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I. INTRODUCTION

Systems of interacting bosons in optical lattices have at-
tracted a lot of interest in the last few years due to recent
experimental achievements �1–6�. In these systems, atoms
are trapped by the combination of a periodic and a harmonic
potential created by counterpropagating laser beams. These
systems of trapped atoms resemble a crystal in the sense that
atoms are localized at periodic locations. The theoretical
study of the static and dynamic properties of these systems is
quite challenging. An exact solution can only be obtained in
one dimension in the so-called Tonks-Girardeau limit via fer-
mionization �3,7�. Outside this limit and in higher dimen-
sions, approximate methods have to be used. The most com-
mon of those, the mean-field approximation based on a
Gutzwiller ansatz �8�, is unfortunately known to give impre-
cise predictions for correlations. The most powerful numeri-
cal methods such as the density matrix renormalization
group �DMRG� �9� and Quantum Monte Carlo �QMC� are
also of limited use: DMRG is mainly restricted to one-
dimensional �1D� systems and QMC suffers from the sign
problem as time evolutions are investigated.

In this paper, we apply the algorithm introduced in Ref.
�10�. This algorithm is a variational method within a class of
states termed projected entangled-pair states �PEPS�. It has
been proven to work well for the Heisenberg antiferromagnet
�10� and the frustrated Shastry-Sutherland model �11�. The
system we focus on is the system of hard-core bosons in a
two-dimensional �2D� optical lattice. This model captures the
essential physics of bosons in optical lattices �12,13�. We use
the algorithm to determine the ground-state properties of the
system and to study the responses of the system to sudden
changes in the parameters. We compare our results to mean
field results based on the Gutzwiller ansatz. We find that the
PEPS and the Gutzwiller ansatz deviate clearly in the predic-
tion of the ground-state momentum distribution and the time
evolution of the condensed fraction of the particles.

The paper is outlined as follows: In Sec. II we give a brief
overview of the algorithm. We specify the model we want to
investigate in Sec. III and explain the way the algorithm is
applied to this model in Sec. IV. The results of the numerical
calculations are presented in Sec. V and VI. We conclude
with the discussion of the performance and the stability of
the algorithm in Sec. VII.

II. THE ALGORITHM

Although the algorithm has already been outlined in Ref.
�10�, we reiterate it here in detail—specialized for our pur-
pose. The algorithm is a variational method with respect to
the class of PEPS. These states have been found to be ad-
equate for representing the ground state of numerous many-
body systems. Also, these states are favorable to variational
calculations because they possess an internal refinement pa-
rameter, the virtual dimension D, which allows one to con-
trol the precision of the calculation. While D=1 specializes
the PEPS to a product state, the choice D=dM �with M being
the total number of lattice sites and d the dimension of one
subsystem� enlarges the space of PEPS to the complete Hil-
bert space of the system. The purpose of the algorithm is—in
our case—to simulate the time evolution of a system within
the subset of PEPS with a fixed D. This means that after each
time-evolution step the state of the system is approximated
by the “nearest” PEPS with virtual dimension D. The key
element of the algorithm is thus the optimization of the pa-
rameters of a PEPS such that its distance to a given state is
minimized.

The manner in which the optimization is performed is
closely related to the structure of PEPS. A PEPS is a state
with coefficients that are contractions of tensors according to
a certain scheme. Thereby, each tensor is associated with a
physical subsystem. The contraction scheme mimics the un-
derlying lattice structure. Each tensor possesses one physical
index with dimension equal to the physical dimension d of a
subsystem and a certain number of virtual indices with di-
mension D. The number of virtual indices is equal to the
number of bonds that emanate from the lattice site the tensor
is associated with. For example, in a rectangular lattice the
number of virtual indices is four �except at the borders�—
related to the left, right, upper, and lower bond, respectively.
The tensor associated with site i is

�Ai�lrud
k ,

with physical index k and virtual indices l, r, u, and d. The
coefficients of the PEPS are then formed by joining the ten-
sors in such a way that all indices related to same bonds are
contracted. This is illustrated in Fig. 1 for the special case of
a 4�4 square lattice. Assuming this contraction of tensors is
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performed by the function F�·�, the resulting PEPS can be
written as

��A� = �
k1,. . .,kM=1

d

F��A1�k1, . . . ,�AM�kM��k1, . . . ,kM� .

The aim of the algorithm is to optimize the tensors Ai
such that the distance between the PEPS ��A� and a given
state tends to a minimum. We assume that the given state is
a PEPS ��B� with virtual dimension DB and tensors Bi. This
is no loss of generality since every state can be written as a
PEPS. The function to be minimized is then

K�A1, . . . ,AM� = ���A� − ��B��2.

This function is nonconvex with respect to all parameters
	A1 , . . . ,AM
. However, due to the special structure of PEPS,
it is quadratic in the parameters Ai associated with one lattice
site i. Because of this, the optimal parameters Ai can simply
be found by solving a system of linear equations. The con-
cept of the algorithm is to do this one-site optimization site
by site until convergence is reached.

The challenge that remains is to calculate the coefficient
matrix and the inhomogeneity of the linear equations system.
In principle, this is done by contracting all indices in the
expressions for the scalar products ��A ��A� and ��A ��B�
except those connecting to Ai. By interpreting the tensor Ai
as a dD4-dimensional vector Ai, these scalar products can be
written as

��A��A� = Ai
†NiAi, �1�

��A��B� = Ai
†Wi. �2�

Since

K = ��B��B� + ��A��A� − 2 Re��A��B� ,

the minimum is attained as

NiAi = Wi.

The obstacle, however, is that the numerical calculation of
the coefficient matrix Ni and the inhomogeneity Wi requires
a number of operations that scales exponentially with the
number of subsystems M. This will make the algorithm non-
efficient as the system grows larger. Because of this, an ap-
proximate method has to be used to calculate Ni and Wi.

The approximate method suggested in Ref. �10� is based
on matrix product states �MPS� and matrix product operators
�MPO�. To see how MPS and MPO implicitly appear in the
problem of calculating Ni and Wi, we take a closer look at
the structure of the contractions in the scalar products
��A ��A� and ��A ��B�. Thereby, we focus on a L�L square
lattice in the following. We start with the study of ��A ��A�.
For this, we single out a specific site j and define the
D2�D2�D2�D2 tensor

�Ej��ll���rr��
�uu���dd�� = �

k=1

d

�Aj
*�lrud

k �Aj�l�r�u�d�
k .

In this definition, the symbols �ll��, �rr��, �uu��, and �dd��
indicate composite indices. We may interpret the four indices
of this tensor as being related to the four bonds emanating
from site j in the lattice. Then, ��A ��A� is formed by joining
all tensors Ej in such a way that all indices related to the
same bonds are contracted—as in the case of the coefficients
of PEPS. These contractions have a rectangular structure, as
depicted in Fig. 2. In terms of the function F�·�, the scalar
product reads

��A��A� = F�E1, . . . ,EM� .

The main idea of the approximate algorithm is to interpret
the first and the last row in this contraction structure as MPS
and the rows in between as MPO. The horizontal indices
thereby form the virtual indices and the vertical indices are
the physical indices. Thus, the MPS and MPO have both
virtual dimension and physical dimension equal to D2. Ex-
plicitly written, the MPS read

�U1� = �
d̃1,. . .,d̃L=1

D2

tr��E11�1d̃1
¯�E1L�1d̃L��d̃1, . . . , d̃L� ,

�UL� = �
ũ1,. . .,ũL=1

D2

tr��EL1�ũ11
¯�ELL�ũL1��ũ1, . . . , ũL� ,

and the MPO at row r is

FIG. 1. Structure of the coefficient related to the state
�k11, . . ,k44� in the PEPS ��A�. The bonds represent the indices of
the tensors �Ai�k that are contracted.

FIG. 2. Structure of the contractions in ��A ��A�. In this
scheme, the first and last rows can be interpreted as MPS �U1� and
�U4� and the rows in between as MPO U2 and U3. The contraction
of all tensors is then equal to �U4�U3U2�U1�.
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Ur = �
ũ1,. . .,ũL=1

d̃1,. . .,d̃L=1

D2

tr��Er1�ũ1d̃1
¯�ErL�ũLd̃L�

��ũ1, . . . , ũL��d̃1, . . . , d̃L� .

In terms of these MPS and MPO, the scalar product is a
product of MPO and MPS,

��A��A� = �UL�UL−1¯U2�U1� .

The evaluation of this expression is, of course, intractable.
With each multiplication of a MPO with a MPS, the virtual
dimension increases by a factor of D2. Thus, after L multi-
plications, the virtual dimension is D2L—which is exponen-
tial in the number of rows. The expression, however, reminds
one of the time evolution of a MPS �14–16�. There, each
multiplication with a MPO corresponds to one evolution
step. The problem of the exponential increase of the virtual
dimension is circumvented by restricting the evolution to the

subspace of MPS with a certain virtual dimension D̃. This
means that after each evolution step the resulting MPS is

approximated by the nearest MPS with virtual dimension D̃.
This approximation can be done efficiently, as shown in Ref.
�14�. In this way, also ��A ��A� can be calculated efficiently:
first, the MPS �U2� is formed by multiplying the MPS �U1�
with MPO U2. The MPS �U2� is then approximated by �Ũ2�
with virtual dimension D̃. In this fashion the procedure is

continued until �ŨL−1� is obtained. The scalar product
��A ��A� is then simply

��A��A� = �UL�ŨL−1� .

The calculation of the coefficient matrix Ni is closely related
to the calculation of ��A ��A�: Ni relies on the contraction of
all but one of the tensors Ej according to the same scheme as
before. The one tensor that has to be omitted is Ei—the ten-
sor related to site i. Assuming this contraction is performed
by the function Gi�·�, Ni can be written as

�Ni�lrud k�
k l�r�u�d� = Gi�E1, . . . ,EM�lrud

l�r�u�d��k�
k .

If we join the indices �klrud� and �k�l�r�u�d��, we obtain the
dD4�dD4 matrix that fulfills Eq. �1�. To evaluate Gi�·� effi-
ciently, we proceed in the same way as before by interpreting
the rows in the contraction structure as MPS and MPO. First,
we join all rows that lie above site i by multiplying the
topmost MPS �U1� with subjacent MPO and reducing the

dimension after each multiplication to D̃. Then, we join all
rows lying below i by multiplying �UL� with adjacent MPO
and reducing the dimension as well. We end up with two

MPS of virtual dimension D̃, which we can contract effi-
ciently with all but one of the tensors Ej lying in the row of
site i.

The scalar product ��A ��B� and the inhomogeneity Wi

are calculated in an efficient way following the same ideas.
First, the DDB�DDB�DDB�DDB tensors

�Fj��ll���rr��
�uu���dd�� = �

k=1

d

�Aj
*�lrud

k �Bj�l�r�u�d�
k

are defined. The scalar product ��A ��B� is then obtained by
contracting all tensors Fj according to the previous scheme,
which is performed by the function F�·�,

��A��B� = F�F1, . . . ,FM� .

The inhomogeneity Wi relies on the contraction of all but
one of the tensors Fj, namely, the function Gi�·�, in the sense
that

�Wi�lrud
k = �

l�r�u�d�=1

D

Gi�F1, . . . ,FM�lrud
l�r�u�d��Bi�l�r�u�d�

k .

Joining all indices �klrud� in the resulting tensor leads to the
vector of length dD4 that fulfills Eq. �2�. Thus, both the sca-
lar product ��A ��B� and the inhomogeneity Wi are directly
related to the expressions F�F1 , . . . ,FM� and Gi�F1 , . . . ,FM�.
These expressions, however, can be evaluated efficiently us-
ing the approximate method from before.

Summing up, we have an algorithm that allows the effi-
cient reduction of the virtual dimension of a PEPS—and thus
the efficient simulation of a time-evolution step within the
subset of PEPS.

III. THE MODEL: HARD-CORE BOSONS IN A TWO-
DIMENSIONAL OPTICAL LATTICE

This algorithm we use to study a system of bosons in a 2D
optical lattice of size L�L. This system is characterized by
the Bose-Hubbard Hamiltonian,

H = − J�
�i,j�

�ai
†aj + H.c.� +

U

2 �
i

n̂i�n̂i − 1� + �
i

Vin̂i,

where ai
† and ai are the creation and annihilation operators

on site i and n̂i=ai
†ai is the number operator. This Hamil-

tonian describes the interplay between the kinetic energy due
to the next-neighbor hopping with amplitude J and the repul-
sive on-site interaction U of the particles. The last term in the
Hamiltonian models the harmonic confinement of magnitude

Vi=V0�i− i0�2. Since the total number of particles N̂=�in̂i is a
symmetry of the Hamiltonian, the ground state will have a
fixed number of particles N. We choose this number by ap-

pending the term −�N̂ to the Hamiltonian and tuning the
chemical potential �. The variation of the ratio U /J drives a
phase transition between the Mott-insulating and the super-
fluid phase, characterized by localized and delocalized par-
ticles, respectively �17�. Experimentally, the variation of U /J
can be realized by tuning the depth of the optical lattice
�18,19�. The quantity that is typically measured is the mo-
mentum distribution. The is done by letting the atomic gas
expand and measuring the density distribution of the ex-
panded cloud. Thus, we will be mainly interested here in the
�quasi�momentum distribution
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nk =
1

L2�
r,s

�ar
†as�ei2�k�r−s�/L2

of the particles.
In the following, we focus on the limit of a hard-core

interaction, U /J→�. In this limit, two particles are pre-
vented from occupying a single site. This limit is especially
interesting in one dimension where the particles form the
so-called Tonks-Girardeau gas �3,7�. The particles in this gas
are strongly correlated, which leads to algebraically decaying
correlation functions. In two dimensions, the model was
studied in detail in �13�. In the hard-core limit, the Bose-
Hubbard model is equivalent to a spin system with XX inter-
actions described by the Hamiltonian

H = −
J

2 �
�i,j�

��x
�i��x

�j� + �y
�i��y

�j�� +
1

2�
i

�Vi − ���z
�i�.

Here, �x
�i�, �y

�i�, and �z
�i� denote the Pauli operators acting on

site i. This Hamiltonian has the structure we can simulate
with the algorithm: it describes L2 physical systems of di-
mension d=2 on a L�L square lattice.

IV. APPLICATION OF THE ALGORITHM TO HARD-
CORE BOSONS IN A TWO-DIMENSIONAL LATTICE

The principle of simulating a time-evolution step accord-
ing to XX Hamiltonian is as follows: first, a PEPS ��A

0� with
physical dimension d=2 and virtual dimension D is chosen
as a starting state. This state is evolved by the time-evolution
operator U=e−iH�t �we assume 	=1� to yield another PEPS
��B� with increased virtual dimension DB,

��B� = U��A
0� .

The virtual dimension of this state is then reduced to D by
applying the algorithm of the previous section. This means, a
new PEPS ��A� with virtual dimension D is calculated that
has minimal distance to ��B�. This new PEPS is then the
starting state for the next time-evolution step.

The operator U, however, increases the virtual dimension
of a PEPS by a factor that scales exponentially with L. This
is why it is more convenient to approximate U by an operator
that increases the virtual dimension merely by a constant
factor 
. This is done by means of a Trotter approximation:
first, the interaction terms are classified in horizontal and
vertical according to their orientation and in even and odd
depending on whether the interaction is between even-odd or
odd-even rows �or columns�. The Hamiltonian can then be
decomposed into a horizontal-even, a horizontal-odd, a
vertical-even and a vertical-odd part,

H = Hhe + Hho + Hve + Hvo.

The single-particle operators of the Hamiltonian can simply
be incorporated in one of the four parts. Using the Trotter
approximation, the time-evolution operator U can be written
as a product of four evolution operators,

U = e−iH�t � e−iHhe�te−iHho�te−iHve�te−iHvo�t. �3�

Since each of the four parts of the Hamiltonian consists of a
sum of commuting terms, each evolution operator equals a
product of two-particle operators

wij = ei�tJ/2��x
�i��x

�j�+�y
�i��y

�j��

acting on neighboring sites i and j. These two-particle opera-
tors have a Schmidt-decomposition consisting of four terms,

wij = �
�=1

4

ui
�

� v j
�.

One such two-particle operator wij applied to the PEPS ��A
0�

modifies the tensors Ai
0 and Aj

0 associated with sites i and j as
follows: assuming the sites i and j are horizontal neighbors,
Ai

0 has to be replaced by

�Bi�l�r��ud
k = �

k�=1

2

�ui
��k�

k �Ai
0�lrud

k� ,

and Aj
0 becomes

�Bj��l��rud
k = �

k�=1

2

�v j
��k�

k �Aj
0�lrud

k� .

These new tensors have a joint index related to the bond
between sites i and j. This joint index is composed of the
original index of dimension D and the index � of dimension
4 that enumerates the terms in the Schmidt decomposition.
Thus, the effect of the two-particle operator wij is to increase
the virtual dimension of the bond between sites i and j by a
factor of 4. Consequently, e−iHhe�t and e−iHho�t increase the
dimension of every second horizontal bond by a factor of 4;
e−iHve�t and e−iHvo�t do the same for every second vertical
bond. By applying all four evolution operators consecutively,
we have found an approximate form of the time-evolution
operator U that—when applied to a PEPS—yields another
PEPS with a virtual dimension multiplied by a constant fac-
tor 
=4.

Even though the principle of simulating a time-evolution
step has been recited now, the implementation in this form is
numerically expensive. This is why we append some notes
about how to make the simulation more efficient:

1. Partitioning of the evolution. The number of required
numerical operations decreases significantly as one time-
evolution step is partitioned into four substeps: first the state
��A

0� is evolved by e−iHvo�t only and the dimension of the
increased bonds is reduced back to D. Next, evolutions ac-
cording to e−iHve�t, e−iHho�t, and e−iHhe�t follow. Even though
the partitioning increases the number of evolution steps by a
factor of 4, the number of multiplications in one evolution
step decreases by a factor of 
3=64.

2. Optimization of the contraction order. Most critical for
the efficiency of the numerical simulation is the order in
which the contractions are performed. We have optimized the
order in such a way that the scaling of the number of multi-
plications with the virtual dimension D is minimal. For this,

we assume that the dimension D̃ that tunes the accuracy of
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the approximate calculation of Ni and Wi is proportional to

D2, i.e., D̃=�D2. The number of required multiplications is
then of order �2D12L2 and the required memory scales as
d
�2D8.

3. Optimization of the starting state. The number of
sweeps required to reach convergence depends on the choice
of the starting state for the optimization. The idea for finding
a good starting state is to reduce the bonds with increased
virtual dimension 
D by means of a Schmidt decomposition.
This is done as follows: assuming the bond is between the
horizontal neighboring sites i and j, the contraction of the
tensors associated with these sites, Bi and Bj, along the bond
i-j forms the tensor

�Mij�lud r�u�d�
k k� = �

�=1

D


�Bi�l�ud
k �Bj��r�u�d�

k� .

By joining the indices �klud� and �k�r�u�d��, this tensor can
be interpreted as a dD3�dD3 matrix. The Schmidt decom-
position of this matrix is

Mij = �
�=1

dD3

c�Ai
�

� A j
�,

with the Schmidt coefficients c� �c�0� and corresponding
matrices Ai

� and A j
�. We can relate these matrices to a new

pair of tensors Ai
0 and Aj

0 associated with sites i and j,

�Ai
0�l�ud

k = c��Ai
��lud

k ,

�Aj
0��rud

k = c��A j
��rud

k .

The virtual dimension of these new tensors related to the
bond between sites i and j is equal to the number of terms in
the Schmidt decomposition. Since these terms are weighted
with the Schmidt coefficients c�, it is justified to keep only
the D terms with coefficients of largest magnitude. Then, the
contraction of the tensors Ai

0 and Aj
0 along the bond i-j with

dimension D yields a good approximation to the true value
Mij,

�Mij�lud r�u�d�
k k� � �

�=1

D

�Ai
0�l�ud

k �Aj
0��r�u�d�

k� .

This method applied to all bonds with increased dimension
provides us with the starting state for the optimization.

V. GROUND-STATE PROPERTIES

In the following, we study the ground-state properties of
the system of hard-core bosons for lattice sizes 4�4 and
11�11. We calculate the ground state by means of an imagi-
nary time evolution, which we can simulate with the method
from before.

We first focus on the 4�4 lattice for which we can cal-
culate the ground state exactly and are able to estimate the
precision of the algorithm by comparison with exact results.
In Fig. 3, the energy is plotted as the system undergoes the
imaginary time evolution. We thereby assume a time step

�t=−i0.03. We choose the magnitude of the harmonic con-
finement �in units of the tunneling constant� V0 /J=36. In
addition, we tune the chemical potential to � /J=3.4 such
that the ground state has a particle number N=4. With this
configuration, we perform the imaginary time evolution both
exactly and variationally with PEPS. As a starting state we
take a product state that represents a Mott-type distribution
with four particles arranged in the center of the trap and none
elsewhere. The variational calculation is performed with
D=2 first until convergence is reached; then, evolutions with
D=3, D=4, and D=5 follow. At the end, a state is obtained
that is very close to the state obtained by exact evolution.
The difference in energy is �ED=5−Eexact��6.4614�10−5 J.
For comparison, also the exact ground-state energy obtained
by an eigenvalue calculation and the energy of the optimal
Gutzwiller ansatz are included in Fig. 3. The difference be-
tween the exact result and the results of the imaginary time
evolution is due to the Trotter error and is of order O��t2�.
The energy of the optimal Gutzwiller-ansatz is well sepa-
rated from the exact ground-state energy and the results of
the imaginary time evolution.

In Fig. 4, the energy as a function of time is plotted for the
imaginary time evolution on the 11�11-lattice. Again, a
time step �t=−i0.03 is assumed for the evolution. The other
parameters are set as follows: the ratio between harmonic
confinement and the tunneling constant is chosen as
V0 /J=100 and the chemical potential is tuned to � /J=3.8
such that the total number of particles N is 14. The starting
state for the imaginary time evolution is, similar to before, a
Mott-type distribution with 14 particles arranged in the cen-
ter of the trap. This state is evolved within the subset of
PEPS with D=2, D=3, D=4, and D=5. As can be gathered
from the plot, this evolution shows a definite convergence. In
addition, the energy of the final PEPS lies well below the
energy of the optimal Gutzwiller ansatz.

The difference between the PEPS and the Gutzwiller an-
satz becomes more evident as one studies the momentum
distribution of the particles. The diagonal slice of the �quasi�
momentum distribution is shown in Fig. 5. As can be seen,

FIG. 3. Energy as a function of time for the imaginary time
evolution of the system of hard-core bosons on a 4�4 lattice. The
evolutions are performed sequentially with PEPS of virtual dimen-
sion D=2, D=3, D=4, and D=5. The times at which D is increased
are indicated by vertical lines. For comparison, the exact ground-
state energy, the exact imaginary time evolution, and the energy of
the optimal Gutzwiller ansatz are included.
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there is a clear difference between the momentum distribu-
tion derived from the PEPS and the one from the Gutzwiller
ansatz. In contrast, the PEPS and the Gutzwiller ansatz pro-
duce a very similar density profile �see inset�. The accept-
ability of the Gutzwiller ansatz is due to the inhomogeneity
of the system: the different average particle number at each
site is the cause for the correlations between different sites.
These correlations are, in many cases, good approximations.
In contrast, the average particle number is constant in homo-
geneous systems, which leads to correlations that are con-
stant. Thus, the Gutzwiller ansatz is expected to be less ap-
propriate for the study of correlations of homogeneous
systems.

VI. DYNAMICS OF THE SYSTEM

We now focus on the study of dynamic properties of hard-
core bosons on a lattice of size 11�11. We investigate the
responses of this system to sudden changes in the parameters
and compare our numerical results to the results obtained by

the Gutzwiller ansatz. The property we are interested in is
the fraction of particles that are condensed. For interacting
and finite systems, this property is measured best by the con-
densate density �, which is defined as the first largest eigen-
value of the correlation matrix �ai

†aj�.
First, we study the time evolution of the condensate den-

sity after a sudden change of the trapping potential. We start
with a Gutzwiller approximation of the ground state in case
of a trapping potential of magnitude V0 /J=100. The chemi-
cal potential we tune to � /J=3.8 to achieve an average par-

ticle number of �N̂�=14. This state we expose to a trapping
potential of magnitude V0 /J=64 and calculate the evolution
of the condensate density using the Gutzwiller ansatz and
PEPS with D=2, D=3, and D=4. We thereby assume a time
step �t=0.03. To assure that our results are accurate, we
proceed as follows: first, we perform the simulation using
PEPS with D=2 and D=3 until the overlap between these
two states falls below a certain value. Then, we continue the
simulation using PEPS with D=3 and D=4 as long as the
overlap between these two states is close to 1. The results of
this calculation can be gathered from Fig. 6. What can be
observed is that the results obtained from using PEPS are
qualitatively very different from the result based on the
Gutzwiller ansatz. The inset in Fig. 6 shows the overlap of
the D=2 with the D=3 PEPS and the D=3 with the D=4
PEPS.

In Fig. 7, the time evolution of the condensate density
after a sudden shift of the trapping potential is plotted. As a
starting state, again the Gutzwiller approximation of the
ground state in a trap of magnitude V0 /J=100 is used. This
state is evolved with respect to a trapping potential that is
shifted by one lattice site in x and y direction. We assume a
time step �t=0.03 and tune the chemical potential to
� /J=3.8. As before, we perform the simulation successively
with D=2, D=3, and D=4 and judge the accuracy of the
results by monitoring the overlap between PEPS with differ-
ent Ds. From the plot, it can be gathered that the evolution of
the condensate density based on the Gutzwiller ansatz is

FIG. 4. Energy as a function of time for the imaginary time
evolution of the system of hard-core bosons on a 11�11 lattice.
The evolutions are performed sequentially with PEPS of virtual
dimension D=2, D=3, D=4, and D=5. The times at which D is
increased are indicated by vertical lines. For comparison, the energy
of the optimal Gutzwiller ansatz is included.

FIG. 5. �Quasi�momentum distribution of the particles in the
ground state of a 11�11 lattice. Plotted are results of the varia-
tional calculations with PEPS of dimension D=5 and with the
Gutzwiller ansatz. From the inset, the density of the particles can be
gathered.

FIG. 6. Time evolution of the condensate density after a sudden
change of the magnitude of the trapping potential from V0 /J=100
to V0 /J=64. As a starting state, we use the Gutzwiller approxima-
tion of the ground state. The evolution is performed on the basis of
the Gutzwiller ansatz and PEPS with D=2, D=3, and D=4. From
the inset, the overlap between the PEPS with D=2 and D=3 �solid
line� and the PEPS with D=3 and D=4 �dashed line� can be
gathered.
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qualitatively again very different from the evolution obtained
from using PEPS. The evolution obtained from using PEPS
shows a definite damping. The shift of the trap thus provokes
a destruction of the condensate. The evolution based on the
Gutzwiller ansatz does not show this feature.

As a contrary example, we study the evolution of a Mott
distribution with 14 particles arranged in the center of the
trap. We assume V0 /J=100, � /J=3.8, and �t=0.03. We per-
form the simulation in the same way as before with D=2,
D=3, and D=4. In Fig. 8, the time evolution of the conden-
sate density is plotted. It can be observed that there is a
definite increase in the condensate fraction. The Gutzwiller
ansatz is in contrast to this result since it predicts that the
condensate density remains constant.

VII. ACCURACY AND PERFORMANCE OF THE
ALGORITHM

Finally, we make a few comments about the accuracy and
the performance of the algorithm. One indicator for the ac-
curacy of the algorithm is the distance between the time-

evolved state and the state with reduced virtual dimension.
For the time evolution of the Mott distribution that was dis-
cussed in Sec. VI, this quantity is plotted in Fig. 9. We find
that the distance is typically of order 10−3 for D=2 and of
order 10−4 for D=3 and D=4. Another quantity we monitor

is the total number of particles �N̂�. Since this quantity is
supposed to be conserved during the whole evolution, its
fluctuations indicate the reliability of the algorithm. From the
inset in Fig. 9, the fluctuations of the particle number in case
of the time evolution of the Mott distribution can be gath-
ered. We find that these fluctuations are at most of order
10−5.

The main bottleneck for the performance of the algorithm
is the scaling of the number of required multiplications with
the virtual dimension D. As mentioned in Sec. IV, the num-
ber of required multiplications is of order D12. Our simula-
tions were run on a workstation with a 3.0 GHz-Intel Xeon
processor. On such a system, one evolution step on an
11�11 lattice with D=5 required a computing time of 55 h.
Another bottleneck for the algorithm forms the scaling of the
required memory with the virtual dimension D, which is of
order D8. The simulation on a 11�11 lattice with D=5
thereby required a main memory of 2 GB. These bottlenecks
make it difficult at the moment to go beyond a virtual dimen-
sion of D=5. Nonetheless, a virtual dimension of D=5 is
expected to yield good results for many problems already.
We intend to overcome the limitations of time and space by
distributing tensor contractions among several processors in
a future project.

VIII. CONCLUSIONS

Summing up, we have studied the system of hard-core
bosons on a 2D lattice using a variational method based on
PEPS. We have thereby investigated the ground-state prop-
erties of the system and its responses to sudden changes in
the parameters. We have compared our results to results
based on the Gutzwiller ansatz. We have observed that the
Gutzwiller ansatz predicts very well the density distribution

FIG. 7. Time evolution of the condensate density after a sudden
shift of the center of the trap by one site in x and y direction. The
starting state is the Gutzwiller approximation of the ground state.
The evolution is performed using the Gutzwiller ansatz and PEPS
with D=2, D=3, and D=4. The inset shows the overlap between
the PEPS with D=2 and D=3 �solid line� and D=3 and D=4
�dashed line�.

FIG. 8. Time evolution of the condensate density starting from a
Mott distribution with 14 particles arranged in the center of the trap.
The magnitude of the trapping potential is V0 /J=100. For the evo-
lution, the Gutzwiller ansatz and PEPS with D=2, D=3, and D
=4 are used. The inset shows the overlap between the D=2 and
D=3 PEPS �solid line� and the D=3 and D=4 PEPS �dashed line�.

FIG. 9. Distance K between the time-evolved state and the state
with reduced virtual dimension. The virtual dimensions D=2,
D=3, and D=4 are included. The distance is plotted for the evolu-
tion of a Mott distribution with N=14, as explained in Fig. 8. From
the inset, the deviation of the particle number from the value 14 can
be gathered.
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of the particles. However, the momentum distribution ob-
tained from the Gutzwiller ansatz is, though qualitatively
similar, quantitatively clearly different from the distribution
obtained from the PEPS ansatz. In addition, the PEPS and
the Gutzwiller ansatz are very different in the prediction of
time evolutions. We conclude that the Gutzwiller ansatz has
to be applied carefully in these cases. The simulations done
in this paper give a clear demonstration of the power of the
PEPS approach, both for finding ground states in higher-

dimensional quantum spin systems and for simulating real-
time evolution.
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