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We describe a technique for transferring a two-level atom between two adjacent potential wells of an optical
lattice, using pairs of pump and Stokes pulses, each resonantly coupling the same pair of internal atomic states
to form a Raman transition. Starting from a vibrational eigenstate of one well the atom slowly moves under the
action of the pulse pair, to the vibrational eigenstate with the same quantum number in the neighboring well.
The transfer takes place in two stages: A conventional stimulated Raman adiabatic passage �STIRAP� tech-
nique, in which Stokes precedes pump pulse, is followed by a pulse sequence where pump precedes Stokes and
with an inverted sign of the Stokes envelope. In the first step the atom is accelerated toward the adjacent well
and in the second step decelerated to the initial vibrational energy. The STIRAP technique avoids the intro-
duction of stochastic motion caused by spontaneous emission from the excited internal atomic state.
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I. INTRODUCTION

Recent advances in cooling atoms have boosted techno-
logical developments in the creation and manipulation of op-
tical lattices �1,2�. Nowadays, a wide variety of optical lat-
tices have been realized by combining counterpropagating
electric fields to form a standing light wave in one, two, or
three dimensions �3�. The problem of coherent control of
atomic motion comes now on the forefront. The transfer of a
single atom through the optical lattice constitutes the main
subject of this work.

The scattering force exerted on an atom by the electric
field cools the motion of the atom and the dipole force keeps
the atom trapped in optical lattices. The parameters of optical
lattices can be controlled relatively easy. By varying fre-
quency, phases and intensity of the electric fields and option-
ally applying auxiliary magnetic fields, one can manipulate
the depth of the optical potential, its shape, and relative val-
ues of dipole and scattering forces. An atom can be cooled to
the vibrational ground state �4� which is a convenient starting
point for the preparation of a Fock state with a higher quan-
tum number in optical lattices �5� or the generation of a wave
packet �6�.

Atoms in an optical lattice bear a close analogy to elec-
trons in a crystal. As a favorable feature, the interatomic
spacing in an optical lattice is of the order of micrometers as
compared to the nanometer scale characteristic for solids.
The large atom separation allows one to study the dynamics
of particles in periodic structures in the regime of weak in-
teractions, which is hard to achieve in solid matter. Optical
lattices and the associated field of atomic physics have al-
ready demonstrated the potential to serve as ideal testing
ground for studying phenomena that are traditionally attrib-
uted to solid state physics. Thus, effects like Bloch oscilla-
tions and quantum transport usually spoiled by impurities
and defects present in solids, were opened for a clear obser-
vation by use of atoms trapped in an optical lattice �7,8�. The
generation of nanoscale structures in atom lithography �9�,
implementation of scalable quantum logic �10,11�, control-
lable playground for the observation of Lévy flights �12,13�
are yet other applications of optical lattices.

Further developments in optical lattice technology depend
on the ability to vary the local density of the atoms, and
ideally control the position of single atoms. Atoms can be
transported through the lattice in a number of ways: by tun-
neling �14�, by directed diffusive transport in asymmetric
�15� and symmetric �16� optical lattices, as recently demon-
strated by coherent spin-dependent transfer �17�, and by the
optical conveyor belt technique �18�. However, these ap-
proaches to quantum transport are either of statistical nature,
without precise control over the atomic motion, or collective
in nature, in the sense that many atoms throughout the
optical lattice are affected simultaneously, all together.
We propose here a method which allows to address an
individual atom and deterministically move it through the
lattice.

Our paper is organized as follows: In Sec. II we overview
the quantization of the atomic center-of-mass motion in the
optical lattice and, assuming a deep optical potential, de-
scribe the confined atomic motion inside each potential by a
set of Wannier states. In Sec. III we treat the atom as a
two-level system and consider its resonant interaction with
Stokes and pump light fields; then we further restrict our
attention to one period of the optical lattice and derive a
three-well model describing the motion of the two-level
atom under the action of the two pulses in a Raman configu-
ration. In Sec. IV we sketch the basics of a three-state �
model driven by the Raman pair and concentrate on the STI-
RAP technique as an attractive method for complete popula-
tion transfer which is not accompanied by a spontaneous
decay from the upper state. In Sec. V we reduce the three-
well model to an effective five-state scheme and modify the
conventional three-state STIRAP technique to achieve a de-
sirable population dynamics that is equivalent to the transfer
of the atom to an adjacent potential well. In Sec. VI we
conclude with a discussion of the atomic motion under the
action of resonant Raman pulses and speculate on possible-
generalizations of the proposed method for the atom trans-
port.
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II. QUANTIZATION OF THE CENTER-OF-MASS MOTION
OF A TWO-LEVEL ATOM

We consider a two-level atom of mass M0 with ground
state �g� and excited state �e� interacting with the off-resonant
standing wave generated by the two trapping laser beams 1
and 2, both of wavelength � and Rabi frequency �OL de-
tuned from the atomic transition by �OL; see Fig. 1�a�. The
two beams propagate at angle 2� with respect to each other
and form a standing wave in the horizontal direction, the

configuration used for example in Ref. �5� to prepare Fock
states of neutral atoms. The spatial period of the standing
wave is

a =
�

2 sin �
. �1�

For the case of most common configuration, i.e., �=� /2, the
counterpropagating beams form the one-dimensional stand-
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FIG. 1. Coherent transport of an atom in an optical lattice due to a Raman pulse. �a� Sketch of the generic setup. The optical lattice of
period a, Eq. �1�, is created by two laser beams 1 and 2 propagating and crossing at angle 2�. Application of the pump and Stokes pulses
produces a force which moves the atom from the left lattice site to the right one. �b� Quantization of the atomic motion in the optical lattice.
�1� The state selective optical potential, Eq. �2�. The potential for the atom in the excited state is shifted by a /2 with respect to the potential
for the atom in the ground state. The driving lasers with transverse profile g�x� illuminate predominantly one period �a� of the optical lattice.
In bold are shown three potential wells involved in the transfer, two in the atomic ground state �g� and one in the excited state �e�. For better
selectivity the transverse beam shape g�x� should be chosen with flat top and steep wings like a super-Gaussian shape. �2� Quantization of
the atomic center of mass motion within each lattice site. Dashed vertical lines indicate that each well is treated separately. �3� Approxima-
tion of each sin2-shape well by a truncated parabola. Corresponding harmonic oscillator energy levels are shown by horizontal equidistant
lines. The Raman pump-Stokes pair of pulses realizes the transfer. �c� The Franck-Condon factors dm̄n

2 = �G , m̄ �A ,n�2 calculated as the
transition matrix elements from the chosen vibrational state m̄=43 in the left manifold to a number of vibrational states in the excited
manifold; see Eq. �38�. The factors are evaluated in the harmonic approximation where the harmonic potential matches the sin2 potential in
the vicinity of the central eigenstate �G , m̄�.
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ing wave with the period of � /2. The atom experiences the
optical lattice as an effective potential

U�x� = U0 sin2��

a
x	��g��g� − �e��e�� , �2�

where U0=��OL
2 /�OL is the depth of the optical potential.

The potential

U�x + a� = U�x� �3�

is a periodic function with period a.
The potential is state-selective as it depends on the elec-

tronic state of the atom: The potential for the atom in the
excited state is shifted by a /2 with respect to the potential
for the atom in the ground state. The �trapping� Hamiltonian
for the atomic center-of-mass motion in an optical lattice is
given by

H0 =
p2

2M0
+ U�x� . �4�

With this Hamiltonian, Eq. �4�, in the Schrödinger equation
we approach the quantization of the atomic center-of-mass
motion. The problem is solved when the eigenvalues and
corresponding eigenfunctions of operator H0 are found. For
an arbitrary potential, the energy eigenvalues can be classi-
fied in two groups: The continuous and the discrete spec-
trum. Since the operator is Hermitian, eigenfunctions of H0
form a complete set. Therefore, the evolution of a given ini-
tial wave function can be described in terms of an expansion
in the basis of energy eigenfunctions with time dependent
probability amplitudes.

We consider an optical lattice with deep modulation U0.
For such a potential the energy spectrum consists of energy
bands of allowed energies which are separated by gaps of
forbidden energies. The width of these energy bands is
closely related to the tunneling rate between neighboring po-
tential wells: The larger the tunneling rate the broader the
width of the bands. For small energies the potential barrier is
relatively thick so that the tunneling is vanishingly weak.
Therefore the width of such bands vanishes and thus re-
sembles the discrete spectrum of an atom in a single poten-
tial well. For the problem of atom transport we use energy
bands at the level of U0 /2. For the deep potential they are
quite narrow and will be treated as discrete states in the
following. Physically this approximation means that the
characteristic evolution time of the atom is much faster than
the inverse bandwidth of each involved band. In other words,
we observe the evolution of the atom on a time scale shorter
than compared to the tunneling time. For higher energies
�approaching U0 and above� the tunneling rate is larger and
the associated bands are broader.

An atom trapped in an optical lattice bears close analogy
to the motion of an electron in a periodic potential of a solid
state crystal. Two alternative approaches are used to describe
the electronic motion. For electrons characterized by rela-
tively high energies the wave function is conveniently de-
scribed as a superposition of Bloch waves. Bloch waves are
extended over the whole crystal and periodically modulated
with the period of the crystal. Alternatively, for lower ener-

gies when the electronic wave function is confined to a
single lattice site, a description in terms of Wannier states
becomes favorable. Wannier states are energy eigenstates of
the potential of a single lattice site. Since the spatial width of
the Wannier states does not exceed the width of the lattice
site, Wannier states belonging to different sites are orthogo-
nal. The Wannier approach is clearly correlated with the no-
tunneling approximation for low-lying states, discussed in
the previous paragraph. Since the vibrational states of inter-
est have energies in the vicinity of U0 /2 we will follow the
Wannier approach throughout the paper.

With the no-tunneling approximation we reduce the peri-
odic potential to a sequence of independent wells according
to

U�x� = 

i

Ve
�i��x��g��g� + 


j

Vg
�j��x��e��e� , �5�

where Vg
�i��x� �Ve

�j��x�� is the potential restricted to a single
lattice site i �j� in the ground �excited� state. Here x runs
from −a /2 to a /2. The translational invariance of the optical
potential allows us to trace each single-well potential

Vg
�i��x� = Vg

�0��x − ia� , �6�

Ve
�j��x� = Vg

�0��x − �2j + 1�
a

2
	 �7�

back to the single potential well Vg
�0��x��V�x� centered in

the origin. The atomic motion in the central lattice site �and
according to Eqs. �6� and �7� in all other sites� is governed by
the single-well Hamiltonian

H00 �
p2

2M0
+ V�x� . �8�

The quantization of the center-of-mass motion in the central
lattice site corresponds to the eigenstate problem

H00��k� = �	k��k� . �9�

Thus we get a manifold of energy eigenstates ��k� each char-
acterized by energy �	k. Note that our interest is only in
eigenstates with energies below U0, since only they possess
the characteristic property of Wannier states.

In order to characterize atomic states for the entire lattice
we introduce the following notations. For the atom in the
ground internal state and nith Wannier state belonging to ith
lattice site we use notation ��ni

�i��g. Analogously, we denote by

��mj

�j��e the atom in the excited internal state characterized by
mjth vibrational eigenstate located in the jth lattice site. The
associated energy eigenvalues are �	g,i,ni

and �	e,j,mj
, re-

spectively.
Wannier states belonging to same internal state l=g, e are

orthogonal

l��ni

�i���nk

�k��l = 
ik
nink
. �10�

We use Wannier states of all lattice sites to form a complete
set

COHERENT TRANSPORT OF SINGLE ATOMS IN OPTICAL… PHYSICAL REVIEW A 75, 033420 �2007�

033420-3



1 = 

i



ni=0

M

��ni

�i��g g��ni

�i�� + 

j



mj=0

M

��mj

�j��e e��mj

�j�� . �11�

Here indices i and j span over all lattice sites. Quantum
numbers ni and mj have upper bound M, where M is the
number of Wannier states which are localized within one
lattice site.

Formally, the completeness relation implies that at all
times �in all wells� the atomic wave function can be de-
scribed as superposition

���t�� = 

i



ni=0

M

�g,ni

�i� ��ni

�i��g + 

j



mj=0

M

�e,mj

�j� ��mj

�j��e, �12�

where �g,ni

�i� �t� and �e,mj

�j� �t� are the time-dependent probability

amplitudes for finding the atom in the Wannier states ��ni

�i��g

and ��mj

�j��e, respectively.
At this stage there is no need to specify energy eigenfunc-

tions of a single well of sin2-shape potential. The explicit
form of Wannier states becomes important when we arrive at
the explicit calculation of the coupling matrix elements
�Franck-Condon factors�. There we find it useful to apply a
harmonic approximation.

III. ATOM TRANSPORT: DERIVATION OF THE MODEL

A. Interaction of the trapped atom with optical fields

The trapped atom is now illuminated by a pair of resonant
fields with the aim to drive the atom from one to the adjacent
potential well. The total Hamiltonian of the system is the
sum H�H0+W of the Hamiltonian of the trapped atom Eq.
�4� and the interaction term W�−dE�t� describing the dipole
interaction of the atom with the resonant field E�t�. The
Hamiltonian H0 is decomposed in terms of Wannier states

H0 = �

i



ni=0

M

	g,i,ni
��ni

�i��g g��ni

�i��

+ �

j



mj=0

M

	e,j,mj
��mj

�j��e e��mj

�j�� , �13�

using the completeness relation Eq. �11�. The interaction
term is expanded as

W = − 

i,j



ni,mj=0

M

��ni,mj

�i,j� ��ni

�i��g e��mj

�j�� + �mj,ni

�j,i� ��mj

�j��e g��ni

�i���E�t� ,

�14�

with coupling matrix elements

�ni,mj

�i,j� = Dge g��ni

�i���mj

�j��e = ��mj,ni

�j,i� �*. �15�

Here we used the fact that the dipole operator acts only on
the internal degrees of freedom and introduce the dipole ma-
trix element Dge= �g�d�e�. In Eq. �15� we introduced the
Franck-Condon factor as the overlap of the two Wannier
states. Note that the separation of the atomic dynamics in the
motion of the center-of-mass and the electronic degrees of

freedom becomes possible due to the distinct time scales of
the two processes �Franck-Condon principle�.

The electric field

E�t� = 

k=P,S

�Ek�t�e−i	kt + c.c.� �16�

is the combination of two narrowband optical fields, Stokes
and pump, centered at carrier frequencies 	S and 	P.

In the interaction picture, the evolution of the wave func-
tion is described by the Schrödinger equation

i�
�

�t
���t�� = W���t�� �17�

with the interaction Hamiltonian transformed to the interac-
tion picture according to W=exp��i /��H0t�W exp�−�i /
��H0t�. Substituting the wave function in the form of the
decomposition Eq. �12� into the Schrödinger equation Eq.
�17�, performing projections with the help of the orthogonal-
ity relation Eq. �10�, and applying the rotating wave approxi-
mation we get equations of motion for the probability ampli-
tudes:

i�
d

dt
�g,ni

�i� = 

k=P,S

Ek

j



mj=0

M

�ni,mj

�i,j� e−i�	e,j,mj
−	g,i,ni

−	k�t�e,mj

�j� ,

�18�

i�
d

dt
�e,mj

�j� = 

k=P,S

Ek
*


i


ni=0

M

��ni,mj

�i,j� �*e+i�	e,j,mj
−	g,i,ni

−	k�t�g,ni

�i� .

�19�

Recall that indices i and j label the site of the optical lattice,
whereas the ni and mj denote the quantum number of the
corresponding Wannier state.

This system of coupled equations allows us to follow the
evolution of the atomic function under the action of the
Stokes and the pump field. In particular, it is possible to drive
the atom through the optical lattice. In the next sections we
suggest a sequence of pulses which performs such a transfer.
Before doing this we reduce the general set of equations �18�
and �19� to a three-well model.

B. Three-well model

The transfer is accomplished by applying the pump and
Stokes pulses in a Raman configuration with intermediate
resonant coupling to the excited state. Only one period of the
optical lattice is illuminated by the spatially confined laser
pulses of transverse profile g�x�, as depicted in Fig. 1�b�. Due
to the finite spatial profile strong coupling is established be-
tween wells belonging to the illuminated double well struc-
ture. In contrast, adjacent lattice sites interact with the tails of
the pulses where the electric field vanishes and therefore they
appear to be only weakly exposed to the transport laser
pulses. In the following we neglect these weak couplings
�19�. In order to illuminate only one lattice period in the
counterpropagating configuration ��=� /2� one needs to fo-
cus the trapping beams to a spot of the size close to the
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diffraction limit. In order to ease this tight focusing require-
ment the spot can be made twice bigger for �=� /6.

Only atoms located in the two selected sites are thus ad-
dressed by the pulses. For definiteness, let us assume that we
have only one atom which is located in the left well. Then,
the geometry imposes the direction of the transfer process:
From the left to right well in our case. Only two wells �i
=0,1� in the ground state and one well �j=0� in the excited
state are involved in the dynamics. The corresponding prob-
ability amplitudes are denoted according to the following
scheme

left well: �n0

�0� → Gn, �20�

right well: �n1

�1� → Gl�, �21�

upper well: �m0

�0� → Am, �22�

whereas the associated Wannier states are relabeled accord-
ing to

��n0

�0��g → �G,n� , �23�

��n1

�1��g → �G�,l� , �24�

��m0

�0��e → �A,m� . �25�

The energy eigenvalues are replaced according to

�	g,0,n0
→ �	G,n, �26�

�	g,1,n1
→ �	G�,l, �27�

�	e,0,m0
→ �	A,m. �28�

Within the three-well model the equations of motion Eq. �18�
and Eq. �19� reduce to

i�Ġn = 

k=P,S

Ek

m=0

M

dnme−i�mn
�k� tAm, �29�

i�Ȧm = 

k=P,S

Ek
*�


n=0

M

dnm
* ei�mn

�k� tGn + 

l=0

M

d̄lm
* ei�ml

�k�tGl�	 ,

�30�

i�Ġl� = 

k=P,S

Ek

m=0

M

d̄lme−i�ml
�k�tAm, �31�

with detunings �nm
�k� =	A,m−	G,n−	k and �ml

�k�=	A,m−	G�,l

−	k, and dipole moments dnm=�n,m
�0,0� and d̄lm=�l,m

�1,0�.
The set of equations �29�–�31� takes into account all pos-

sible transitions between vibrational states belonging to all
three potential wells of interest. These transitions are of two
types. The first type describes the desirable interwell transfer
of the atom. The second �undesirable� type of transition con-
nects vibrational states of the same well and thereby de-

scribes Raman-induced heating processes. Later we find that
for our choice of Stokes and the pump pulses such heating
processes are negligible.

Starting with the atom in the well �G� our goal is to trans-
fer it to the adjacent well �G��, as illustrated in Fig. 1�b�. The
atom is initially prepared in the motional state �G , n̄� with
probability equal to unity. Two fields EP and ES are applied
to shift the atom to the right well. We consider the transfer to
be successful if the probability of the atom to appear in the
right well is close to unity. The most desirable arrangement
of the fields is such that the atom is transferred to a single

vibrational eigenstate, say �G� , l̄�. Then, taking this state as a
new initial condition the transfer scheme can be repeated
again along similar lines.

The efficiency of couplings between the vibrational states
of the lower and the excited manifold is evaluated as overlap
integrals of the corresponding Wannier function �x �G ,n�
��x �G� , l�� of the nth �lth� vibrational state in the left �right�
potential well and �a /2�-shifted Wannier function �x �A ,m�
of the mth vibrational state in the upper manifold. Thus, for
a transition from a given state �G ,n� in the left manifold to a
state �A ,m� in the upper manifold the dipole moment dnm
defined by Eq. �15� is proportional to the Franck-Condon
factor

�G,n�A,m� = �
−

+

dx�x�G,n�*�x�A,m� . �32�

C. Evaluation of Franck-Condon factors

So far, we did not need an explicit form of the Wannier
functions. Now, for the evaluation of the Franck-Condon fac-
tors we simplify the model of each well. We approximate
each of the three wells of the sin2 potential by a harmonic
oscillator potential 1

2 M0�2 and use only eigenfunctions with
energies below U0, as illustrated in Fig. 1�b�. Initially the
atom has well-defined energy at approximately half U0.
Therefore it is more reasonable to make the parabolic fit of
the sin2 potential at energies corresponding to U0 /2 rather
than in the minimum. The fitting parameters are the zero-
energy shift �U= �U0 /2� �1−� /4� and the trap frequency

� =
2

a
�U0

M0
, �33�

which determines the energy separation �� of eigenstates of
the harmonic oscillator. Energy eigenvalues �	G,n in the left
well are replaced by ���n+ 1

2
�. Analogously in the other two

wells, we replace �	G�,l and �	A,m by correspondingly
���l+ 1

2
� and ���m+ 1

2
�. For all three potential wells we find

the real-valued eigenfunctions

uk�x� = ��2

�
	1/4e−��x�2/2

2kk!
Hk��x� , �34�

of the harmonic oscillator with characteristic length scale
�−1�� /M0�, where the quantum number k has to be re-
placed by n , l, or m depending on the particular potential
well under consideration.
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Note that only harmonic oscillator eigenfunctions uk�x�
with energies less than U0 are localized within a primitive
cell of the optical lattice. Assuming that the eigenfunction

uM̄�x� with quantum number M̄ reaches the spatial size of a
single lattice site we truncate here the set of harmonic oscil-

lator eigenfunctions. Thus uk�x� with k running from 0 to M̄
form a suitable set of Wannier functions for each potential
well under consideration. The truncated sets for all lattice
sites spatially cover the entire lattice and therefore all to-
gether represent the basis.

Then, in position representation, the Wannier functions
become

�x�G,n� = un�x� , �35�

�x�A,m� = um�x −
a

2
	 , �36�

�x�G�,l� = ul�x − a� , �37�

where indices n, m, and l run from 0 to M̄. The dipole mo-
ments for the excitation step become then

dnm = Dge�G,n�A,m� = Dge�
−

+

dx un�x�um�x − a/2� ,

�38�

whereas for the deexcitation step we get

d̄ml = Dge�A,m�G�,l� = Dge�
−

+

dx um�x − a/2�ul�x − a� .

�39�

The parity of the harmonic oscillator eigenfunctions in
Eq. �34� is a function of the quantum number k. If the vibra-
tional eigenstates with quantum number n of the two lower
wells have the same parity as an eigenstate with quantum
number m in the upper well, then the dipole moments for

excitation and deexcitation step are equal: dnm= d̄nm. Other-

wise, we find dnm=−d̄nm. These two equalities are summa-
rized by

dnm = �− 1�n+md̄nm. �40�

Figure 1�c� shows the Franck-Condon factors evaluated in
the harmonic approximation. Here values of dn̄m

2 are depicted
characterizing the strength of the transition from the initial
state �G , n̄� with energy U0 /2 to a number of states �A ,m� in
the upper well.

D. Atom transport

In order to improve the coupling efficiency the overlap
integral in Eq. �38� has to be maximized. According to the
Franck-Condon principle, the integral reaches the greatest
value for transitions between the states whose classical turn-
ing points can be connected by a vertical line. This guiding
rule helps us to draw an important conclusion. Since the

lower and excited manifolds are shifted with respect to each
other, the atom, when excited from the ground state, can end
up very close to the continuum of states. Here the atom ap-
pears to be trapped rather weakly and acquires some unde-
sirable probability to escape the coherent control. In order to
preserve the deterministic character of the transfer process
the atom is prepared in a single vibrational state with the
energy corresponding to half the potential depth and with
quantum number m̄. Franck-Condon factors for transitions
from the state �G , m̄� to a number of states in the excited
manifold are presented in Fig. 1�c�. Note that the transfer
schemes presented below are not sensitive to the particular
choice of the initial state. Other eigenstates �apart from those
characterized by very low and very high quantum numbers�
are equally well suited as initial conditions.

Two factors determine the number of states participating
in the dynamics. First is the value of the Franck-Condon
factors and thereby the strength of applied fields. The second
factor is the degree of monochromaticity of the pump and the
Stokes fields. It is determined by the relation of the pulses’
bandwidth �	 and the characteristic frequency difference
between two adjacent vibrational states �. Thus, we can ac-
count for the bandwidth dependence by introducing the pa-
rameter

R =
�	

�
. �41�

The smaller the R parameter the better the degree of mono-
chromaticity of the fields. In order to preserve the eigenstate
character of the final state we shall keep R small.

It is not simple to determine the number of states coupled
by two fields EP and ES. The structure of equations of motion
Eqs. �29�–�31� implies that the pump and the Stokes fields
couple both right and left manifolds to the manifold of ex-
cited states. Therefore, the situation is more complicated than
the usual Raman configuration shown in Fig. 1�c�. The pic-
ture becomes realistic when supplemented with the Stokes
field coupling the left and the upper manifold and corre-
spondingly with the pump field coupling the right and the
upper manifold. Moreover, for sufficiently deep potential
wells, vibrational states are equidistant to a good approxima-
tion and therefore the resonant coupling takes place between
a vast number of vibrational states from both, right and left,
manifolds to corresponding states in the upper manifold.

We shall see that this complicated ladder of cross-
couplings can be reduced to a tractable scheme by a judi-
cious choice of frequencies of applied fields based on the
nonuniformity of the distribution of Franck-Condon factors;
see Fig. 1�c�. Note that the equations of motion, Eqs.
�29�–�31�, put on equal footing the control of atomic center-
of-mass motion and the nonlinear-optical problem of the dy-
namics of an electron bound to an atom and driven by exter-
nal fields. For the latter, methods are known on how to
transfer the electron to a given quantum state. We start with
overviewing existing concepts and use them as the basis for
our scheme.
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IV. � PHYSICS

The structure of equations of motion Eqs. �29�–�31� im-
plies that at least three states, one per each well, are coupled
by the pump and the Stokes fields. Therefore, we take the
three-level � configuration as starting point of our analysis.
A necessary �but not sufficient� condition for the three-level
approximation is that the fields are applied in the form of
long pulses such that the R parameter is sufficiently small.
We postpone to a later section the question of when and in
what sense a three-level model can provide a realistic de-
scription of the transfer. In this section we introduce two
types of � systems distinguished by the carrier frequency of
the fields in the Raman pair. If they are equal, then the fields
are indistinguishable and form the scheme called degenerate
� system. Otherwise, the case is classified as the nondegen-
erate � system.

The three states participating in the transfer are denoted

by �G , m̄�, �A , n̄�, and �G� , l̄�. They are chosen without par-
ticular reference to the transfer scheme. However, for defi-
niteness, in the following numerical examples we shall
specify the involved quantum numbers explicitly. Two other
relevant quantities are Rabi frequencies of the pump and
Stokes fields. They are introduced as �P=dm̄n̄EP /� and �S

= d̄l̄n̄ES /�, correspondingly.

A. Degenerate � scheme

We identify two possible types of the � configuration.
First, and most simple, is the degenerate case when the two

chosen states in the left and right manifold are characterized

by equal quantum numbers m̄= l̄. Then, resonant transitions
are characterized by equal frequencies and thus the pump
and Stokes fields become indistinguishable. They can be re-
placed by a single field with Rabi frequency �=�P=�S.
The equations of motion for this configuration are deduced
from the main set of equations, Eqs. �29�–�31�, by keeping
only one term in each sum. In new notations we get

i
d

dt�g0

a0

g0�
� =

1

2� 0 � 0

� 0 �

0 � 0
��g0

a0

g0�
� , �42�

where g0, a0, and g0� are probability amplitudes belonging to
the three states �G , m̄�, �A , n̄�, and �G� , m̄�; correspondingly,

see Fig. 2�a�. Although we take m̄= l̄, the methods presented
below are not sensitive to a particular choice of the set of
three levels as long as transitions are not forbidden or
heavily suppressed by the structure of the Franck-Condon
factors. Spontaneous emission of the upper state is not ex-
plicitly included in the model, but will deserve special atten-
tion in the further analysis.

The dynamics of an arbitrary �degenerate as well as non-
degenerate� three-level system arranged in the � configura-
tion is best understood in the so-called dressed basis, where
two lower states characterized by probability amplitudes g0
and gi� are rotated as
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FIG. 2. Atom transport as viewed in the language of a degenerate � system. �a� Level structure of Fig. 1�b� showing a few relevant
neighboring states around central states �G , m̄�, �A , n̄�, and �G� , m̄� denoted by the corresponding probability amplitudes g0, a0, and g0�. �b�
Dressed state picture of the � system composed of central states g0, a0, and g0�. In bare state basis fields �P and �S have the same frequency
and are therefore indistinguishable. In the dressed state picture the indistinguishability appears as the single bright field �B coupling a0 and
B, while the dark state D stays fully decoupled. �c� Evolution of populations �g0�2, �a0�2, and �g0��

2 of the three central states under the action
of a Gaussian pulse ��t�=�0 exp�−t2 /2�t2� using the relation �t= �R��−1 between the temporal width �t and the nonmonochromaticity
parameter R. Parameters are nonmonochromaticity parameter R=0.1 and peak Rabi frequency �0=0.28. From here on time and Rabi
frequency are given in units of the vibrational period T�2� /� and 1/T, respectively. Note that the complete population transfer to the target
state g0� is accompanied by a substantial transit of population through the excited state a0. �d� Final �after the passage of the Raman pulse�
population �g0��

2 of the target state as a function of peak Rabi frequency for two values of R. Well pronounced Rabi oscillations are obtained
for R=0.02 �dashed line� over a wide range of Rabi frequencies, whereas for larger pulse bandwidth �R=0.1, solid line� the oscillations
degrade fast.
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�B

D
	 = � sin��/2� cos��/2�

− cos��/2� sin��/2�
	�g0

gi�
	 �43�

yielding amplitudes B and D of a bright and dark state, cor-
respondingly, while the upper state amplitude a0 remains un-
affected. Here gi� is amplitude of a given state from G� mani-
fold �we shall use i=0,2�. The dressing angle �, sometimes
called mixing angle �20� or dark area �21�, is related to the
original Rabi frequencies as sin�� /2�=�P /�B and
cos�� /2�=�S /�B, with bright field �B= ��P

2 +�S
2�1/2.

In the case of a degenerate system �P=�S, and the dress-
ing angle � in the transformation described by Eq. �43� be-
comes independent of the fields and equal to � /2. Also, gi�
=g0� in Eq. �43� since carrier frequencies of the fields are
equal. The equations of motion in the dressed basis read

i
d

dt�B

a0

D
� =

1
2� 0 � 0

� 0 0

0 0 0
��B

a0

D
� . �44�

Clearly, the dynamics of the system is reduced to two-level
physics where the population transfer is controlled by the
integral of Rabi frequency over time, �dt ��t�, a quantity
called pulse area. The dark state appears to be completely
decoupled from the field, as indicated in Fig. 2�a�. Recall that
our goal is the complete transfer of population from state
�G , m̄� to state �G� , m̄�, so that the probabilities evolve from
�g0�2=1 to �g0��

2=1. The transfer dynamics in bare states cor-
responds to the excursion from B=1 to a0 and back to B=
−1 in the dressed state basis. In order to realize this transfer
cycle the pulse area should take discrete values determined
from equation

� d� ���� = �2M + 1�2� , �45�

where M is an integer. Evolution of populations in the de-
generate three-level lambda system under the action of 2�
pulse is shown in Fig. 2�c�. The only characteristic of the
field which matters is its area. In accordance with the condi-
tion expressed by Eq. �45� and in line with the numerical
simulation, such a pulse produces complete transfer. Note
here that the transfer is critical to the value of the pulse area
and thus requires a precise preparation scheme.

It is instructive for the moment to leave aside the three-
level approximation and include surrounding states in the
consideration, shown by thin lines in Fig. 2�a�. Formally, we
now allow all terms in sums of Eqs. �29� and �30� to partici-
pate in the dynamics. Practically, this is achieved by setting
the nonmonochromaticity parameter R to a nonzero value.
For sufficiently small values of the R parameter, increasing
Rabi frequency while keeping the pulse-width constant re-
sults in well-pronounced quasiperiodic oscillations, depicted
by the dashed curve in Fig. 2�d�. Such periodicity is expected
from the three-level considerations based on equations of
motion, Eq. �42�. For a larger value of the nonmonochroma-
ticity parameter the increase in Rabi frequency eventually
brings more and more vibrational states into play. As a con-
sequence of this additional coupling, the transfer is no longer
a periodic function of the Rabi frequency, as demonstrated

by the solid curve in Fig. 2�d�. For even larger values of the
Rabi frequency the transfer is no longer controllable. Note
that plots in Fig. 2�d� are generated with accounting for the
actual vibrational structure of the potential wells. Both solid
and dashed curves indicate that the three-level approximation
fails to correctly describe the dynamics when the field be-
comes strong.

B. Effects of dissipation

So far, dissipation effects have not been explicitly in-
cluded in the model. A more rigorous approach would re-
quire to account for the effect of spontaneous emission from
the upper state by including proper dissipation terms in equa-
tions of motion, Eq. �29�–�31�. In general, such modification
would require the formulation of a master equation for the
density matrix instead of the Schrödinger equation for prob-
ability amplitudes. However, qualitative and even some
quantitative estimates are already available without these
complications, from the results reported above.

Clearly, the larger the population in the upper state the
stronger the effect of dissipation. This guideline allows us to
bypass the rigorous formalism and present a simple estimate.
Transient population of the excited state exposes the atom to
spontaneous decay for the time interval approximately equal
to the pulse duration which is in our case approximately
equal to the inverse pulse bandwidth �	−1. The probability
of spontaneous emission �� /�	�max�a0�2 is then estimated
as the maximum population of the upper state weighted with
the ratio of emission rate � and �	. Note that the atom after
spontaneously emitting a photon has equal probability to
move to the left as well as to the right. However, a 50%
probability of success is too small to be called transfer.
Moreover, the atom has comparable probabilities to appear in
many different final vibrational states. This stochasticity de-
stroys the deterministic character of the transfer which is our
main goal.

There are two ways to diminish the effect of unwanted
stochasticity associated with spontaneous emission. The first
consists in using shorter pulses. The pulse shortening auto-
matically yields an increase of the nonmonochromaticity pa-
rameter R. But then, many vibrational states are excited si-
multaneously. The drawback of having a distribution of
excited states is that there is no known method for determin-
istic transfer of atomic wave packets.

The other way is to suppress the population transit
through the upper state. It is important to notice that one-
photon transitions play a significant role in the transfer, al-
lowing for substantial transient population of the upper state;
see Fig. 2�c�. This indicates that spontaneous emission from
the upper state can essentially affect the coherent dynamics
and thus deteriorate the transfer of population. An effective
way to suppress the one-photon processes is to give up the
degenerate scheme and apply the pump and Stokes pulses in
counterintuitive order �22�, the method known as STIRAP
�stimulated Raman adiabatic passage� �23�.

C. STIRAP in the nondegenerate � scheme

In order to demonstrate STIRAP we turn to the nondegen-
erate three-level � system shown in Fig. 3�a�, by allowing
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the two lower states �G , m̄� and �G� , l̄� indicated by their
probability amplitudes g0 and g2� to have different quantum

numbers: m̄� l̄. For that the pump and Stokes field should
have different frequencies tuned in one- and two-photon
resonance with the corresponding transitions. The equations
of motion for the probability amplitudes of the vibrational
states

i
d

dt�g0

a0

g2�
� =

1

2� 0 �P 0

�P 0 �S

0 �S 0
��g0

a0

g2�
� �46�

are the obvious generalization of Eq. �42� to the case where
the degeneracy of the fields is lifted.

The STIRAP technique is best understood in the dressed
basis. We apply the dressing transformation to the two lower
states as suggested in Eq. �43� and reformulate equations of
motion �46� in terms of bright field �B and dark field �D

=2i��S�̇P−�P�̇S� /�B
2 , where dot over a variable denotes

the derivative with respect to time.
Finally, the equations of motion become

i
d

dt�B

a0

D
� =

1

2� 0 �B − �D

�B 0 0

�D 0 0
��B

a0

D
� . �47�

The dressed-state picture of states is shown in Fig. 3�b�.
The idea of STIRAP is to arrange the atom-field interac-

tion in such a manner that the system stays in the dark state
during the population transfer from state g0 to g2� that is
formally equivalent to the requirement that the mixing angle
� in the rotation matrix of Eq. �43� evolves adiabatically
from 0 to �. The transfer is accomplished by two pulses
coming in the counterintuitive sequence—Stokes before

pump. As shown in Fig. 3�c�, the complete population trans-
fer takes place on the background of negligible transient
population of the upper state.

STIRAP in � systems is well understood and offers full
population transfer combined with the robustness to the
pulse parameters, pulse shapes and overlap area of the pump
and Stokes pulses. The problem is that this technique cannot
be directly applied to the transfer of atoms in optical lattices
even for vanishingly small R parameter. Formally, the struc-
ture of Franck-Condon factors does not allow us to single out
only one state per manifold. On the contrary, the picture of
interaction involves many states cross-coupled by both the
pump and Stokes pulses, mainly because neighboring levels
of deep wells are nearly equidistant. Strong fields that are
necessary for the efficient transfer mix all the states in a
complicated and not easily tractable manner. Probably, de-
velopment of a learning type of algorithm for searching for
optimal pulse shapes may be of some help for this sort of
task �24�. However, even with such optimization schemes it
is still a challenge to direct all, or almost all, population to a
single eigenstate of the right well and accomplish this task
bypassing the upper state. We choose a different strategy. In
the next section we shall show how the problem can be re-
duced to a tractable number of states and analyzed analyti-
cally.

V. MODIFIED STIRAP IN OPTICAL LATTICES

The idea is to start with the conventional STIRAP tech-
nique, show its inapplicability, and propose a proper gener-
alization to perform efficient atom transport. We first identify
nine levels of interest, three per manifold, and then argue
why the ladder allows such truncation.

A. Reduction to the nine-state system

Initially the atom is localized in the vibrational eigenstate
�G , m̄� characterized by the probability amplitude g0, as illus-
trated in Fig. 4�a�. This state is coupled by the pump pulse to
the upper state �A , m̄� with associated probability amplitude
a0. In its turn, the Stokes pulse couples the upper state to the
lower state �G� , m̄−�n� in the right well denoted by prob-
ability amplitude g2�. Here m̄−�n is the quantum number of
the eigenstate, with offset �n to be chosen later on basing on
the structure of Franck-Condon factors. The three states do
not form a closed system. This conclusion immediately fol-
lows from parity considerations of the Franck-Condon fac-
tors. Thus we get the following equalities for dipole mo-
ments of �indicated in parenthesis� transitions:

d�g1 ↔ a1� = d�g1� ↔ a1� ,

d�g0 ↔ a0� = d�g0� ↔ a0� ,

d�g2 ↔ a2� = d�g2� ↔ a2� ,

d�g0 ↔ a1� = − d�g0� ↔ a1� ,
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FIG. 3. STIRAP in a nondegenerate � system. �a� Bare states
are coupled by the resonant pump and Stokes pulses of different
carrier frequencies. �b� Dressed state picture of the � system. �c�
Example of the STIRAP—the population transfer by the pump and
Stokes pulses arranged in the counterintuitive order �Stokes pre-
cedes pump� as shown in the inset. Note the greatly suppressed
population transit through the upper state as compared to the degen-
erate case in Fig. 2�c�.
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d�g2 ↔ a0� = − d�g2� ↔ a0� , �48�

where probability amplitudes g1, g2, a1, a2, g1�, and g0� char-
acterize states �G , m̄+�n�, �G , m̄−�n�, �A , n̄+�n�, �A , n̄
−�n�, �G� , m̄+�n�, and �G� , m̄�, respectively. We choose n̄
� m̄. As follows from equalities Eqs. �48�, the coupling
strength of the upper state a0 to lower states g2 and g0� is the
same as to g2� and g0 in the ideal STIRAP three-level con-
figuration. Therefore, taking only three states into account is

not sufficient and the evolution of at least five states must be
considered simultaneously.

In its turn, this five-level configuration is coupled to the
other four levels by the same pump and Stokes fields along
transitions indicated by thin lines in Fig. 4�a�. These transi-
tions are resonant with corresponding fields and the magni-
tude of the couplings depends on frequencies of applied
fields. The frequency difference of the pump and Stokes field
controls the offset �n which defines frequency separation
�n� of the two closest resonant levels within each manifold.

It is in our interest to restrict the analysis to a minimal
number of participating levels, that is, to keep the outgoing
transitions as weak as possible. From the Franck-Condon
pattern in Fig. 1�c� plotted for transitions between the eigen-
state �G , m̄=43� in the lower left manifold and states �A ,n� in
the upper manifold, we choose the central state a0 with n̄
=48 which is most strongly coupled. The closest eigenstate
which appears least coupled to �G , m̄� is given by �A , n̄
=55�. This coupling is approximately 10 times weaker. Thus
states of maximal and minimal coupling in the excited mani-
fold are separated by the offset �n=7. Symmetry arguments,
Eqs. �48�, predict an equally weak coupling for the transition
g0�↔a1. Later we will see that an order of magnitude differ-
ence in coupling strength causes about 10% transient popu-
lation of the state a1. This value is of the same order as the
transfer via a0. As a consequence we include the transition
g0↔a1 in the minimal model even though it is 10 times
weaker than the dominant transition g0↔a0.

Unlike the one-photon coupling of states a0 and a1 to the
initially populated state g0, the state a2 is coupled to g0 via a
three-photon transition. Moreover, an analysis of the Franck-
Condon factors �not shown� which describe the coupling of
the eigenstate g2 to eigenstates in the upper manifold show
that the state a2 is only weakly coupled, more precisely, 22
times weaker than the dominant transition g0↔a0. So, we
can safely ignore the passage of population through the up-
per state a2.

B. Reduced equations of motion

Thus, by the judicious choice of the frequencies of ap-
plied fields the complicated ladder of couplings is reduced to
a six-level system with two states per manifold:

g0,g2 ↔ a1,a0 ↔ g0�,g2�.

Nevertheless we keep all nine states in the consideration to
further demonstrate the insignificance of couplings to the
other levels. The state vector is defined by nine probability
amplitudes

� = �g1,g0,g2,a1,a0,a2,g1�,g0�,g2��
T. �49�

The equation of motion in matrix form

i
d

dt
� = M�� �50�

is the truncated version of the system of equations �29�–�31�.
Here, the coupling matrix reads
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FIG. 4. The nine-level system for the population transfer be-
tween the three manifolds. �a� Bare state picture of the nine-level
system with couplings produced by the pump �solid line� and
Stokes �dashed line� pulse. Thick �thin� lines indicate strong �weak�
transitions. Also shown are surrounding vibrational levels which
ideally �for R→0� do not participate in the dynamics. The black
circle represents the population initially concentrated in the g0 state.
�b� The nine-level system in the rotated basis, see Eq. �55�, for odd
offset �n. The initial condition of �g0�2=1 corresponds to the popu-
lation equally distributed between states X0 and Y0. �c� Same as in
�b� for even �n. �d� The pulse sequence for the two-stage STIRAP:
The conventional STIRAP sequence �Stokes precedes pump� is fol-
lowed by the inverted STIRAP �pump precedes Stokes while the
Stokes features an inverted sign�. �e� Evolution of the state vector
��� in the Hilbert space spanned by basis vectors �X0�, �a1�, �a0�,
�a2�, and �Y2�. Under ideal STIRAP conditions the evolution of ���
takes place mainly in the plane spanned by vectors �X0� and �Y2�
with vanishing admixture of excited states. Note that the Hilbert
space spanned by the five vectors is only a subspace of the original
nine-dimensional Hilbert space. Since the projection on �Y0� state
�not shown� is constant in time and equal to 1/2, the length of the
evolving reduced state vector in the five-dimensional space is 1 /2.
In the first stage the state vector is rotated from X0�−�=1/2
toward �Y2�. In the second stage the rotation proceeds farther toward
X0�+�=−1/2.

MERKEL et al. PHYSICAL REVIEW A 75, 033420 �2007�

033420-10



M� = � 0 �+
T 0

�+ 0 �−

0 �−
T 0

� �51�

with 0 representing a zero matrix of the dimension 3�3 and
with the field block matrices

�± = �P ± �S, �52�

where

�P =
1

��d̃11EP 0 0

0 d̃00EP 0

0 0 d̃22EP

� �53�

and

�S =
1

��0 d̃01ES 0

0 0 d̃20ES

0 0 0
� . �54�

The upper index T denotes the matrix transposition. Dipole

moments d̃ij =d�gi↔aj� are introduced to simplify notations.
Symmetry properties expressed by Eqs. �48� are taken into
account by writing the block matrices in Eqs. �53� and �54�.

The coupling matrix M� is highly symmetric and allows
for further simplification. It turns out that a linear transfor-
mation of two vibrational eigenstates belonging to the two
lower manifolds and having equal quantum numbers reduces
the problem even further. This transformation �rotation� is
given by

Xi =
1
2

�gi + gi�� �55�

and

Yi =
1
2

�gi − gi�� , �56�

with i=0,1 ,2. The state vector in the rotated basis is de-
scribed by nine probability amplitudes arranged in vector
form

� = �X1,X0,X2,a1,a0,a2,Y1,Y0,Y2�T. �57�

The equation of motion in matrix form reads

i
d

dt
� = M�� �58�

with the field matrix

M� = � 0 �P 0

�P 0 �S

0 �S
T 0

� . �59�

Figure 4�b� demonstrates the resulting scheme of levels.
Three states appear to be decoupled from the rest system
while the other six form two separate lambda schemes. It is
remarkable how simple the picture becomes in the rotated

basis. The simplified coupling pattern allows us to draw con-
clusions that were not obvious in the bare basis. Thus the
interference of different paths in the nine-level system results
in a fully decoupled upper state a2. Even if the dipole mo-
ments g2↔a2 and g2�↔a2 had appreciable values we would
not get a population transfer via a2 state anyway. The only
important step was the choice of transitions g0↔a1 and
g0�↔a1 to be weak that allowed us to truncate the ladder
from above.

C. Inverted STIRAP

Let us recall that our goal is to fully transfer the popula-
tion from the g0 state to one of the eigenstates in the adjacent
well. In the nine-level configuration the choice is between g2�,
g0�, or g1�. The latter can be populated only via the weakly
coupled state a1 and is therefore excluded from the consid-
eration. The state g2� cannot be fully populated since X2=0
holds at all times, for the reason that X2 is decoupled from
the evolution. So, the final state can only be the state g0�.

Initial conditions in the rotated basis are illustrated in Fig.
4�b� by two black circles of equal size, that is

X0�− � = Y0�− � =
1
2

. �60�

The state Y0 is weakly coupled to the upper state a1. There-
fore during the evolution a loss of population from this state
is negligible, and the upper lambda configuration can be ex-
cluded from the analysis. In the lower � scheme a full popu-
lation transfer from g0 to g0� is compatible with the condition
Y0�t�=const=1/2 only when X0�−�=1/2 evolves under
the action of the pump and Stokes fields into X0�+�
=−1/2.

Note that the above analysis refers to cases where the
offset �n covers an odd number of vibrational states. When
�n is even the interaction pattern changes, compare schemes
in Fig. 4�b� and Fig. 4�c�. This difference originates from the
alternation of signs of Franck-Condon factors for transitions
with unity change in the sum of quantum numbers, see Eq.
�40�, for instance if the dipole moment for transition
�G , m̄�↔ �A , n̄� is positive then for transition
�G , m̄�↔ �A , n̄±1� it is negative. For even �n the scheme
again consists of two lambda systems one of which,
X0↔a1↔X1, is excluded from the analysis on the basis of
weak X0↔a1 coupling. For the residual lambda system,
X0↔a0↔X2, the analysis will follow the same lines as pre-
sented below.

We see that the five-level system in the bare basis is re-
duced in the rotated basis to a three-level � configuration
X0↔a0↔Y2 in Fig. 4�b�. The application of the standard
STIRAP method allows us to transfer the population from X0
to Y2. However, this step alone is not sufficient. Our goal is
to return to the state X0ei� with phase flip �=�. For that we
need a second stage where two pulses are arranged in the
sequence which we call inverted STIRAP �i-STIRAP�. In
this sequence the order is intuitive—the pump pulse is fol-
lowed by the Stokes pulse. Furthermore, the Stokes pulse
features an inverted sign. The complete pulse sequence is
shaped as illustrated in Fig. 4�d�. The two-stage evolution of
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states in the rotated basis follows the scheme

�X0 =
1
2

Y0 =
1
2

Y2 = 0
� ——→

STIRAP �
X0 = 0

Y0 =
1
2

Y2 = −
1
2
� ——→

i-STIRAP �X0 = −
1
2

Y0 =
1
2

Y2 = 0
� .

�61�

The same scheme in the bare basis reads

�
g0 = 1

g0� = 0

g2 = 0

g2� = 0
� ——→

STIRAP �
g0 = 1/2

g0� = − 1/2

g2 = − 1/2

g2� = 1/2
� ——→

i-STIRAP �
g0 = 0

g0� = − 1

g2 = 0

g2� = 0
� .

�62�

This idealized transfer scheme implies that the dynamics oc-
curs adiabatically and the population stays in the dark state
�composed of X0 and Y2� at all times. Then, the state vector
evolves as shown in Fig. 4�e�. The dressing angle � spans an
entire circle from 0 to 2�, while in standard STIRAP ar-
rangement � covers only a semicircle.

The adiabaticity requires strong fields. At the same time
they should not initiate substantial population transfer via
neighboring vibrational states. As noted earlier, the necessary
condition for that is the relative monochromaticity of the
applied fields, expressed by the R parameter. We choose a
small value of R and perform two sets of numerical runs with
pump and Stokes pulses of Gaussian shapes

�P = �P0 exp�−
1

2
� t

TP
	2� , �63�

and

�S = �S0 exp�−
1

2
� t + �t

TS
	2� − �S0 exp�−

1

2
� t − �t

TS
	2� .

�64�

The peak amplitudes �P0 and �S0 as well as the separation
�t are optimized to reach the best performance. Figure 5
shows results with and without accounting for surrounding
vibrational states. The goal is reached—the atom is trans-
ferred to the adjacent well with high probability. The atom
appears in the vibrational eigenstate with the same quantum
number as the initial state. The transfer to large extent by-
passes states in the upper manifold so that spontaneous emis-
sion has less chance to influence the deterministic evolution
when compared to the case of degenerate fields. The results
of the full scale numerical analysis with 30 surrounding vi-
brational states indicate that Raman-induced heating pro-
cesses are not present in our transfer scheme at all stages of
the evolution.

Calculations with deeper optical potentials �not shown�
suggest even better suppression of population transit through
the upper states. The present calculations are based on the
characteristic parameters of the optical lattice taken from the

experiment �26� on cold atoms in a high-Q ring cavity. On
the other hand, shallow potentials are not favorable for the
efficient transfer.

VI. DISCUSSION

The technique proposed here provides a prescription of
deterministic transfer of single atoms through an optical lat-
tice. Given an atom that is initially prepared in a vibrational
eigenstate in one well of the periodic potential, the goal is to
move it to the adjacent well with probability close to one.
The process is controlled by two strong optical fields tuned
in resonance with an internal atomic transition. Though the
fields are resonant and strong we nevertheless pose the addi-
tional condition that the excursion of the atom through the
upper electronic state is suppressed so that the atom is not
exposed to the undesirable effect of spontaneous emission. In
this requirement we are inspired by the STIRAP method of
transferring population between two lower states in a three-
level system of � configuration while bypassing the upper
state.

Instead of three internal atomic states our model deals
with three manifolds in each of which the ladder of vibra-
tional states is characterized by approximately equal fre-
quency steps. In such system it is not possible to separate
three states coupled by two nondegenerate optical fields. As
shown, at least five states participate in the dynamics. How-
ever, due to symmetry relations imposed on Franck-Condon
factors, the three-level � configuration is recovered in the
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FIG. 5. Dynamics of populations of relevant vibrational states in
the optical lattice. Parameters are �P0=�S0=0.07, TP=16, TS

=6.4, and �t=11. Franck-Condon factors are chosen as explained
in the text. �a� Nine-level system of Fig. 4�a�, R→0. �b� Same as �a�
taking into account 30 surrounding vibrational states in each well of
the optical lattice, R=0.01. Amplitude a2 is not shown; no popula-
tion is transiting via a2 due to absence of coupling; see Fig. 4�b�.
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rotated basis. In this � scheme the transfer of the atom to the
adjacent well corresponds to a full cycle of population trans-
fer between the two lower states and returning to the initial
state with the opposite sign of the probability amplitude. As
the standard STIRAP realizes only half of the cycle, for the
second semicycle we propose a modification of the STIRAP
technique called here inverted STIRAP. The essence of the
method is in application of the pump and Stokes fields in the
intuitive order �pump precedes Stokes� with the inverted sign
of the Stokes pulse. Numerical results demonstrate that the
combination of the STIRAP and the inverted STIRAP fulfills
the task of atom transfer to the adjacent well with high fidel-
ity while suppressing transient population of the atomic ex-
cited state.

The term STIRAP used here should be interpreted in a
broader sense than simply the population transfer between
internal atomic states. Optical fields simultaneously influence
the external degrees of freedom, thus affecting the position
of the atom. The generalization of STIRAP to the control of
molecular motion was discussed in some detail by Garraway
and Suominen in Ref. �25�. In the spirit of their argumenta-
tion, the action of the Raman pulse can be viewed as a tran-
sient light-induced potential imposed on the steady-state po-
tential of the optical lattice. This time-dependent potential
forces the atom to move along a designed trajectory and
makes it finally arrive at the adjacent well. Relatively long
pulses �corresponding to small value of R parameter� assure
that the motion is slow. The characteristic “slow” is to em-
phasize the fact that the transfer time is large compared to
the vibrational period.

The combination of STIRAP and inverted STIRAP serves
as the most effective transfer mechanism as long as the evo-
lution can be restricted in the rotated basis to the ideal three-
level configuration. Involving neighboring vibrational states
in the dynamics destroys the population transfer. The effi-
ciency is therefore a sensitive function of the pulse band-
width which should be as small as possible to approach the
idealized scenario. For wider bandwidths, the existence of a
dark state and more general, conditions for the optimal trans-
fer, remain open questions �note relevant studies �27–30��.

Another interesting issue is the population transfer via a
continuum of states. This situation is realized for the practi-
cally interesting example when the atom is initially localized
in the lowest vibrational state, i.e., in the bottom of the left
potential well. Here the scenario is expected to be the same
as discussed in the paper: The atom gets a momentum kick
from a Raman pulse, moves toward the right well, then gets
decelerated by another Raman pulse, and finally �ideally�
appears in the lowest eigenstate of the right well.

A more complicated situation arises with the transfer of
broad atomic wave packets, i.e., when initially many vibra-
tional states are simultaneously excited in the left potential
well. A possible problem here is caused by the inhomoge-
neous structure of the Franck-Condon pattern. The coupling
strength differs from state to state and those states that are
too weakly coupled by the Raman pulse do not participate in
the transfer. So, most likely the transferred wave packet de-
teriorates during the transportation.

As a concluding remark, we note that some aspects of our
analysis of the population transfer in the multilevel environ-
ment and the generalization of the STIRAP technique can be
useful in the context of coherent control of molecular motion
and distillation of enantiomers �31,32�. It is also interesting
to draw a parallel with the method of transfer of neutral
atoms among dipole traps via tunneling based on three-level
optics analogy �33�. Finally, extensions of the STIRAP tech-
nique �34–36� to create a superposition of multilevel states
naturally leads to the notion of coherent superposition of
vibrational states belonging to two spatially separated wells
�Schrödinger cat states�.
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