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A nondispersing Rydberg wave packet can be made by applying a weak, linearly polarized field at the Kepler
frequency of a Rydberg atom. The field phase locks the electron’s motion to the microwave field, and the wave
packet retains its spatial localization for times in excess of a microsecond. The electron’s orbital oscillation
leads to an oscillating dipole, which can either oscillate in phase or out of phase with the applied microwave
field, creating wave packets analogous to Trojan and anti-Trojan wave packets described theoretically. Our
observations can be described in both quantum mechanical and classical terms.
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I. INTRODUCTION

One of the great successes of quantum mechanics was to
explain the fact that the optical spectrum of the hydrogen
atom is composed of discrete spectral lines matching the en-
ergy spacings between quantized energy levels, not a con-
tinuous spectrum as might be expected from classical me-
chanics �1�. While the success of quantum mechanics was
beyond question, the notion of a theory based on stationary
wave functions instead of moving particles was unsettling,
and to show the connection between the classical and quan-
tum theories Schrödinger constructed wave packets, coherent
superpositions of harmonic oscillator wave functions in
which the probability density moved just as a classical par-
ticle would �2�.

The case Schrödinger chose, the harmonic oscillator, is
unique in having evenly spaced levels, so that once created,
the wave packet lasts indefinitely. In reality most physical
systems are not composed of evenly spaced levels, and wave
packets constructed in such systems disperse in time. This
problem was pointed out to Schrödinger by Lorentz �3�, and
the fact that atomic Rydberg wave packets would disperse
was noted by Brown �4�.

Wave packets remained theoretical constructs until the ad-
vent of mode-locked lasers, which have allowed their forma-
tion and detection. Atomic Rydberg radial wave packets have
been made by creating coherent superpositions of different n
states of the same �. We follow the usual convention that n,
�, and m are the principal, orbital-angular momentum, and
azimuthal angular-momentum quantum numbers. In a radial
wave packet the probability of finding the electron oscillates
radially in and out at the �n=1, or Kepler frequency in the
early stage of its oscillating behavior �5,6�. Molecular vibra-
tional and rotational wave packets have been created as well
�7,8�. Prior to the wave-packet experiments the essential el-
ements of time-domain spectroscopy were demonstrated in
quantum-beat experiments �9,10�. However, in these experi-
ments the number of quantum states was typically small
enough that dispersion of the energy spacings was not an
issue. Shortly after the first radial Rydberg wave-packet ex-
periments �11� it became clear that the dispersion in the level
spacings dephased the wave packets after only a few orbits,
and routes to the formation of longer-lived wave packets
were explored �12–15�.

One approach to making nondispersing wave packets is to
use the Stark states of the same n and m, which in hydrogen
are uniformly spaced to first order in the electric field. In any
other atom but hydrogen the levels are not evenly spaced,
even to first order. More important, the energy spacing be-
tween levels is entirely due to the external field, making
these wave packets very susceptible to dephasing by field
inhomogeneities. In fact, such Stark wave packets are not
longer lived than ordinary radial wave packets �12�. A fruit-
ful route to the production of a nondispersing wave packet
has been to add a weak field oscillating at the Kepler, or
orbital frequency of the Rydberg electron. The first proposals
were based on the use of circularly polarized fields �13� �and
later with a combination of a circularly polarized field and a
magnetic field �14,15��, but the experimental realizations
have been with linearly polarized fields, both monochromatic
and trains of pulses �16,17�. Previously we reported the pro-
duction of nondispersing Rydberg wave packets with a
monochromatic, linearly polarized microwave field �16�.
Here we describe more extensive experiments and compare
our observations to the results of classical and quantum cal-
culations.

This paper is organized in the following manner. First, we
recall the origin of dispersion in Rydberg wave packets and
present a simple physical picture of how a microwave field
can be used to form a nondispersing wave packet. We then
describe our experimental approach and observations. Fi-
nally, we compare our observations to quantum and classical
models.

II. DISPERSION IN RYDBERG WAVE PACKETS AND
NONDISPERSING WAVE PACKETS

The origin of dispersion in radial Rydberg wave packets,
and the one-dimensional wave packets we consider here is in
the energy-level structure. The energy Wn of a state of prin-
cipal quantum number n is given by �18�

Wn = −
1

2n2 . �1�

We use atomic units unless specified otherwise. The time-
dependent wave function �n�z , t� is given by the product of a
spatial wave function and a phase factor, i.e.,
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�n�z,t� = �n�z�e−iWnt, �2�

where the spatial function �n�z�=zRn�z�, in which Rn�z� is a
hydrogen n� radial function of �=0. A wave packet has a
wave function that is a coherent superposition of wave func-
tions of several n states, i.e.,

��z,t� = �
n

an�n�z�e−iWnt, �3�

and the probability density of finding the electron at position
z at time t is given by

���z,t��2 = �
nn�

anan�
* �n�z��n�

* �z�e−i�Wn−Wn��t. �4�

From Eq. �4� it is apparent that motion of the probability
density comes entirely from the n��n cross terms of Eq. �4�,
and the frequency of the motion occurs at the frequency dif-
ferences between the levels, a notion familiar from quantum-
beat experiments.

If we differentiate Eq. �1� we find

dWn

dn
=

1

n3 , �5�

so the energy spacing between the levels is 1 /n3. If the wave
packet is composed of only five states or so the spacings
between adjacent n levels is approximately constant and
equal to 1/ n̄3, where n̄ is the central n of the wave packet. If
the spacing between adjacent levels was exactly 1/ n̄3 then all
the beat frequencies present in Eq. �4� would be harmonics
of 1 / n̄3 and the motion would be perfectly periodic with no
dispersion or spatial spreading of the wave packet.

The �n spacings are not constant since

d2Wn

d2n
= −

3

n
� 1

n3� . �6�

For example, at n=60 the frequency decreases by 5% with
each increase in n of one, so a wave packet containing five
states has a 20% variation in beat frequencies and disperses
in about five orbits. The orbits rephase, forming revivals of
the wave packet �19�, but eventually, usually in tens of or-
bits, the coherence of the wave packet disappears, and there
is no detectable motion of the electron’s probability distribu-
tion.

The essential notion of making a nondispersing wave
packet is most easily understood if we consider circular
states �m�=�=n−1. In a circular state the electron probability
is a ring in the x−y plane centered on the ionic core. It is
radially localized in a trough formed by the centrifugal ���
+1� /2r2 and the Coulomb −1/r potentials. There is no azi-
muthal localization since the potential has no dependence on
� �where tan �=y /x�. If we apply a circularly polarized mi-
crowave field, which rotates in the x−y plane at the Kepler
frequency, we destroy the � symmetry. In particular, the po-
tential in which the electron is trapped has a low point,
which rotates around the ionic core at the Kepler frequency,
as shown in Fig. 1. Intuitively, the electron is likely to be
localized in the low point. In a frame rotating with the mi-
crowave field the electron is trapped in the static potential

well with its minimum at the low point. An electron localized
at the lowest point of the well is exactly synchronized to the
microwave field. If its energy is higher, it oscillates about the
minimum, and the oscillation corresponds to the electron’s
orbital motion oscillating between leading and lagging the
microwave field.

In the laboratory frame the atom has a rotating dipole �,
which is parallel to and synchronous with the rotating micro-
wave electric field. This configuration is the one having the
lowest energy. There are other stable configurations, and, in
fact, the electron can be stable on the opposite side of the
atom, where there is a potential hill. In this case the rotating
atomic dipole is antiparallel to and synchronous with the
microwave field. These two types of states have been termed
Trojan and anti-Trojan wave packets �13,20�. They are analo-
gous to the stable magnetic substates with different projec-
tions of magnetic moment on the magnetic field observed in
the Stern-Gerlach experiment.

A linearly polarized microwave field at the Kepler fre-
quency also leads to nondispersing wave packets in which
the electron’s motion is nearly linear and in the direction of
the microwave field �21�. In this case the most stable states
are the highest-energy states in which the atomic dipole �
oscillates exactly out of phase with the microwave field so
that at the field maxima in either direction the electron is
positioned as shown in Fig. 2. As in the case of circular
polarization there are many stable states with � oscillating
both in and out of phase with E, and they are completely
analogous to the Trojan and anti-Trojan wave packets dis-
cussed above.

III. EXPERIMENTAL APPROACH

The essential notion of the experiment is easily under-
stood with the help of the timing diagram of Fig. 3 and the

z
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Li+

φ
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FIG. 1. With no microwave field the electron in a circular state
is trapped in the trough of the combined centrifugal and Coulomb
potential. The location of the minimum of the potential is shown by
the broken line. There is no reason for the electron to be at any
particular value of �. When the microwave field rotating in the x-y
plane is added the potential is distorted at the instant the field is in
the −x direction. There is now a potential well with a minimum on
the +x axis ��=0�, as shown by a solid line. The electron has its
lowest energy at this point, and remains in this well as the field
rotates at a frequency near the natural orbital frequency of the
electron.
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schematic diagram of Fig. 4. A thermal Li atomic beam
passes between two capacitor plates 19 mm apart where the
atoms are excited to Li np states of n	70 by three ns dye-
laser pulses via the route

2s → 2p → 3s → np ,

which requires wavelengths of 670, 820, and 615 nm. The
laser pulses are each 5 ns long, and the set of three pulses
spans 20 ns. The dye lasers are pumped by the first Nd:YAG
�yttrium aluminum garnet� laser, which runs at a 20 Hz rep-
etition rate and sets the repetition rate for the experiment.

Approximately 100 ns after laser excitation the atoms are
exposed to a microwave pulse from the horn shown in Fig. 4.
The microwave pulse has a frequency in the vicinity of
17 GHz, is turned on in 10 ns, and has constant amplitude
until it is turned off 0.1 – 3.1 �s later. The typical
microwave-field amplitude is 1 V/cm, which is much
smaller than the scaled Coulomb field 1/n4=1/704

=214 V/cm.
The microwave field converts the atoms in the np state

into a nondispersing wave packet in which the electron’s
motion is synchronous with the microwave field, as shown in
Fig. 2. We detect that the conversion to a synchronous wave
packet has occurred by measuring the time-resolved mo-
menta of the atoms with a half-cycle field pulse �HCP�
�22,23� synchronized to the microwave field. The HCP pref-
erentially ionizes atoms in which the electron is moving in
the direction of the impulse from the HCP. After the end of

the microwave pulse we usually apply a positive voltage
pulse to the lower capacitor plate producing a field of

10 V/cm, which drives ions formed by the HCP, through a

900-�m-diam hole in the upper plate to a dual microchan-
nel plate �MCP� detector. In some cases we apply a negative
pulse of a few hundred volts to the lower plate after the
microwave pulse to field ionize �24� those atoms not ionized
by the HCP and drive the electrons produced through the
hole in the upper plate to the MCP. In either case the signal
from the detector is captured with a gated integrator.

The principle of detecting the time-resolved momentum
of an electron in a highly elliptical, almost linear orbit using
the HCP is shown in Fig. 5. The HCP gives the electron with
initial momentum p0 an impulsive momentum kick �p,
which changes the energy of the electron by

�W = �p · p0 + �p2/2. �7�

If the energy transfer �W exceeds the initial binding energy
the electron is ejected from the atom. From Eq. �7� it is
apparent that �W can be positive or negative depending
upon the relative orientation of �p and p0, that is, the sign of
�p · p0. Along the bottom of the orbit �1 in Fig. 5�, �p · p0
�0, and along the top �2 in Fig. 5�, �p · p0�0. When the
amplitude of the HCP is set to ionize half the atoms, it will
ionize atoms at the outer turning points, where p0=0 and
along 1 in Fig. 5, when the electron is moving to the right, in
the direction of �p.

MCP

signal out
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200fs, 800 nm pulseBiased
GaAs wafer

FIG. 4. A schematic diagram of the experimental setup.
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FIG. 5. The HCP, short compared to the orbital period, gives the
electron a momentum kick �p. Along the outgoing part of the orbit
�at 1�, �p adds to the electron’s original momentum p0 and the
electron gains energy. Along the incoming part of the orbit �at 2�,
�p subtracts from the electron’s initial momentum p0 and the elec-
tron’s energy can be reduced. Ionization occurs if the energy gain
from the HCP exceeds the initial binding energy, and it is more
likely to occur than the electron is on the outgoing part of the orbit.
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FIG. 2. One-dimensional atom subjected to the linearly polar-
ized microwave field when its electron is �a� at the outer turning
point and �b� at the inner turning point.
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FIG. 3. A timing diagram of the experiment.
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The HCP is generated when a 200 fs, 800 nm laser pulse
strikes a biased GaAs wafer in the vacuum system. The laser
pulse creates conduction electrons, which are accelerated by
the bias voltage and radiate a freely propagating HCP of
0.5 ps duration. There is a long weak tail of the opposite
polarity �22�, but its effect is minimal in this application, and
we ignore it. With a bias voltage of 
500 V we ionize 50%
of the atoms in the n=72 state. The 800 nm laser pulse is
from a continuous-wave mode-locked Ti:sapphire laser,
which produces a 76 MHz pulse train. Single pulses are am-
plified at a 20 Hz repetition rate with a regenerative amplifier
pumped by a second Nd:YAG laser, and the resulting light
pulse, typically attenuated to 0.15 mJ by a neutral density
filter, is sent through an optical-delay stage to the GaAs wa-
fer.

The HCP is synchronized with the microwave field by
phase locking the microwave oscillator, a Hewlett Packard
8350B/E3550A sweep oscillator, to a harmonic of the
76 MHz repetition rate of the mode-locked Ti sapphire oscil-
lator. We detect the 76 MHz pulse train from the laser with a
New Focus ultrafast photodiode, which produces a frequency
comb of harmonics of 76 MHz extending to 20 GHz. We
mix the output of the sweep oscillator with the photodiode
signal in a Watkins Johnson M86C double-balanced mixer to
produce a difference-frequency signal, which we amplify by
a factor of 20 and send to the frequency-modulation �FM�
input of the sweep oscillator. When the sweep oscillator is
tuned to within 0.6 MHz of a harmonic of 76 MHz the os-
cillator acquires phase lock to the photodiode signal. By
measuring the wave form of the microwave with a Tektronix
11801C digital sampling oscilloscope with a SD-26 sampling
head we determine the time jitter of the microwave field
relative to the fs laser pulse to be ±5 ps, or ±15 degrees of
phase at 17 GHz.

The phase-locked cw microwave output of the oscillator
�
10 mW�, is formed into pulses from 0.1- to 3.1-�s-long
with a mixer or switch and is amplified with Miteq MPN4-
02001800-23P and Hughes 8020H amplifiers before passing
through a low-Q Fabry-Pérot filter, to remove broadband
noise, on its way to the horn in the vacuum system.

The temporal position of the HCP in the microwave pulse
is controlled coarsely by adjusting the time the first Nd:YAG

laser fires relative to the second, producing a coarse-timing
uncertainty of 4 ns, that is, we know the location of the HCP
within the microwave envelope to 4 ns. The fine adjustment
of the HCP timing is made by adjusting the optical delay line
of the f.s.-laser pulse, and the uncertainty in this delay time
is 5 ps from the uncertainty in phase locking of the micro-
wave oscillator. With the fine adjustment we can delay the
HCP by up to 
300 ps, equivalent to five microwave periods
at 17 GHz.

IV. OBSERVATIONS

In the presence of a microwave field near the Kepler fre-
quency we observe a clear variation in the ionization pro-
duced by the HCP as we delay the HCP relative to the mi-
crowave field. In Fig. 7 we show the ionization signal
observed when atoms initially excited to the 72p state are

71

72

73

74

75

76

14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5

ω/2πω/2πω/2πω/2π (GHz)

n
o

f
m

ax
im

u
m

si
g

n
al

FIG. 6. Location of n with the maximum signal vs microwave
frequency ���. Also plotted in the figure is the Kepler frequency
� /2	=1/2	n3 �—�.
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FIG. 7. Ionization probability vs fine delay time of the HCP
100 ns after the beginning of the 17.5 GHz, 1 V/cm microwave
pulse: �a� HCP amplitude set to ionize 
60% of the atoms; �b� HCP
with amplitude set to ionize 
50% of the atoms with the same
polarity as �a� and reversed polarity. In all cases the modulation
with period 56 ps indicates that the wave packet is phase locked to
the microwave field. In �b� the phase of the signal reverses with
HCP polarity as expected.
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exposed to a 1 V/cm, 17.501 GHz linearly polarized micro-
wave field. The HCP is polarized vertically up, and the
coarse timing of the HCP is 100 ns after the start of the
microwave pulse. Figure 7�a� shows the result of scanning
the fine delay. The variation in the signal with a 57 ps period
shows clearly that the electron’s motion is synchronous with
the microwave field. When the ionization signal is higher �1
in Fig. 7�, the electron is moving in the same direction as �p
and when it is lower �2 in Fig. 7�a��, the electron is moving
in the direction opposite to �p �see Fig. 5�.

If we change the microwave frequency we observe the
maximum signal at a different n, corresponding to the reso-
nance condition 1/n3=�. Specifically, as the microwave fre-
quency is changed from 18 to 14.5 GHz the maximum sig-
nal moves from n=71 to n=76 �see Fig. 6�. If we reverse the
bias on the GaAs wafer we reverse the polarity of the HCP,
and doing so reverses the sign of the variation in the HCP
ionization signal, as shown in Fig. 7�b�. If we rotate the
GaAs wafer by 90° we can polarize the HCP perpendicular
to the microwave field, and in this case we observe a varia-
tion in the HCP ionization signal roughly a factor of 10
smaller, as shown by Fig. 8. This measurement suggests that
the electron’s motion in the presence of the microwave field
is approximately one dimensional.

The data shown in Figs. 7 and 8 were taken with n chosen
so that the �n=1 transition frequency matches the micro-
wave frequency. For 17.5 GHz, n=72 and n=73 are reso-
nant. As the n of the initially populated state is moved away
from the resonant n we observe the signals shown in Fig. 9
with 17.5 GHz microwave fields of 1 and 2 V/cm. While the
absolute phase is arbitrary, the relative phases of all the
traces in Figs. 9�a� and 9�b� are the same. In Fig. 9�a� we
observe a signal that varies as cos �t for n=72 and 73, a
nearly zero signal for n=71 and 74, and a phase-reversed
signal that varies as −cos �t for n�71 and n�74. The phase
reversal away from resonance is also observed with a
2 V/cm microwave field, as shown by Fig. 9�b�. In this case
the 70
n
75 signals have a cos �t dependence, the n
=69 and 76 signals have no variation, and, though it is a little
obscure because of a smaller signal-to-noise ratio in this fig-
ure, the n�69 and n�76 signals have a −cos �t depen-
dence. The aspect of Figs. 9�a� and 9�b�, which was initially
surprising, is the phase-reversal off resonance. The reversal

is shown explicitly in Fig. 10, which is a plot of the ampli-
tudes of the HCP ionization signals vs n for a microwave
field amplitude of 1 V/cm.

We have described observations made with the timing se-
quence of Fig. 3. The laser excitation can also be done dur-
ing the microwave pulse, in which case we observe qualita-
tively similar results but with a smaller variation in the HCP
signal with delay. To be more precise, the amplitudes of the
signals are reduced by a factor of approximately two.

The data shown in Fig. 7 were taken 100 ns after the
beginning of the microwave pulse, and at this point the wave
packet has already lived a thousand times longer than a nor-
mal radial Rydberg wave packet. However, the wave packets
are much longer lived than 100 ns. In Fig. 11 we show the
HCP ionization probability for atoms initially excited to the
72p state and exposed to a 1 V/cm 17.5 GHz microwave
field. There is no obvious difference between the coarse de-
lays of 100 ns and 3.1 �s, and for times beyond 3.1 �s the
atoms begin passing out of the field of view. These wave
packets appear to be “eternal,” as suggested by Buchleitner
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FIG. 8. HCP ionization signal of n=72 atoms with HCP of �a�
horizontal and �b� vertical polarizations.
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and Delande �21�, and they are apparently immune to
dephasing.

V. COMPARISON BETWEEN THEORY AND EXPERIMENT

It is instructive to compare the results of our experiments
to one-dimensional models. As we shall see, the models con-
tain most of the phenomena we observe. The quantum de-
scription of nondispersing wave packets is a Floquet picture
�25–27�, which is based upon the fact that the perturbation
by the microwave field is periodic �21�. The solutions to the
Schrödinger equation �the Floquet eigenstates� are assumed
to have the same period.

The Hamiltonian H is given by

H = H0 + H��t� , �8�

where

H0 = p2/2 − 1/z , �9�

and

H��t� = zE cos �t . �10�

Here p is the electron’s momentum in the z direction, and the
microwave field in the z direction is E cos �t. The solutions
to the Schrödinger equation,

i
���z,t�

�t
= H�t���z,t� , �11�

in the absence of the microwave perturbation are given by
the energies and eigenfunctions of Eqs. �1� and �2�, i.e.,

H0��n�z�� = �n��n�z�� , �12�

where �n are the unperturbed energies ��Wn in Eq. �1��.
The perturbation H��t� couples different n states, and we

retain only the strongest of these couplings, the �n=1 cou-
pling, which is given by �18�

�n�z��n+1� = 0.3n2. �13�

With H��t� the state vector ���z , t��, which satisfies the
Schrödinger equation, can be written as

���z,t�� = �
n�

Tn��t���n��z�� . �14�

If, as in our case, H��t� is periodic, we can expand the wave
function in a Fourier series, and

Tn��t� = e−i�t�
k

An�,ke
−ik�t, �15�
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where � is a Floquet eigenenergy, k is the number of micro-
wave photons added to the internal energy of the atom, and A
is a coefficient. When Eq. �14� is substituted into the
Schrödinger equation and the result is multiplied by �n�z��
we obtain

i
d

dt
Tn�t� = �nTn�t� + E�t��

n�

Tn��t��n�z��z��n��z�� , �16�

in which E�t�=E cos �t. Using the explicit form for Tn��t� of
Eq. �15� we can write Eq. �16� in the time-independent form,

��n − k��An,k + �
n�

Vn,n��An�,k+1 + An�,k−1� = �An,k, �17�

where

Vn,n� =
E

2
�n�z��z��n��z�� . �18�

Since we have disregarded the ��n � �1 matrix elements, the
only off-diagonal elements are

Vn,n+1 = 0.15En2. �19�

We diagonalize the Floquet-Hamiltonian matrix to find
the Floquet eigenvectors and eigenvalues. The matrix is in-
finite, but it can be broken into nearly degenerate blocks. In
particular, we consider the block of states nearly degenerate
with the n=72 state. These are states with zero-field Floquet
energies of �72, �73−�, �74−2�, �71+�, �70+2� , . . ., This
restriction, which corresponds to the rotating-wave approxi-
mation, is reasonable as long as the spacings between the
Floquet states are small compared to the microwave fre-
quency. Since we only consider the �n=1 dipole-matrix el-
ements, the central block of the Floquet-Hamiltonian matrix
HF has the tridiagonal form,

HF =�
· ·

· �70 + 2� f70

f70 �71 + � f71

f71 �72 f72

f72 �73 − � f73

f73 �74 − 2� ·

· ·

� , �20�

where fn�Vn,n+1.
Diagonalizing the matrix of Eq. �20� for 17.5 GHz

microwave-field amplitudes from 0 to 5 V/cm gives the
Floquet-energy eigenvalues plotted in Fig. 12. At zero field
the Floquet energies are �n− �n−72��, and the states for
which � is closest to the �n=1 frequency lie highest in
energy. As the field is raised from zero the pattern is quali-
tatively like the Stark structure of a nonhydrogenic atom.
The highest-lying, near-resonant states are split into states
with large Stark shifts at quite low fields, and as the field is
raised lower-lying states, which are further from resonance,
begin to exhibit obvious Stark shifts.

The slopes of the energy levels dW /dE�E are twice their
dipole moments at the field amplitude E. The rotating-wave
approximation introduces the factor of one half. The dipoles
oscillate synchronously with the microwave field. For ex-
ample, at 1 V/cm the state at A in Fig. 12 has a dipole
moment antiparallel to E while the state B has a dipole mo-
ment parallel to E, and the state C has no dipole moment.
The fact that the dipoles oscillate can be observed explicitly
in the time evolution of ���z , t��2. In Fig. 13�a� we show the
time evolution of the probability distribution of the highest-
energy Floquet state, which is adiabatically connected to the
zero-field n=72 state, at a microwave-field amplitude of
1 V/cm. Specifically, we show when �t=0,	 /2 ,	, and

3	 /2. It is quite evident that the probability moves from
large z at �t=0 to small z at �t=	. In contrast, the Floquet
state connected to the zero-field n=75 state exhibits an os-
cillation with reversed phase, as shown in Fig. 13�b�. At �t
=0 the electron is at small z while at �t=	 it is at large z.
Where states have vanishing Stark shifts they exhibit little
change in the average radial position as �t changes from 0 to
2	. Both the Floquet energy-level diagram of Fig. 12 and the
time dependences shown in Fig. 13 are consistent with the
phase reversals of Figs. 9 and 10.

In the experiment the atoms are usually excited in zero
field, after which the microwave field is turned on in 
10 ns.
With this turn-on time the atoms should pass adiabatically
from zero field to the steady-state amplitude of the micro-
wave pulse. If the steady-state field amplitude is 1 V/cm an
atom initially in the n=72 state goes to point A of Fig. 12,
where � is antiparallel to E; an atom in n=74 goes to point
C where there is a smaller dipole, and an atom initially in
n�71 or n�74 goes to points where � is parallel to E. Thus
the HCP ionization signals for n�71 and n�74 should be
reversed in phase relative to the n=72 signal, and the n
=71 signal should be vanishingly small, which is in qualita-
tive agreement with the experimental observations of Figs. 9
and 10. When the laser excitation occurs in the microwave
field the amplitude of the HCP is reduced, presumably be-
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cause we are making more than one Floquet state.
Nondispersing wave packets can also be described using

classical mechanics. The standard approach is to integrate
the equation of motion and find the stable orbits. For a one-
dimensional atom the Hamiltonian is expressed in Eqs.
�8�–�10�, and the results are usually displayed as Poincaré
surfaces of section using action-angle variables �I ,��
�27,28�. For our one-dimensional atom I and � are defined by

I =
1

2	
� pdz �21�

and

� = � − sin  p � 0

2	 −  + sin  p � 0,
� �22�

where =2 sin−1�z /2n2�, � is the eccentric anomaly, and in
the absence of a microwave field I=n, the principal quantum
number.

It is convenient to use � rather than z since it increases
linearly with time in the absence of a microwave field. For
our purposes it is convenient to note that at �=	 the electron
is at the outer turning point z=2n2, and at �=0 and 2	 the
electron is at the inner turning point of its orbit, z=0.

The surfaces of section are generated by integrating the
equation of motion and plotting the values of I and � after

each cycle of the perturbation, in our experiment a 17.5 GHz
microwave field, slightly off-resonance to the n=72–73 tran-
sition frequency, 17.628 GHz. Here we omit the small quan-
tum defect �
0.05� of Li np states and use a hydrogenic
value. Before presenting the result in the presence of a field
it is useful to imagine the result in the resonance field with
0 V/cm, i.e., no field. If the initial action leads to an orbit
with a 17.628 GHz Kepler frequency, on each successive
cycle of the field the same values of I= I0 and �=�0 will be
found, and the surface of section is a point, as shown in Fig.
14�a� for n=72. In all cases shown in Fig. 14 the initial
condition is �0=	, i.e., the electron is at the outer turning
point of its orbit. Choosing different values of �0 will lead to
different points along I= I0, but the result is always a point.
For any other choice of I0—one not having a Kepler fre-
quency of 17.628 GHz—on successive cycles ���0, al-
though I= I0, with the result that the surface of section is a
horizontal line, as shown in Fig. 14�a�. � changes but I does
not since the constant energy only depends on I. The essen-
tial point is that when the initial conditions are such that the
electron’s motion is resonant with the �vanishing� microwave
field the surface of section generated from any starting point
is that point. For any nonresonant initial conditions it is a
horizontal line.
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FIG. 13. Electron-probability distribution of the nondispersing
wave packet at the microwave phase of 0, 	 /2, 	, and 3/2	 when
microwave-field amplitude E=1 V/cm. Plots show for �a� the
highest-energy Floquet state, which is adiabatically connected to the
zero-field n=72 state and �b� the Floquet state connected to the
zero-field n=75 state. The former has a large time-varying dipole
while the latter does not.

FIG. 14. �I ,�� phase-space plot of the one-dimensional H atom
in resonance 17.628 GHz microwave field plotted when �a�
microwave-field amplitude E=0 V/cm and �b� E=1 V/cm. Each
curve is calculated by starting an atom in a different initial n �60

n
89� with its electron at the outer turning point and subjecting
it to the 320 cycle microwave-field pulse. The scale of the right axis
in the figures corresponds to the value of I in zero field, i.e., n.
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Now we apply a microwave field E cos �t and examine
the surface of section at �t=2	j, where j is an integer, i.e.,
at the peak microwave field. In Fig. 14�b� we show the result
for a 1 V/cm, 17.628 GHz field. For n
70 and n�74, far
from the resonance, the surfaces of section are distorted
lines, indicating slightly perturbed orbits. There is a nonlin-
ear resonance island in which the electron does not sample
all � �or z�. The island has grown from the single stationary
point in the zero-field case to a finite-sized island. Now even
if the electron initially has a nonresonant action it is often
found near �=	, i.e., at large z when the microwave electric
field is in the +z direction, as shown in Fig. 2. If the initial
action is nearly resonant, e.g., n=72 the surface of section is
a small oval indicating that the electron’s motion oscillates
between slightly leading and slightly lagging the microwave
field. In all cases �		, or z
2n2 at the peak of the micro-
wave field. As the initial condition becomes further removed
from resonance the oval becomes larger, indicating that the
oscillation in the lead or lag phase is becoming larger. While
the average value of � is 	, for only a small fraction of the
orbits is �		.

The surface of section of Fig. 14 is plotted at �t=2	j
�j=0,1 ,2 , . . . � with j up to 320, i.e., 320 microwave cycles.
If we start with the same field and initial conditions but the
microwave field of 17.5 GHz, we find the results shown in
Fig. 15, in which we plot the surfaces of section at �a� �t
=2	j, �b� �t=2	�j+1/4�, �c� �t=2	�j+1/2�, and �d� �t
=2	�j+3/4�, where j=0,1 ,2 , . . . ,320. It is apparent that
when �t=2	�j+1/4� the resonance island moves and is cen-
tered at �		 /2, or z
9100, and when �t=2	�j+1/2� the
center of the resonance island is at �=	 or z=0. The center
of the resonance island moves synchronously with the micro-
wave field, and the atomic dipole is antiparallel to the micro-
wave field. In other words, the center of the resonance island

corresponds to the highest-energy Floquet state of Fig. 12.
At the edge of the resonance island, n=69 or n=75, the

electron’s orbit is, on average synchronous with the micro-
wave field, but there are large oscillations in the phase by
which it leads or lags the microwave field. As with all oscil-
lations, most of the time is spent at the turning points, and
this phenomenon can be seen in the density of points in Fig.
15. For the n=69 orbit of Fig. 15�a� it is apparent that the
highest density of points is at �		 /6 and 2	−	 /6 or z

5000, i.e., small z. Using Eq. �22� we can convert the
density of points along the orbit into a spatial-probability
distribution, and in Fig. 16 we show the spatial-probability
distributions corresponding to n=72 and n=69 of Fig. 15 at
�t=2	j, 2	�j+1/4�, and 2	�j+1/2�. As shown by Fig. 16
the z-probability distributions oscillate out of phase in these
two cases, with the dipole in the n=69 case, the edge of the
resonance island, oscillating in phase with the microwave
field. It is thus apparent that the edge of the resonance island
corresponds to the downward-shifted Floquet states of Fig.
12.

An interesting question is why nondispersing wave pack-
ets maintain their localization so much longer than normal
radial wave packets. For example, consider the classical orbit
shown in Fig. 17. A normal wave packet following this orbit,
composed of the �n eigenstates of energies Wn, is repre-
sented at any time t by Eq. �3�, in which the coefficients an
and energies Wn are constant. The only difference between
the wave packet when it is localized at points A and B is in
the phases; the energies are the same. Thus at the same time
a wave packet can be localized at A or B and have the same
energy simply by changing the phases by an amount of order
	. Consequently, when these phases accumulate errors of
order 	 the localization of the wave packet is destroyed. In a
1 �s observation time such phase shifts correspond to only

FIG. 15. �I ,�� phase-space
plot of the one-dimensional atom
in 1 V/cm, 17.5 GHz microwave
field plotted when �a� 2	�t= j, �b�
2	�t= �j+1/4�, �c� 2	�t= �j
+1/2�, and �b� 2	�t= �j+3/4�,
where j=0,1 ,2 , . . .. Each curve is
calculated for an atom in a differ-
ent initial n �60
n
89� with its
electron at the outer turning point
and subjected to the 320 cycle
microwave-field pulse. The scale
of the right axis in the figures cor-
responds to the value of I in zero
field, i.e., n.
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1 MHz relative frequency shifts of the levels.
In the nondispersing wave packet it is no longer true that

the energy of the wave packet is the same if the electron is at
point A or point B at the same time, due to the presence of
the microwave field. If, for example, the microwave field
points to the right, having the electron at point A is a lower-
energy state than having it at point B. The energy difference,
averaged over a microwave cycle is the difference between
the up- and down-shifted Floquet states of Fig. 17. Now a
frequency change of order hundreds of MHz is required to
destroy the localization of the wave packet; it is no longer
free.

VI. CONCLUSION

We have reported the observation of nondispersing wave
packets created with the aid of a weak microwave field,
which not only overcomes the delocalizing effect of the dis-
persion in the energy-level spacings but makes the wave
packets orders of magnitude more immune to other forms of

dephasing. The results of our observations can be explained
in a straightforward way by both quantum and classical mod-
els. In spite of the fact that the models are based on one-
dimensional motion of the electron they give reasonably
good pictures of the underlying physics.

There are still many open questions. For example, what
are the effects of stray fields? How many subtle details are

A

B

FIG. 17. In a normal wave packet there is no difference in
energy between the cases in which the electron is at points A and B,
near the outer and inner turning points. Consequently, the localiza-
tion of such wave packets is easily destroyed by small phase shifts
of the constituent states. In a nondispersing wave packet in a mi-
crowave field there is an energy difference between the electron’s
being at points A and B at any given time, and these wave packets
are much more unlikely to be delocalized.
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FIG. 16. Probability distribu-
tion generated from the density of
points in the surface of sections
for �a� n=72 and �b� n=69 for mi-
crowave phases of �t=0, �t
=	 /2, and �t=	. Plots are made
by taking a histogram of phase-
space plot of n=72 and n=69 at-
oms subjected to 1 V/cm,
17.5 GHz, 160 cycle microwave-
field pulse.
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obscured by the fact that the atoms are not one dimensional?
Can nondispersing wave packets be made as easily in an
atom or molecule having several quantum defects 
1? In Li
only the s states have a quantum defect larger than 0.05.
Finally, what are the effects of perturbations and noise on
these wave packets?

In addition to their intrinsic interest nondispersing Ryd-
berg wave packets may be of some use. For example, the
atoms in our wave packet all have synchronously oscillating
dipole moments, and they could be used as targets in colli-
sion experiments. The oscillating dipole moments also raise
the question of the relation of these wave packets to super-
radiance. Finally, since the nondispersing wave packet is a

long-lived coherent superposition state, it could be of use for
storing quantum information if Rydberg-atom gates �29� are
used. It is a sort of decoherence-free subspace analogous to
that used in ion traps �30�.
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