coupling fluctuation effects
on both �s and Nc within a Gaussian approximation. The
same fluctuation effects were also taken into account in cal-
culating the superfluid order parameter � and Fermi chemi-
cal potential � in the BCS-BEC crossover, within the NSR
theory �2–4�.

The expression we used to calculate �s was derived from
the single-particle Green’s function in the presence of super-
current as given by Eq. �3.1�, which brings in self-energy
corrections due to dynamic pair fluctuations. In this paper,
we have concentrated on the explicit numerical calculation
of �s within a Gaussian approximation. In contrast, our com-
panion paper �10� uses a different �but equivalent� formula-
tion which exhibits the structure of �s in a more direct fash-
ion, in particular, the relation to collective modes.

Our result for the normal fluid density in Eq. �3.16� natu-
rally separates into a mean-field part associated with fermi-
ons �n

F and a bosonic pairing fluctuation contribution �n
B. As

discussed in Ref. �10�, �n
F is given by the Landau excitation

formula in Eq. �3.4� in the whole BCS-BEC crossover. In the
strong-coupling BEC regime, �n

F is negligible and �n
B reduces

to the Landau formula for the normal fluid of a Bose gas of
tightly bound Copper pairs �10�. However, in the region near
unitarity, �n

B is not expected to be given by a Landau-type
formula because the bosonic pairing fluctuations are strongly
damped. It is in this region that the numerical calculations
for �s reported in this paper are especially useful.

The superfluid density is a fundamental quantity in two-
fluid hydrodynamics �32�, and we will use our results in a
future study of hydrodynamic modes in the BCS-BEC cross-
over regime of a Fermi superfluid at finite temperatures.

In contrast to the superfluid density, the mean-field ex-
pression for the condensate fraction Nc is a good approxima-
tion even in the strong-coupling BEC regime. The fluctuation
contribution to Nc gives rise to the noncondensate compo-
nent. In the BEC regime, we showed that the fluctuation
contribution gives the condensate depletion Nd due to the
effective interaction UM between Cooper pairs, which is fi-
nite even at T=0.

In the BEC regime, the strong-coupling theory presented
in this paper reduces to that of a weakly interacting Bose gas
of molecules, with an excitation spectrum given by the
Bogoliubov-Popov approximation. This is also the origin of
the spurious first-order phase transition our theory exhibits
�see Figs. 4 and 5�. This is a well-known problem in dealing
with dilute Bose gases �24�. The recovery of the second-
order phase transition in the entire BCS-BEC crossover and
the normalized magnitude of the effective interaction be-
tween Cooper pairs �27�, both require the inclusion of
higher-order fluctuations past the NSR Gaussian approxima-
tion which we have used. In this regard, we have emphasized
that calculating the value of �s is very dependent on using
the strong-coupling approximation for � and � as well,
quantities which determine the single-particle excitation
spectrum. Thus, when we calculate � and � beyond the
Gaussian fluctuation level, we also need to improve the mi-
croscopic model used to calculate �s. The approach presented
in this paper, as well as in Ref. �10�, can be a starting point
for such improved calculations.
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