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We investigate the tunneling dynamics of Bose-Einstein condensates �BECs� in a symmetric as well as in a
tilted triple-well trap within the framework of mean-field treatment. The eigenenergies as the functions of the
zero-point energy difference between the tilted wells show a striking entangled star structure when the atomic
interaction is large. We then achieve insight into the oscillation solutions around the corresponding eigenstates
and observe several new types of Josephson oscillations. With increasing the atomic interaction, the Josephson-
type oscillation is blocked and the self-trapping solution emerges. The condensates are self-trapped either in
one well or in two wells but no scaling law is observed near transition points. In particular, we find that the
transition from the Josephson-type oscillation to the self-trapping is accompanied with some irregular regime
where tunneling dynamics is dominated by chaos. The above analysis is facilitated with the help of the
Poincaré section method that visualizes the motions of BECs in a reduced phase plane.
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I. INTRODUCTION

The first realization of dilute degenerate atomic gases in
1965 launched a new epoch for studying the dynamical prop-
erty of Bose-Einstein condensates �BECs� �1�. For the dilute
degenerate gases, essential dynamical property is included in
the Gross-Pitaevskii equation �GPE� �2�. The nonlinearity,
originated from the interatomic interaction, is included in the
equation through a mean-field term proportional to conden-
sate density. Previously, several authors investigated the dy-
namics of GPE for a double-well potential in a two-mode
approximation �3–9�. Different features were found, e.g., the
emergence of different nonlinear stationary states �5� and a
variety of different crossing scenarios �9�, nonzero adiabatic
tunneling probability �4,7�, etc., to name only a few. Among
these findings, nonlinear Josephson oscillation and self-
trapping phenomena are of most interest. As well be known,
for a single particle in a symmetric double well, the tunnel-
ing dynamics is determined by the tunnelling splitting of two
nearly degenerate eigenstates and tunneling time or quantum
oscillation period is inversely proportional to the energy
splitting �10�. When atomic interaction emerges, the tunnel-
ing between two wells is also observed, termed as nonlinear
Josephson oscillation �3,6,8�. However, in this case, the os-
cillation period sensitively depends on the initial state but
has little relation to the difference between the eigenenergies.
More interestingly, increasing the atomic interaction further
�even if it is repulsive�, the Josephson oscillation between
two wells is completely blocked, the BEC atoms in a sym-
metric double-well potential show a highly asymmetric dis-
tribution as if most atoms are trapped in one well �3�. This
somehow counterintuitive phenomenon is termed as self-
trapping and has been observed in the lab recently �11�. Re-
cently, much attention has been paid to a trimer chain of
BECs with periodic boundary condition, where self-trapping

mechanism �12�, chaotic behavior and collective modes �13�,
and instability �14� have been investigated comprehensively.

In the present paper, we extend our investigation into tun-
neling dynamics for BECs in a triple-well system �15� �sche-
matically sketched as in Fig. 1� and want to know how the
nonlinear Josephson oscillation and self-trapping behave in
this simplest multiwell system. Because quantum tunneling
may happen between several wells simultaneously, we ex-
pect that the tunneling dynamics in the triple well will show
more interesting behavior. Moreover, the study of the triple-
well system will provide a bridge between the simple double
well and the multiwell systems, helping us understand the
“self-localized” phenomenon of BECs in the optical lattice
�16�.

Technically, to investigate the dynamics of triple-well sys-
tems we resort to the Poincaré section method �17� that vi-
sualizes the motion of BECs in a reduced two-dimensional
phase plane. For our triple-well system, ignoring a total
phase, the dynamics is governed by a Hamiltonian with two
freedoms. Its phase space is four-dimensional. However, the
motions in a high-dimensional phase space �in our case, it is
4D� are difficult to trace. With using the Poincaré section, we
can investigate the motions of BEC in a reduced 2D phase
plane.

Our paper is organized as follows. In Sec. II we introduce
our model and show the unusual structure of the eigenener-
gies. In Sec. III we investigate nonlinear Josephson oscilla-
tions using the Poincaré section method and demonstrate di-

*Electronic address: Liu�Jie@iapcm.ac.cn

FIG. 1. The schematic sketch of our model. �a� The symmetric
case ��=0� and �b� the asymmetric case �� ,0 ,−�� is the zero-point
energy in each well, respectively.
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verse types of oscillations for BECs. In Sec. IV we
investigate the transition from the Josephson oscillation to
self-trapping of BECs in one well as well as in two wells and
show an irregular regime characterized by chaos. Our discus-
sions are extended to a tilted triple-well system in Sec. V.
Section VI is our conclusions.

II. MODEL

For the triple-well system and under mean-field approxi-
mation, the wave function ��r , t� of GPE is the superposi-
tion of three wave functions describing the condensate in
each trap, i.e.,

��r,t� = a1�t��1�r� + a2�t��2�r� + a3�t��3�r� . �1�

Then the triple-well system is described by a dimension-
less Schrödinger equation,

i
d

dt�a1

a2

a3
� = Ĥ�a1

a2

a3
� , �2�

with the Hamiltonian

Ĥ =�
� + c�a1�2 −

v
2

0

−
v
2

c�a2�2 −
v
2

0 −
v
2

− � + c�a3�2
� . �3�

The total probability �a1�2+ �a2�2+ �a3�2 is conserved and is set
to be a unit. c is the mean-field parameter denoting the
atomic interaction, v is the coupling parameter, and � is the
zero-point energy of the wells. The schematic sketch of the
model is shown in Fig. 1. In our following discussions, we
focus on the case of repulsive interaction between atoms, i.e.,
c�0.

The above Hamiltonian for the triple-well model is dis-
tinct from that of the trimer train model �12–14� in that the
farmost off-diagonal terms vanish. Physically, the trimer
train model is a periodic boundary condition or ring configu-
ration, whereas the triple-well model is not. This leads to
very different physics even in the linear case. For example,
the ground state of the trimer train �13� corresponds to an
equal distribution of the BEC population in each well. How-
ever, in the triple-well case, the ground state is of unbalanced
population distribution, i.e., �1/4 ,1 /2 ,1 /4� in the linear
case. Moreover, there are no vortexlike, dimerlike configura-
tions in the triple-well model but they do exists in the trimer
train model. The fixed points and their properties are essen-
tially different between the two systems.

Ignoring a total phase, the dynamics of the above
three-level quantum system can be depicted by a
classical Hamiltonian of two-degree freedom �15�. Let us
show that n1= �a1�2 ,n2= �a2�2 ,n3= �a3�2 ,�1=arg a1−arg a2 ,�3
=arg a3−arg a2, using the constraint n1+n2+n3=1, we can
get the classical Josephson Hamiltonian,

H = ��n1 − n3� +
1

2
c�n1

2 + n3
2 + �1 − n1 − n3�2�

− v�1 − n1 − n3��n1 cos �1 + �n3 cos �3� , �4�

and the corresponding canonical equations,

dn1

dt
= − v sin��1��n1

�1 − n1 − n3, �5a�

d�1

dt
= � +

1

2
c�2n1 − 2�1 − n1 − n3�� −

v cos��1��1 − n1 − n3

2�n1

+
v��n1cos��1� + cos��3��n3�

2�1 − n1 − n3

, �5b�

dn3

dt
= − v sin��3��1 − n1 − n3

�n3, �5c�

d�3

dt
= − � +

1

2
c�2n3 − 2�1 − n1 − n3��

+
v��n1 cos��1� + cos��3��n3�

2�1 − n1 − n3

−
v cos��3��1 − n1 − n3

2�n3

. �5d�

The fixed point or minimum energy point of the classical
Hamiltonian system �4� corresponds to the eigenstate of the
quantum system �7,18�. To derive the analytical expressions
of these fixed points is difficult, however, numerically, we
can readily obtain them exploiting the MATHEMATICA soft-
ware �19�. We plot the eigenenergies as the function of the
zero-point energy bias in Fig. 2. They show unusual en-
tangled star structure for the strong nonlinearity.

For the weak interactions, the eigenenergy levels are very
similar to the linear case �c=0�. With an increase in nonlin-
earity �i.e., c=1.5�, the topological structure of the upper
level changes: two small loops emerge. When the interaction
is stronger �i.e., c=2.5�, the two loops will collide and form

FIG. 2. The eigenenergy levels for different interaction strength.
We have set v=1.
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a star structure, and then two more loops will emerge at the
middle level E2. For still stronger interaction �i.e., c=4.5�,
the star structure of the upper level entangles with the
star structure in the lower level. However, we can still
distinguish these levels because they have different relative
phases. In fact, levels labeled by E1 have relative phases
��1=� ,�3=��, levels labeled by E2 have relative phases
��1=� ,�3=0� or ��1=0 ,�3=��, and levels labeled by E3

have relative phases ��1=0 ,�3=0�.
The relation between the chemical potential and the above

energy is

E = � −
c

2
��a1�4 + �a2�4 + �a3�4� , �6�

where � denotes the chemical potential defined as 	��H��
.
In the above calculations and henceforth, for convenience

we set the coupling parameter as a unit, i.e., v=1.

III. SYMMETRIC TRIPLE-TRAP CASE, �=0

Firstly we focus on the symmetric case, i.e., �=0. The
dependence of the energy levels on the interaction strength is
exposed by Fig. 3. For the interaction strength less than a
critical value c1=1.56, the level structure is similar to its
linear counterpart except for some positive shifts on the en-
ergy values. For c�c1, two more levels labeled as �E1a ,E1b�
emerge. Actually, they correspond to the star structure of the
upper level E1 in Fig. 2 and have relative phases of
��1=� ,�3=��. When the interaction strength is still stronger
and exceeds the second critical value c2=4.06, two more
energy levels labeled as �E2a ,E2b� emerge. They correspond
to the star structure of mid-level E2 in Fig. 2 and have the
same relative phases as that of E2.

The stability of the corresponding eigenstates can be
evaluated by the eigenvalues of the Jacobian of the classical
Josephson Hamiltonian �4�,

J =�
−

�2H
�n1��1

−
�2H
��1

2 −
�2H

�n3��1
−

�2H
��3��1

�2H
�n1

2

�2H
��1�n1

�2H
�n3�n1

�2H
��3�n1

−
�2H

�n1��3
−

�2H
��1��3

−
�2H

�n3��3
−

�2H
��3

2

�2H
�n1�n3

�2H
��1�n3

�2H
�n3

2

�2H
��3�n3

� .

�7�

The eigenvalues of the above Jacobian have their corre-
spondence of the Bogoliubov excitation spectrum of BECs.
Pure imaginary values indicates a stable BEC state, whereas
the emergence of real values implies instability for BECs and
leads to a rapid production of the Bogoliubov quasiparticles
�20�. From calculating the above Jacobian matrix and mak-
ing the diagonalization, we know that the states correspond-
ing to level E1b and level E2b are unstable and the others are
stable.

A. Linear Josephson oscillation solution

For the linear Josephson oscillation, i.e., c=0, the system
is analytically solvable. The solutions of �a1 ,a2 ,a3� are

a1 = C2 cos� v
�2

t + C3� + C1, �8a�

a2 = C4 cos� v
�2

t + C5� , �8b�

a3 = − 
C2 cos� v
�2

�t +
T

2
� + C3� + C1� , �8c�

where Ci are parameters determined by the initial conditions

C2 cos C3 + C1 = a1�0� , �9a�

C4 cos C5 = a2�0� , �9b�

C2 cos C3 − C1 = a3�0� , �9c�

−
v
�2

C2 sin C3 = i
v
2

a2�0� , �9d�

−
v
�2

C4 sin C5 = i
v
2

�a1�0� + a3�0�� , �9e�

and the constraint

�a1�0��2 + �a2�0��2 + �a3�0��2 = 1. �10�

From the above explicit expressions, we see that a1, a2,
and a3 vary with respect to time periodically. They share a
common period that is inversely proportional to the coupling
parameter, i.e., T=2�2� /v. Actually, the frequency is just

FIG. 3. When �=0, the energy levels vary with the interaction
strength c /v, where we set v=1.
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the bias between eigenenergy levels. With initial conditions,
the coefficients Ci will be fixed by using Eq. �9�. In our case,
C1�0, so the period of population n1 and n3 is twice the
period of n2, and compared with n1, variable n3 has a phase
delay of a half period. The above analysis is confirmed by
our numerical simulations as shown in Fig. 4�a�.

B. Weak interaction cases, c�c1

The dynamics of this two-freedom system could be visu-
alized from the Poincaré section �17�. We do this by solving
the canonical equation �5d� numerically and then plotting �1
and n1 at each time that �2=0 and �2�0. Notice the total
energy is conserved, therefore the Poincaré sections consist
of a picture panel where each picture corresponds to a fixed
energy.

For the linear case, all motions share a common period
exactly, and the Poincaré section is some isolated points.
With weak interactions, the periodicity will be destroyed,
and the motions become periodic or quasiperiodic, corre-
sponding to the Poincaré section plotted in Fig. 5, where we
see the section plane is full of stable islands. However, in this
case the motion is similar to the linear case if they have the
same initial values, as shown in Figs. 4�a� and 4�b�.

C. Strong interaction cases, c�c2

When the interaction is strong, the nonlinear effect is
dominant. Accordingly, the Poincaré section is complicated,

as shown in Fig. 6, where we see many chaotic regions ex-
cept for some stable islands. In the islands, the motions are
periodic or quasiperiodic whereas in the chaotic region the
motions are irregular. In order to grasp the dynamical prop-
erty in this situation, we have simulated the motions for ev-
ery regular island numerically, and find that except for the
oscillations like the linear or weak interaction case, as shown
in Fig. 7�a�, there are also four types of new oscillations, as
shown in Figs. 7�b�–7�e�, respectively.

Figure 7�a� shows that the oscillation in well one is almost
the same as that of well three except a phase delay of a half
period. In order to compare with the linear or weak interac-
tion case, we take the same initial value as that of Fig. 4. We
see that their oscillations behavior is similar.

In addition to the case shown in Fig. 7�a�, the motions of
BECs in the triple well can demonstrate very different be-
havior. Figure 7�b� shows that almost all of the BEC atoms
oscillate with small amplitude in two adjacent wells, i.e.,
well one and well two. The phase �1 oscillates around 0 and
the phase �3 oscillates around �. The energy of these oscil-
lations is closed to the eigenenergy of the level labeled by
E2a, and the center they surrounded is near the fixed point
corresponding to level E2a. As mentioned before, this fixed
point is a stable point.

Figure 7�c� shows that almost all of the BEC atoms oscil-
late with large amplitude in well one and well two, and the
relative phase �1 is always oscillating around zero. These
oscillations are regarded as oscillations in a reduced two-well
trapped system. In fact, because n3 is small and c /v is very
large, we can regard the term

H1 = v�1 − n1 − n3
�n3 cos��3� �11�

as a perturbation. Using the generating function,

G = vg�J1,J2�sin��3� + J1�1 + J2�3, �12�

where

FIG. 4. The evolutions of n1 �heavy line�, n2 �thin line�, n3

�dashed line� and �1 �heavy line�, �3 �dashed line� in symmetric
wells for the linear case �a� and the weak interactions case �b�, with
the same initial values �n1=0.4,n3=0.05,�1=0,�3=0�.

FIG. 5. The Poincaré section at �3=0 for c /v=0.5 with different
energy E. �a� E=−0.4, �b� E=−0.1, �c� E=0.2, �d� E=0.5.

FIG. 6. The Poincaré section at �3=0 for c /v=5 with different
energy E. �a� E=0.3. �b� E=0.8. �c� E=1.1. �d� E=1.5. �e� E=1.9.
�f� E=2.3.
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g�J1,J2� =
v�1 − J1 − J2

�J2

c�1 − J1 − 2J2�
.

Then the Hamiltonian becomes

H� =
1

2
c�2J1

2 + 2J2J1 − 2J1 + 2J2
2 − 2J2 + 1�

+ v�1 − J1 − J2
�J1 cos�	1� . �13�

The new canonical variables have relations with the old ca-
nonical variables,

n1 = J1, �14a�

n3 = J2 + v cos��3�g�J1,J2� , �14b�

	1 = �1 + v sin��3�g�1,0��J1,J2� , �14c�

	2 = �2 + v sin��3�g�0,1��J1,J2� . �14d�

Since the action variable J2 is constant, the action-angle
variables J1 ,	1 can be solved first from the new canonical
equations �14�. Notice that J1=n1 is the population in well
one, and 	1��1 is the relative phase of the quantum state in
well one and well two. The oscillations shown in Fig. 7�c�
are the same as the zero-phase mode oscillations in a two-
well trapped system.

Figures 7�d� and 7�e� show self-trapping of BECs in the
middle well and self-trapping in one side well, respectively.
These motions have close relations to the property of fixed
points, and will be discussed in detail at the next section.

Figure 7�f� shows the chaotic trajectory, which corre-
sponds to the chaotic region in the Poincaré section. In this
case, the population in each well shows irregular oscillation
with respect to time.

IV. TRANSITION TO SELF-TRAPPING

A. Self-trapping in one well

Self-trapping is caused by the nonlinear interactions. For
the symmetric two-well system, as we have known, self-
trapping happens only when the interaction parameter ex-
cesses a critical value. Calculating the average population for
the same initial value a1�0�=1,a2�0�=0 with a different in-
teraction strength c /v can be shown in Fig. 8�a�. The Hamil-
tonian used for calculation is

FIG. 7. The evolutions of n1

�heavy line�, n2 �thin line�, n3

�dashed line� and �1 �heavy line�,
�3 �dashed line� in symmetric
wells for strong interactions �c /v
=5�, with initial values �a� the
same as Fig. 4, �n1=0.4,n3

=0.05,�1=0,�3=0�; �b� �n1

=0.49,n3=0.012,�1=0,�3=2.82�;
�c� �n1=0.15,n3=0,�1=0,�3=0�;
�d� �n1=0.076,n3=0.066,�1

=2.54,�3=2.79�; �e� �n1=0.96,n3

=0.02,�1=1.36,�3=1.34�; �f� �n1

=0.348,n3=0.532,�1=0.817,�3

=3.843�.

FIG. 8. The average of n1, n2 for different interactions c /v in the
two-well system �a� and the triple-well system ��b� and �c��, with
initial value �a� n1�0�=1, �b� n2�0�=1, �c� n1�0�=1. The schematic
sketch of the potential is shown in the figures.
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Ĥ =�c�a1�2 −
v
2

−
v
2

c�a2�2� .

It is clearly shown that, when c /v�2 the averaged n1 is no
longer equal to 1/2 indicating the beginning of the self-
trapping. Soon after that, with increasing the interaction, the
BECs will be trapped in well one completely. Because the
transition corresponds to crossing over a separatrix from os-
cillation to liberation, at the transition point c /v=2 the scal-
ing law follows a logarithm function �21,22�.

For our triple-well system, the high-dimensional phase
space permits the existence of chaos and the smooth move-
ment of the fixed points to the boundary �the latter point will
be clearly shown in Fig. 9�, so we expect that the transition
to self-trapping in the triple-well system will show distin-
guished property from that of the double-well system. To
demonstrate it, we calculate the time averaged population for
different interactions with the initial conditions n2�0�=1 and
n1�0�=1, denoting initial BECs uploaded in the middle well
and left-hand well, respectively. The results are shown in
Figs. 8�b� and 8�c�.

For the linear case, i.e., c=0, in Fig. 8�b�, substituting
�a1=0, a2=1, a3=0� to Eq. �9�, we can get one set of Ci,

C1 = 0, C2 = −
i

�2
, C3 =

�

2
, C4 = 1, C5 = 0.

Then from Eq. �8� we have the averaged populations

	n1
 = 	n3
 = �C2�2/2 =
1

4
, 	n2
 = �C4�2/2 =

1

2
.

Likewise, in Fig. 8�c�, substituting �a1=1, a2=0, a3=0� to
Eq. �9�, we can get one set of Ci,

C1 =
1

2
, C2 =

1

2
, C3 = 0, C4 = −

i
�2

, C5 =
�

2
.

From Eq. �8� we have the averaged populations

	n2
 = �C4�2/2 =
1

4
, 	n1
 = 	n3
 =

1 − 	n2

2

=
3

8
.

For the weak interaction, i.e., c�c1, the averaged popu-
lations are still similar to the linear case. However, when the
interaction strength is close to the critical point c1, the aver-
aged populations change dramatically. For Fig. 8�b�, the av-
eraged population 	n2
 increases monotonically and
smoothly to unite. No scaling law is observed. This is due to
the fact that in the 4D phase space the fixed point can move
smoothly to the boundary without any bifurcation. For Fig.
8�c�, the averaged populations become turbulent near the
critical point. This is a result of chaotic trajectory in the
phase space. Meanwhile, 	n1
 and 	n3
 are no longer equal.
When the interaction is larger than 2.25, the averaged popu-
lation 	n1
 becomes smooth and tends to unite rapidly.

For the triple-well system, when the interaction strength
exceeds the critical value c1, as mentioned before, new levels
E1a, E1b will appear. Accordingly, new fixed points will
emerge, and the phase space will tend to be divided into
several subspaces around the stable fixed points. In Fig. 9 we
plot populations n1

* and n2
* for the levels labeled by E1, E1a,

and E1b as a function of c /v. Corresponding to eigenenergy
E1a there are two eigenstates denoted by ni

* and ni
*�, respec-

tively. The same thing happens to level E1b. Recall that E1,
E1a are stable levels. When the interaction is very strong, the
averaged population 	n2
 of the motions of BECs uploaded
initially in the middle well is close to n2

*�E1�, while 	n1
 of
the motions of BECs uploaded initially in well one is close to
n1

*�E1a�, as shown in Figs. 8�b� and 8�c�.

B. Self-trapping in two wells

In the above, we have investigated the self-trapping of
BECs in the single well. In this part, we will investigate
whether the BECs atoms can be self-trapped only in two
wells.

Considering the interference, the initial relative phase
should be very important, so we calculate the mean value of
	n1+n2
 as a function of c /v for the different phase �1 with
the initial value �n1=0.5, n2=0.5, n3=0�, and the mean value
of 	n1+n3
 as a function of c /v for the different phases
�1–�3 with initial values �n1=0.5, n2=0, n3=0.5�, respec-
tively. The main results are shown in Fig. 10.

It is shown that, with increasing the atomic interaction,
BECs will be trapped in the two wells where it is initially
uploaded and the Josephson oscillation can be completely
blocked. Both cases also suggest that the relative phase can
dramatically influence the transition to self-trapping for
BECs. In Fig. 10�a�, when the relative phase is zero, the
Josephson oscillation and the self-trapping can emerge alter-
nately, whereas in the case of Fig. 10�b�, the � value of the
relative phase gives a robust self-trapped BEC. In both cases,
we also see the occurrence of the chaos making the curves
look irregular. Interestingly, the onset of chaos can also be
controlled by the relative phase, e.g., the elimination of the
relative phase will reduce the chaos and make the BECs
safely turn from an oscillation state to a self-trapping state as
shown in Fig. 10�b�.

FIG. 9. The populations n1
* �heavy line� and n2

* �thin line� for the
levels labeled by E1, E1a, and E1b in Fig. 3.
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V. TILTED TRIPLE WELL, �Å0

In this section we extend the above discussions to the
tilted triple-well system. In this system, the diverse type of
Josephson oscillations also emerge around the eigenstates. In
light of the energy spectra �Fig. 2�, we can readily find out
the parameter regime for different kinds of oscillations. So,
we will focus on the transition to self-trapping that is of more
interest. We want to see how the transition is influenced by
tilting the wells.

A. Linear oscillation solutions

For the linear case, i.e., c=0, the system is analytically
solvable, so the solutions of �a1 ,a2 ,a3� are

a1 =
1

2
C4 cos��v2

2
+ �2t + C5� +

1

2�v2

2
+ �2�


 ��C2 cos��v2

2
+ �2t + C3� + vC1� , �15a�

a2 =
1

v2

2
+ �2

�−
v
2

C2 cos��v2

2
+ �2t + C3� + �C1� ,

�15b�

a3 =
1

2
C4 cos��v2

2
+ �2t + C5� −

1

2�v2

2
+ �2�


 ��C2 cos��v2

2
+ �2t + C3� + vC1� , �15c�

where Ci are complex integral constants and like the sym-

metric case, are determined by initial conditions. It is clear
that a1, a2, and a3 vary with respect to time, periodically. The

period T=2� /�v2

2 +�2.

B. Transition to self-trapping

When the interaction is strong we still observe the self-
trapping of BECs in the tilted system. We plot the averaged
populations in their dependence of the interaction strength
with choosing parameter �=−1 and initial conditions n1=1,
n2=1, and n3=1 in Figs. 11�a�–11�c�, respectively. The sche-
matic sketch of the wells is shown in Fig. 1�b�.

For Fig. 11�a�, when c /v=0, with the initial conditions
�a1=1, a2=0, a3=0�, we derive one set of Ci,

C1 = v/2, C2 = iv/�2, C3 = arccos� i�2�

v
� ,

C4 =
v

�v2 + 2�2
, C5 = − arccos��v2 + 2�2

v
� .

By integrating �ai�t��2 with respect to time and making an
average over time we obtain the averaged population analyti-
cally from Eq. �15�,

	n1
 = 17/24, 	n2
 = 1/4, 	n3
 = 1/24.

With an increase in the nonlinearity, the averaged population
in well one 	n1
 decreases at first, and then becomes turbu-
lent, indicating chaotic motions. When the interaction

FIG. 10. The mean value of �a� 	n1+n2
 and �b� 	n1+n3
 with
the initial value �a� �n1=0.5, n2=0.5, n3=0�, �b� �n1=0.5, n2=0,
n3=0.5� for a different relative phase.

FIG. 11. The average of ni for different interactions c /v in
asymmetric wells �=−1 with initial value �a� n1�0�=1, �b� n2�0�
=1, �c� n3�0�=1.
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parameter is larger than 3.9, the averaged population jumps
up and tends to unite soon after.

In Fig. 11�b�, the initial condition is �a1=0, a2=1, a3=0�.
Similarly, the averaged populations are readily obtained for
the linear case, 	n1
=1/4, 	n2
=1/2, 	n3
=1/4. With an in-
crease in the nonlinearity, the averaged population 	n2
 in-
creases smoothly at the beginning, passes a turbulence inter-
val �2.3,3.6�, and then jumps up and tends to unite. Another
interesting phenomenon in the process is that the averaged
population in well three is always larger than that of well one
in the presence of the nonlinearity, even though in this case
the zero-point energy of well three is obviously greater than
that of well one. This somehow counterintuitive phenomenon
is clearly the consequence of the nonlinearity.

In Fig. 11�c�, when c /v=0, with the initial conditions
�a1=0, a2=0, a3=1�, the averaged populations have some
correspondence to that of Fig. 11�a� due to behind symmetry,
i.e., 	n1
=1/24, 	n2
=1/4, 	n3
=17/24. With an increase in
the nonlinearity, the averaged population in well three 	n3

increases monotonically and smoothly to unite.

Comparing Fig. 11 to Fig. 8, we find that the smooth
transition of the BECs in the middle well to self-trapping in
the symmetric triple well is broken by tilting the wells, and
lifting the well three makes BECs smoothly transit to self-
trapping states without losing their stability. Figure 11 also
shows that BECs in higher wells are easily self-trapped.
From the above discussions, we conclude that the transition
to self-trapping of the BECs in triple-well systems can be
effectively controlled by tilting the wells.

VI. CONCLUSIONS

We have presented a comprehensive analysis of the tun-
neling dynamics for BECs in a triple-well trap both numeri-
cally and analytically. Diverse energy levels are demon-
strated. Behind these unusual level structures, we reveal
many new types of nonlinear Josephson oscillation. We also
study the self-trapping of BECs in the one well as well as in
the two well and investigate the transition from nonlinear
Josephson oscillation to self-trappings. Distinguished from
the double-well case, no scaling law is observed at the tran-
sition and the transition may be accompanied by an irregular
regime where the motions are dominated by chaos. We also
find that the transition can be effectively controlled by the
relative phase between wells and tilting the wells. In the
present experiments, the double well is realized in the optical
traps with the use of a blue-detuned light to form a barrier.
With the same technique, the triple well is also possibly re-
alized in the optical traps. We hope our theoretical discussion
will stimulate the experiments in this direction.
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