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When the parameters of a physical system are varied, the eigenvalues of observables can undergo crossings
and avoided crossings among themselves. It is relevant to be aware of such points since important physical
processes often occur there. In a recent paper �M. Bhattacharya and C. Raman, Phys. Rev. Lett. 97, 140405
�2006�� we introduced a powerful algebraic solution to the problem of finding �avoided� crossings in atomic
and molecular spectra. This was done via a mapping to the problem of locating the roots of a polynomial in the
parameters of interest. In this article we describe our method in detail. Given a physical system that can be
represented by a matrix, we show how to find a bound on the number of �avoided� crossings in its spectrum,
the scaling of this bound with the size of the Hilbert space and the parametric dependencies of the Hamiltonian,
the interval in which the �avoided� crossings all lie in parameter space, the number of crossings at any given
parameter value, and the minimum separation between the �avoided� crossings. We also show how the cross-
ings can reveal the symmetries of the physical system, how �avoided� crossings can always be found without
solving for the eigenvalues, how they may sometimes be found even in case the Hamiltonian is not fully
known, and how crossings may be visualized in a more direct way than displayed by the spectrum. In the
accompanying paper �M. Bhattacharya and C. Raman, Phys. Rev. A 75, 033406 �2007�� we detail the appli-
cation of these techniques to atoms and molecules.
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I. INTRODUCTION

Level crossing is a ubiquitous phenomenon with ex-
amples in many disciplines of physics. Possibly the first ef-
fect to be associated with degenerate eigenvalues was conical
refraction in optics, identified by Hamilton in 1833 �1�. In
quantum physics the celebrated work of von Neumann and
Wigner �2� related level crossing to symmetry, while the
analysis of avoided crossings was pioneered by Landau �3�
and Zener �4�. Since then a variety of interesting phenomena
have been associated with quantum level crossings. Ex-
amples include Berry’s phase in adiabatic quantum mechan-
ics �5�, Fermi resonances in molecular physics �6�, and the
production of entanglement in quantum information �7�. A
more extensive list of crossing phenomena in atoms and mol-
ecules is provided in the accompanying paper �8�.

In this article we present the details of a versatile theoret-
ical technique introduced earlier �9� for detecting the pres-
ence of level crossings in physical systems. We consider sys-
tems where the underlying Hamiltonian �or other physical
quantity� can be represented as a matrix depending on sev-
eral parameters. We remind the reader that the values of the
parameters for which �avoided� crossings occur among the
eigenvalues of this matrix correspond to the roots of a certain
polynomial in the same parameters. The power of this ap-
proach derives from the well known fact that the Hamil-
tonian does not need to be solved in order to generate this
polynomial and therefore to find its roots, i.e., to find the
�avoided� crossings. We go further and show that even if the
Hamiltonian is not completely known �avoided� crossings
can still sometimes be located.

Very powerful polynomial root-finding techniques already
exist, in a branch of mathematics known as algebraic geom-
etry �10�. We have demonstrated how these techniques may
be exploited to yield quite remarkable results regarding

crossing phenomena in physical systems of interest �9�. In
the case of atoms for example, they enabled us to derive a
new class of invariants of the Breit-Rabi Hamiltonian of
magnetic resonance, without solving the Hamiltonian. These
invariants turn out to be complete catalogs of the parametric
symmetries of the problem, and encode information about
�avoided� crossings in a manner more compact and easier to
visualize than allowed by the spectrum. In the case of mol-
ecules the techniques allowed us to determine magnetic
fields at which the electronic curves crossed, i.e., the Born-
Oppenheimer approximation broke down, for a diatomic
molecule. Remarkably we could do this without using any
information about the corresponding complicated Born-
Oppenheimer potentials other than the fact that they are real.

The use of algebraic techniques to find �avoided� cross-
ings is not unknown in physics. For example, they have been
used to track singularities in optical polarization �11�, to es-
tablish the link between level crossing in a quantum system
and integrability of its classical analog �12�, to examine the
local behavior of the complex �Riemann� eigenvalue surface
of Hamiltonian matrices �13�, and to design magnetic traps
for ultracold atoms �14�. However, some of the more power-
ful algebraic techniques have not been exposed in the work
just mentioned. For instance we do not know of a case where
it has been shown that the �avoided� crossings can also be
found even if the Hamiltonian is not fully known. Also, to
the best of our knowledge, there has been no application to
matrices that describe realistic atomic and molecular spectra.
Further we have not seen the use of algebraic quantities to
visualize crossings. Last, we have not come across any sys-
tematic exposition of algebraic technique explicitly geared to
the analysis of level crossing in a generic physical system
representable by a matrix.

Thus in this and the accompanying article �8� our inten-
tion is to introduce algebraic technique somewhat systemati-
cally, generalize it to matrices of arbitrary but finite dimen-
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sion, apply it to matrices that describe atoms and molecules
realistically, and exhibit some its more powerful aspects by
adapting methods already developed in mathematics. We
hope these results and techniques will be added to the exist-
ing calculus of level crossing, which presently contains use-
ful tools such as Landau-Zener transition theory among oth-
ers. Since algebraic geometry is a very well developed
branch of mathematics and parameter-dependent matrices are
rife in physics, we have not made an effort at either rigor or
completeness. Our intention in this article will be to rational-
ize the relevant theorems and present working tools. Part of
the material in this article is a review of well-known meth-
ods, part nontrivial adaptation of existing mathematics to
questions of physical importance, and part derivation of
original results regarding the mathematics of curve crossing.
The original results obtained in this paper have been specifi-
cally pointed out in one of the concluding sections.

A word as to our intention in presenting two accompany-
ing but distinct papers. In writing the papers we found that
the mathematics and the physics separated naturally enough
for us to effectively decouple the theoretical background
from the physical applications. Therefore, the present article
is intended to stand on its own as a small manual on the
algebraics of level crossing. The accompanying article �8�
contains fully developed examples involving atoms and mol-
ecules, and provides detailed guidelines for applications to
such physical systems.

The paper is organized as follows. In Sec. II we discuss
briefly the motivation behind analyzing �avoided� crossings
algebraically, contrasting it in particular to numerical meth-
ods; in Sec. III we introduce the simplest nontrivial example
of algebraic technique using a 2�2 matrix; in Sec. IV we
treat the general case of �avoided� crossings in the spectrum
of an n-dimensional matrix; in Sec. V we examine the prin-
cipal mathematical tool in the investigation of �avoided�
crossings, the discriminant; in Sec. VI we provide the details
of some properties of polynomials that are crucial to
�avoided� crossing analysis; in Sec. VII we make contact
with the Wigner–von Neumann noncrossing theorem; Sec.
VIII contains a list of the original results presented in this
work, a critique of algebraic technique and a discussion of
some specific questions that would be interesting to answer
in future research; Sec. IX contains the Conclusion.

II. MOTIVATION

Much effort has gone into developing numerical as well
as analytical techniques to detect and analyze level �avoided�
crossings ��15� and references therein�. Numerical analytic
continuation of eigenvalues �16,17�, constrained energy
minimization �15�, adiabatic transport of eigenstates
�5,18–20�, dimensional perturbation theory �6�, symmetry-
based calculations �21� and tracing the Shannon entropy
across crossings �22� are some of the methods previously
used. However the use of algebraic techniques does not seem
to have been explored in too much detail. Our motivation for
studying �avoided� crossings algebraically is threefold.

First, it turns out that numerically calculating the spec-
trum is not enough to distinguish crossings from fine anti-

crossings �16,18�. One solution is to examine the topological
changes in the eigenstates during an adiabatic circuit of the
crossing point �5,23,24� to see if the states pick up a Berry’s
phase. However constructing and transporting eigenstates
can quickly become inefficient. Algebraic technique provides
a rigorous and efficient alternative to such numerical meth-
ods.

Beyond the issue of resolution lies an inherent advantage
with algebraic methods. Typically in order to establish the
existence of an �avoided� crossing numerically one has to
find the parameter values for which it actually occurs. How-
ever if the �avoided� crossings correspond to the roots of
some polynomial in those very parameters, algebra allows us
to ask if those roots exist in some given parameter interval. It
can be seen readily that this leads to an efficient search tech-
nique which allows us to quickly discard large parameter
regimes where “nothing interesting” is happening.

Second, it is often desirable to know the dependence of
the location and existence of crossings on various param-
eters. Such a situation can arise, for instance, when investi-
gating the physical mechanisms underlying the crossings.
These mechanisms can be “switched off” by setting the rel-
evant parameters to zero, for example. The process of calcu-
lating and inspecting the entire spectrum anew for each nu-
merical value taken on by the parameter set is quite
inefficient and is always restricted by resolution. In our ex-
perience crossings which result from the delicate balance of
two physical mechanisms may move around by orders of
magnitude on the various axes in the spectrum as the balance
is tweaked. As we show in this article algebraic technique
provides a much more direct and efficient way of tracking
the functional dependence of the crossings on the param-
eters.

A related issue is that of hidden symmetries �25� of which
a relevant example will be made in the accompanying article
�8�. These are symmetries of a physical system which do not
manifest themselves a priori, i.e., as observables which ob-
viously commute with the Hamiltonian. Rather, they reveal
themselves in the form of �large� degeneracies that occur in
the spectrum at special values of the parameters in the
Hamiltonian. Once these degeneracies are identified, the cor-
responding symmetries can be constructed �25�. Algebraic
technique furnishes a systematic and explicit way of uncov-
ering such parameter-dependent degeneracies. This removes
the need to discover these symmetries by numerical explora-
tion of the spectrum.

Third, the method of numerically searching the spectrum
for crossings fails completely if the Hamiltonian of the
physical system is not known fully since in this case it is not
possible to solve for the spectrum. Remarkably, as we will
show, the algebraic method can yield information about level
crossings even when only partial knowledge about the physi-
cal system is available.

An obvious shortcoming of algebraic technique is the fact
that it does not yield any information about eigenvalues or
eigenvectors. For instance, it cannot tell which eigenvalues
are intersecting at a crossing, nor what the value of the physi-
cal observable is at that point. We point out that it is not our
intention to prescribe algebraic technique as a complete sub-
stitute to consulting the spectrum. It just happens to be better
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than the spectrum at finding �avoided� crossings in a useful
variety of cases. Once these points have been found, the
spectrum of course may be consulted freely. Only in this way
can complete knowledge about the problem be achieved.

The most pressing deficiencies of the algebraic method
actually have to do with practice rather than principle. It
relies on symbolic computation which is much more expen-
sive than numerical computation. For larger systems such as
polyatomic molecules, where the number of parameters as
well as the Hilbert space is sizable, algebraic techniques
quickly become computationally inefficient and numerical
methods have to be resorted to �15�.

III. SIMPLE EXAMPLE

We will now introduce algebraic technique using a simple
matrix that depends on a single parameter. The only condi-
tion for our algebraic method to work is that the matrix
should be diagonalizable �26�. However we will be con-
cerned with observables of physical systems, which are usu-
ally represented by matrices which are Hermitian. This al-
lows us to work with a smaller class of matrices. In fact with
no loss of generality we can operate with real symmetric
matrices; the simplest nontrivial example of algebraic tech-
nique can thus be made using a 2�2 real symmetric matrix,

M�P� = �E1 V

V E2
� . �1�

Equation �1� can be used to model the Hamiltonian of a
two-state quantum system in which the “bare” energies of
the two levels are E1 and E2 and V is a “perturbation” via
which the two levels interact. The notation of Eq. �1� implies
all the matrix elements may be functions of the tunable real
parameter P, which could be an external field in which the
two-state system has been placed.

To find eigenvalues E of M�P�, labeled �1 and �2, we
consider the characteristic polynomial

��E� = �M�P� − E� = E2 + C1E + C0, �2�

where C0=E1E2−V2 and C1=−�E1+E2�. However, the ei-
genvalues �1,2 are also roots of the polynomial ��E�, i.e.,

�E − �1��E − �2� = 0. �3�

Comparing Eqs. �2� and �3� the coefficients may equivalently
be written in terms of the eigenvalues: C0=�1�2 and C1=
−��1+�2�. It is important to note that we did not explicitly
calculate the eigenvalues �1,2 in order to arrive at this con-
clusion.

A level crossing occurs in the spectrum of the Hamil-
tonian �1�, if the two eigenvalues become degenerate ��1

=�2� at some value of the parameter P. To locate the cross-
ing, we introduce the discriminant

� � ��1 − �2�2 �4�

of the characteristic polynomial ��E� �Eq. �2�� of M�P�. The
discriminant however can be rewritten purely in terms of the
coefficients of ��E�:

� = C1
2 − 4C0. �5�

We now choose a simple parametrization for M�P� in Eq.
�1�, say E1,2=2P and V= P. Equation �5� then yields �
=4P2, a polynomial in P. The root of this polynomial, P
=0, corresponds to the only crossing in the spectrum of
M�P�, as may be verified by explicitly calculating the eigen-
values �1,2= P ,3P. Note that a single crossing in the spec-
trum corresponds to a double root of the discriminant at P
=0.

This simple example illustrates several key features of
algebraic technique. First, it shows how the discriminant pro-
vides a mapping from the problem of finding crossings in the
spectrum to one of locating roots of a polynomial. Second, it
demonstrates how the need to find eigenvalues can be by-
passed in the search for level crossings. Last, it provides a
complete catalog of crossings for all possible values of the
parameter P. In the next section we will show how these
statements can be powerfully generalized for the case of an
n-dimensional matrix representing a physical variable.

IV. GENERAL CASE

An extension of the simple example �Eq. �1�� of Sec. III
to larger matrices and more than one parameter leads to the
study of multivariate polynomials, a topic in algebraic geom-
etry �10�. From this branch of mathematics we will now
introduce techniques which are very useful in finding
�avoided� crossings in the spectrum of an n-dimensional ma-
trix.

Let H�P� denote an n-dimensional Hermitian matrix, not
trivially diagonal, and dependent polynomially on the set of
parameters P= 	P1 , . . . , PN
. The characteristic polynomial of
H�P� is therefore of degree n in the eigenvalue E:

G�E� = �H�P� − E� = �
i=0

n

Ci�P�Ei, �6�

and has n+1 coefficients, Ci. The reader should prove to
herself that the Ci are all polynomials in P, and also that
Cn=1. The roots �1,2,. . .,n of the polynomial Eq. �6� are used
to define its discriminant �10�

D�H�P�� � �
i�j

n

��i − � j�2. �7�

The discriminant of a polynomial is therefore defined to be
the product of the squares of the pairwise differences of its

roots. There are �n2 �=n�n−1� /2 factors in the product in Eq.

�7�.
As in the case of � in Sec. III �Eq. �5��, D�H�P�� can also

be calculated purely from the coefficients Ci of the charac-
teristic polynomial without recourse to the roots �i. This is a
remarkable fact, but not a coincidence. Its existence is guar-
anteed by the fundamental theorem of symmetric functions
�27�, which states that a polynomial (such as D�H�P��) sym-
metric in n variables �such as �1,. . .,n� can always be ex-
pressed in terms of the n elementary symmetric polynomials
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f1 = �1 + ¯ �n,

f2 = �1�2 + ¯ + �n−1�n,

f3 = �1�2�3 + ¯ + �n−2�n−1�n,

¯

fn = �1�2 . . . �n. �8�

However the polynomials in Eq. �8� are simply related to the
coefficients in Eq. �6�: f i= �−1�iCn−i , i=1,2 ,3 . . . . Hence
D�H�P�� can be written exclusively in terms of the Ci for
H�P� of any size; a compact way of doing this is in terms of
the determinant of the Sylvester matrix of the characteristic
polynomial G�E� �Eq. �6�� �10�:

D�H�P�� = �− 1�n�n−1�/2Cn
−1


Cn Cn−1 . . . . . . C1 C0

Cn Cn−1 . . . . . . . . . . . . C1 C0

. . .

Cn . . . . . . . . . C1 C0

nCn �n − 1�Cn−1 . . . . . . . . . 2C2 C1

nCn �n − 1�Cn−1 . . . . . . . . . 2C2 C1

. . .

nCn . . . . . . 2C2 C1


 . �9�

The Sylvester matrix is of dimensions �2n−1�� �2n−1� and
hence implies, for the full analytical expression for D�H�P��,
the presence of �2n−1�! terms. This estimate turns out to be
naive but nonetheless points out a major practical obstacle to
the use of algebraic technique: To be algebraically useful the
discriminant has to be calculated symbolically, which is typi-
cally more intensive to do than a numerical computation. For
example, in the case of atoms provided in the accompanying
paper �8� H�P� is an 8�8 matrix and the discriminant can
have as many as 15! =1 307674368000 terms, not account-
ing for the internal structure of the Ci’s themselves �each
may consist of more than one term�. However, a large num-
ber of the elements of the Sylvester matrix are identically
zero as can be seen from Eq. �9�; also cancellations occur
due to the physical symmetries of H�P�. These two reasons
result in the D�H�P�� for atoms actually possessing far fewer
terms than estimated above; it finally contains only four
terms. As a contrast, in the case of molecules H�P� turns out
to be a 4�4 matrix but the discriminant contains 13430
terms. This is more than the 7! =5040 terms estimated with-
out accounting for the complexity of the Ci’s. Thus the sym-
metries of H�P� and the complexity of the matrix elements of
its representation play a major role in shaping the form of the
discriminant D�H�P��.

The reader should prove to himself that the Ci in Eq. �9�
are all real since they are the coefficients of the characteristic
polynomial �Eq. �6�� of a Hermitian matrix. In Eq. �9� the
sequence of coefficients �Cn . . .C0� occupies the first n−1
rows of the determinant of the Sylvester matrix and is shifted
by one column to the right in every successive row. Likewise
the sequence �nCn . . .C1� appears in the next n rows, also
shifted similarly. It is not a coincidence that the second se-
quence consists of the coefficients of the derivative of G�E�

�Eq. �6��. The discriminant is a special instance of a more
general mathematical object, the resultant, a function of two
polynomials which vanishes whenever they have a root in
common �10�. The discriminant is obtained by applying the
resultant to a polynomial and its derivative. It follows that if
the polynomial has a repeated root, its discriminant vanishes.

We note here that since the Ci are all always polynomials
in P so is D�H�P��, since a determinant is a polynomial in its
matrix elements. Thus Eq. �9� provides an analytical map-
ping between the level-crossing and polynomial root finding
problems for the Hamiltonian H�P�. This mapping exists for
any n, i.e., we can always obtain an analytical expression for
D�H�P�� independent of the analytical solvability of H�P�.

It is worth mentioning that in standard symbolic compu-
tation applications such as Mathematica and Maple—both of
which have been used in this work—resultants and discrimi-
nants are defined functions. In this connection it is interest-
ing to note that some of the machinery of root finding in
algebraic geometry described in this article has been devel-
oped in the context of computer algebra �10�.

V. PROPERTIES OF DISCRIMINANTS

We now list some properties of discriminants that are im-
portant to the problem of finding �avoided� crossings.

A. Independence from spectrum

The fact that D�H�P�� can be calculated directly from the
coefficients of the characteristic polynomial has three impor-
tant implications. First, in general the roots of H�P� cannot
be calculated analytically �i.e., using radicals and the opera-
tions of addition, subtraction, division, and multiplication�
for n�4. However, Eq. �9� implies that D�H�P�� can be
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calculated analytically �as a polynomial� for any n. This
means that the discriminant supplies an analytical
mapping—between the level-crossing and polynomial root-
finding problems—for all n. Hence algebraic techniques can
be applied to D�H�P�� for any n, without regard to the ana-
lytical solvability of the Hamiltonian, or of course of
D�H�P�� itself.

The ability to detect level crossings without solving for
the spectrum has a second implication. It allows, as will be
shown below as well as in the accompanying paper, for the
existence of powerful algebraic alternatives to numerically
intensive spectral searches for crossings.

Third, although complete knowledge of the Hamiltonian
is required to calculate the spectrum, the discriminant is ca-
pable of finding level crossings even in case some informa-
tion is missing. This will be demonstrated below using a
specific example.

B. Unitary invariance

From Eq. �7� it follows that D�H�P�� is an invariant of
H�P�. This property allows us to choose any representation
of H�P� to calculate D�H�P��. However, there is a particular
representation of H�P� which lets us arrive at the character-
istic polynomial with the least computation and in the most
algebraically transparent way. Typically such a representa-
tion is made in the direct product �“uncoupled”� basis of the
constituent particles of the physical system. This retains the
polynomial form of the parametric Hamiltonian in the matrix
elements. For example, if the Hamiltonian is of degree k in
some parameter, then in this representation every matrix el-
ement is of degree k or less in the same parameter. In another
basis, such as the basis that diagonalizes the Hamiltonian, the
elements could be quadratic �in the parameter of interest�
under radicals, for instance. Such forms are not readily ame-
nable to algebraic arguments, and are not preferred.

C. Translational invariance

From Eq. �7� it follows that D�H�P�� does not change if
the same quantity is added to every eigenvalue �i. The reader
should verify for herself that D�H�P�� actually remains un-
changed if the same quantity is added to each diagonal term
of H�P�, since this merely indicates a shift in the scale of the
entire spectrum. It is also important to note that the quantity
being added need not necessarily be a constant; it could be
an arbitrary function of any variable. D�H�P�� remains un-
changed as long as the same function is added to every di-
agonal element of H�P�. This property will prove crucial
while investigating curve crossings in a molecule �8�.

D. Nonnegativity

Since H�P� corresponds to a physical observable it is Her-
mitian, and its eigenvalues �i are all real. Equation �7� there-
fore implies that D�H�P�� is real and non-negative:
D�H�P��	0. The property of non-negativity will prove use-
ful when we consider visual representations of the discrimi-
nant below.

We have discussed above some general properties of dis-
criminants which are of use in the study of level crossings.
To learn more about the location of �avoided� crossings we
now introduce some properties of polynomials.

VI. POLYNOMIALS AND (AVOIDED) CROSSINGS

We describe here how to extract information about level
crossings from some algebraic properties of polynomials. We
will always assume real coefficients for the polynomials.
This holds true for the characteristic polynomials of Hermit-
ian matrices, and also for the discriminants of such polyno-
mials. Although the properties described below can be as-
cribed to any real-valued polynomial, we will persist in using
the discriminant, typically written as D�H�P��, for purposes
of illustration as well as consistency.

A. Crossings and avoided crossings

As in the case of �=4P2 in Sec. III the real roots of Eq.
�7� correspond to crossings in the spectrum of H�P�. Do the
complex roots correspond to anything? It can be shown that
the real parts of the complex roots of Eq. �7� correspond to
avoided crossings �13�. We leave the general proof to �13�,
and treat the 2�2 case �Eq. �1��. Solving for the eigenvalues
of the matrix M�P� in Eq. �1� yields

�± =
1

2
�E1 + E2 ± ��E1 − E2�2 + 4V2� . �10�

The difference between the two eigenvalues is given by

�+ − �− = ��E1 − E2�2 + 4V2. �11�

By definition �7� the quantity under the radical sign in Eq.
�11� is the discriminant D�M�P��. If we choose the param-
etrization E1,2=4Pr ,3Pr �where Pr is an arbitrary but real
non-zero constant� and V= P /2 �where P is a tunable param-
eter�, we obtain

�+ − �− = �Pr
2 + P2. �12�

Clearly the two eigenvalues cannot be degenerate for real
values of P. However the discriminant

D�M�P�� = Pr
2 + P2, �13�

has complex roots Pc= iPr and Pc=−iPr, and it can be shown
that the gap between the two eigenvalues goes through a
minimum as the real parameter P is tuned through Re�Pc�
=0. To this end we rewrite Eq. �12�

�+ − �− = ��P − Pc��P − P̄c� . �14�

Differentiating Eq. �14� with respect to P yields a minimum
of the energy gap at

P =
Pc + P̄c

2
= Re�Pc� = 0. �15�

The presence of the avoided crossing at P=0 can be verified
by plotting the eigenvalues �±= 1

2 �7Pr±�Pr
2+ P2� for any
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Pr�0. For Pr=0 the avoided crossing turns into a crossing.
It should be noted in the example above that a pair �the
complex root and its conjugate� of roots give rise to a single
avoided crossing.

We have provided above a specific instance of the general
rule that an avoided crossing occurs when the parameter P
equals the real part of a complex root Pc of the discriminant.
However for matrices larger than 2�2 the rule is no longer
exact and one of two conditions need to be satisfied for it to
hold �13�. The first condition is that there should not be a
second avoided crossing nearby, involving either of the origi-
nal eigenvalues. If either of the eigenvalues undergoes an-
other avoided crossing in the vicinity of the first, the two
avoided crossings can “interact” and be displaced from the
corresponding positions indicated by the complex roots of
the discriminant. The second condition allows the rule to
hold even if there is an avoided crossing in the vicinity. The
condition is that the original crossing should be very nar-
rowly avoided. Pc is very close to the real axis in this case.

It is worth emphasizing that the proximity of two avoided
crossings along the energy axis in the spectrum cannot be
calculated by use of the discriminant alone. Although two
avoided crossings can correspond to close-lying complex
roots of the discriminant, they may occur between entirely
different pairs of eigenvalues, and thus may not interact at
all. In the language of complex analysis, they occur on dif-
ferent Riemann sheets of the energy surface for the system.
However, the discriminant cannot distinguish between these
sheets and the spectrum has to be consulted.

B. Counting and locating (avoided) crossings

For the simple example of Eq. �1�, � turned out to be
quadratic in a single parameter, P; in general D�H�P�� is a
polynomial of high degree in the N variables PN. A signifi-
cant amount of information about the roots of this polyno-
mial can be obtained from its coefficients, as evidenced by
our study of the discriminant, which we constructed from the
coefficients of the characteristic polynomial. We will now
examine the coefficients of the discriminant itself to learn
about its roots, which correspond to �avoided� curve cross-
ings. We will present techniques which allow us to count and
estimate the locations of the roots of a polynomial using
information from its coefficients. We also quote results
which allow us to determine the interval in which real roots
and the moduli of complex roots lie, as well as the separation
between the closest lying of those roots.

1. Bounds on the number of (avoided) crossings

Given a particular Hamiltonian, how many �avoided�
crossings does its spectrum contain? This total is particularly
useful to know when tracking the movement of the �avoided�
crossings as parameters are varied. In the case of a numerical
search of the spectrum, this bound enables us to know when
to terminate the search.

In order to find the number of �avoided� crossings, we
first consider the degree of the discriminant in the relevant
parameter. If the Hamiltonian of a physical system is defined
in an n-dimensional Hilbert space and is a polynomial of

degree q in a parameter P, it can be shown that the discrimi-
nant D�H�P�� is a polynomial of degree k in P where

k = n�n − 1�q mod 2. �16�

For example, if n=2 and q=3 then k can take values 6, 4, 2,
or 0. The maximum value that k can assume, from Eq. �16�,
is

kmax = n�n − 1�q . �17�

The reader can derive for herself this bound from the facts
that H�P� is a polynomial in P, and therefore every matrix
element in its representation is also a polynomial of degree q
or less in P. That the degree of the matrix element could be
less than q is illustrated with an example from atomic phys-
ics in the accompanying paper �8�. In the general case if
some of the matrix elements of the Hamiltonian are of a
degree lower than q, the discriminant will have a degree
lower than kmax.

We note that since n and q are integers, kmax is always an
even integer. The presence of mod 2 in Eq. �16� implies that
k is always an even integer. This restriction follows from the
property that if H�P� is a polynomial in P, the degree of
D�H�P�� in P is always even. One way to derive this prop-
erty is from a very useful theorem �28� which states that the
discriminant can always be written as the sum of the squares
of the moduli of a finite number of terms Ai�P�, each of
which is a polynomial in the matrix elements of H��P��, and
hence in P:

D�H�P�� = �A1�P��2 + �A2�P��2 + ¯ . �18�

This condition restricts k, the degree of D�H�P�� in P, to
even integral values. This result is a useful cross-check when
deriving expressions for discriminants in several
parameters—the highest degree of the discriminant should be
even in every parameter.

Another important conclusion that can be drawn from Eq.
�18� is that if P=S is a real or complex root of D�H�P�� then
it has to be a root of each Ai�P�; equivalently, Ai�P�= �P
−S�Bi�P�, where the Bi are also polynomials in P. Thus Eq.
�18� becomes

D�H�P�� = �P − S�2��B1�P��2 + �B2�P��2 + ¯ � . �19�

If S is real,

�P − S�2 = �P − S�2; �20�

if S is complex,

�P − S�2 = �P − S��P − S� = �P − S��P − S̄� . �21�

Now we recall that �complex� real roots of the discriminant
correspond to �avoided� crossings. We see that due to the
structure of the discriminant implied by Eq. �19� each cross-
ing as well as each avoided crossing contributes a factor
quadratic in the parameter P to the discriminant. We have
already seen explicit examples of each case. In Sec. III al-
though there was only a single crossing at P=0, �=4P2

contained a double root at that point. In Sec. VI A
D�M�P��= Pr

2+ P2 �Eq. �13�� also turned out to be a quadratic
with a pair of complex conjugate roots, both of which corre-
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sponded to a single avoided crossing at P=Re�±iPr�=0.
It is important to note that the above italicized conclusion

cannot be derived from the definition of Eq. �7� as the alge-
braic form of the eigenvalues in the general case of an n�
�4�-dimensional matrix H�P� is not known; the use of the
nontrivial result Eq. �18� is necessary.

We now use the arguments made above to relate the de-
gree of the discriminant to the number of �avoided� crossings
for a given Hamiltonian. Recalling the fundamental theorem
of algebra, which states that a polynomial of degree k with
complex coefficients has exactly k roots, real or complex, we
state a sum rule for level crossings: If the discriminant is a
polynomial of degree k given by Eq. �16�,

nc + nac = k/2, �22�

where nc and nac are the number of crossings and avoided
crossings respectively in the spectrum of the corresponding
Hamiltonian.

Now as we have mentioned in Sec. VI A above an obvi-
ous one-to-one correspondence between avoided crossings
and complex roots is sometimes lacking. Therefore the sum
rule Eq. �22� is not always exact. However, we may convert
it into an upper bound that always holds:

nc + nac 
 k/2. �23�

Equations �16� and �23� together imply that the number of
�avoided� crossings scales no faster than quadratically with
the dimension of the Hilbert space, and no faster than lin-
early with the degree of dependence of the Hamiltonian on a
parameter. It is important to note that if the eigenvalues of
H�P� have to be found numerically, there is no way to find
an exact bound on the number of �avoided� crossings in the
spectrum other than calculating the discriminant.

2. Bounds on the location of (avoided) crossings

Given a Hamiltonian can we say where all the �avoided�
crossings lie in its spectrum? The coefficients of a polyno-
mial can yield very useful bounds on the location of the
roots, a fact that can be used to immediately reduce the pa-
rameter space for a search for �avoided� crossings. A variety
of bounds can be derived �29�; we will provide one due to
Cauchy. Consider a discriminant of the form

D�H�P�� = �
i=0

n

diP
i �24�

of degree n and with n+1 real coefficients di. It can be
shown that if S is any root, real or complex, of D�H�P��, then

�d0�
�d0� + H0

� �S� � 1 +
Hn

�dn�
, �25�

where

H0 = max��d1�, �d2�, . . . , �dn�� �26�

and

Hn = max��d0�, �d1�, . . . , �dn−1�� . �27�

The coefficients di thus provide a bound for the values of the
real roots as well as for the moduli of the complex roots. Let
us find the bounds for a sample discriminant

D�H�P�� = �P − 2�2�P2 + 1� = P4 − 4P3 + 5P2 − 4P + 4.

�28�

In this case H0=Hn=5. Hence the roots lie in the disk 4/9
� �S � �6. which is correct as the roots of Eq. �28� are
2 ,2 , ± i. Let us now choose D�H�P�� to be

D�H�P�� = P4 + P3 + 5dP2 + dP + d , �29�

where d�1 is a real parameter, which we hold fixed while
we tune P. In this case H0=Hn=5d. Hence all the �avoided�
crossings lie in the disk 1/6� �S � �1+5d. This illustrates
how the presence of a second parameter �d� influences the
location of �avoided� crossings as the first parameter �P� is
tuned.

In the discussion so far we have introduced ways of esti-
mating the total number and locations of both real and com-
plex roots. These methods do not distinguish between real
and avoided crossings. We will now discuss three methods of
locating real roots, which correspond to crossings exclu-
sively. The methods are described in order of increasing gen-
erality as well as sophistication. We will first examine the
information that the discriminant of a polynomial contains
about its real roots. Then we will introduce Descartes’ rule of
signs, a useful tool for real root counting often used in el-
ementary algebra. Last, we will describe the advanced
method of Sturm-Habicht sequences.

3. Discriminant of the discriminant

The discriminant equals zero at an �avoided� crossing in
the spectrum. Does it carry any information about the roots
when it is not zero? Some information regarding the real
roots of the discriminant can be obtained by calculating the
discriminant of the discriminant. To eliminate confusion, we
repeat we are now considering the discriminant D[D�H�P��]
of the discriminant D�H�P�� of the characteristic polynomial
of H��P��. The characteristic polynomial is in the variable E,
and the discriminant D�H�P�� is a polynomial in the variable
P. In this context it is relevant to note that although
D�H�P��	0 as proved earlier in Sec. V D, D[D�H�P��] is
allowed to be negative via definition Eq. �7�, since the roots
of D�H�P�� may not all be real.

If all the roots, real or complex, of D�H�P�� are distinct,
then D[D�H�P��] is not zero; it must then either be positive
or negative. It can be shown that the sign of D[D�H�P��]
determines the number of real roots of D�H�P�� modulo 4
�10�. More precisely, if D�H�P�� is a monic �the coefficient
of the highest term in P is 1� polynomial of degree k and all
of whose roots �real or complex� are distinct, the number t of
real roots it can have is given by �10�,
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D†D�H�P��‡ � 0 ⇔ t = k mod 4

D†D�H�P��‡ � 0 ⇔ t = �k − 2�mod 4. �30�

We note that k�1 for D[D�H�P��] to be defined.
Let us consider some examples. In Eq. �30� if k=2 and

D[D�H�P��]�0 then D�H�P�� has exactly 2 real roots; if
D[D�H�P��]�0 then it has exactly none. However if k=10
and D[D�H�P��]�0 then it has either 8, 4, or 0 real roots.
The information regarding crossings is therefore exact only
if the polynomial has no repeated roots and is of degree 1
�k�4 (in case D[D�H�P��]�0) or 1�k�6 (in case
D[D�H�P��]�0). In Sec. VI B above we proved that k has to
be even. Hence Eq. �30� yields precise information only in
the allowed cases k=2�2,4� for D[D�H�P��] positive �nega-
tive�. To gain more information about less specialized poly-
nomials we turn to Descartes’ rule below.

4. Descartes’ rule of signs

A method from elementary algebra for counting real roots
is Descartes’ rule of signs �10� which equates the total num-
ber of positive real roots of a polynomial with real coeffi-
cients to the number of sign changes in its coefficients,
modulo 2. The number of negative real roots may be simi-
larly estimated by changing the sign of the variable of the
polynomial. As a useful consistency check we mention one
of the lemmas of Descartes’ rule: The number of sign varia-
tions of a polynomial with real coefficients is even if the first
and last coefficients have the same sign and odd if they have
opposite signs. Note that when counting sign variations
terms with missing coefficients can be ignored.

Rather than present a proof �29�, we show how the rule
works with the discriminant defined in Eq. �28�

�P − 2�2�P2 + 1� = P4 − 4P3 + 5P2 − 4P + 4, �31�

which has two real roots both at P=2. It also has a pair of
complex roots at P= ± i. The number of sign changes in the
coefficients of the polynomial in Eq. �31� is 4. Descartes’
rule implies that the number of positive real roots is 4, 2, or
0, of which we know the second to be the correct answer.
Now if we make the transformation P→−P in Eq. �31� we
obtain the polynomial P4+4P3+5P2+4P+4. The number of
sign changes in the coefficients is 0. Descartes’ rule implies
that there are no negative real roots at all, which is correct.

Descartes’ rule yields the exact number of crossings only
when the number of sign changes in the discriminant is 0 or
1. The rule is most useful in the former case which corre-
sponds to the total absence of level crossings in the spec-
trum. An example of this will be provided in the section on
atoms in the accompanying paper �8�. However in many
cases multiple crossings do exist, and it is desirable to ac-
count for their exact number in an arbitrary parameter inter-
val. For this we turn to the method of Sturm-Habicht se-
quences. These will be of use in determining curve crossings
in a diatomic molecule.

5. Sturm-Habicht sequences

A more sophisticated method of locating real roots uses
the Sturm-Habicht �SH� sequence of a polynomial with real

coefficients such as D�H�P�� �10�. If D�H�l��D�H�r���0 the
difference in the number of sign variations in the SH se-
quence at P= l and P=r equals the number of real zeros of
D�H�P�� in the interval P� �l ,r� exactly.

We first describe the method generally. Given a polyno-
mial D�H�P�� of degree k, the SH sequence

S = Sk,Sk−1, . . . ,S0 �32�

contains k+1 elements, is numbered in reverse and is con-
structed as follows �30�. The first element of the sequence is
the polynomial itself

Sk = D�H�P�� . �33�

The second element is the derivative of the polynomial with
respect to P

Sk−1 = D��H�P�� . �34�

The remaining k−1 elements from i=k−2 to i=0 are ob-
tained from the prescription

Si = −
R�si+1

2 Si+2,Si+1,P�

si+2
2 , �35�

where si is the coefficient of the highest monomial in Si and
R�A ,B , P� is the polynomial remainder obtained upon divid-
ing A by B, both of which are polynomials in P. The Si are
polynomials in P themselves.

From Eq. �35� we can see that technical problems can
arise if some si=0 �the SH sequence is “defective”�. The SH
sequence can however still be constructed for such a case;
details are provided in �30�. We now give a simple example
of SH technique using the discriminant

D�H�P,c�� = P4 + P3 + P2 + P + c , �36�

where the c is a constant which will be assigned a numerical
value later. In a physical system, it may correspond to a
tunable parameter other than P. D�H�P ,c�� in Eq. �36� is a
quartic in P and hence there will be five elements in the SH
sequence. Following the prescriptions in Eqs. �33�–�35�
above we find

S4 = P4 + P3 + P2 + P + c ,

S3 = 4P3 + 3P2 + 2P + 1,

S2 = − 5P2 − 10P − 16c − 1,

S1 = 20�c − 1�P − 25c ,

S0 = 256c3 − 203c2 + 88c − 16. �37�

From Eq. �37� we obtain

s4 = 1,

s3 = 4,

s2 = − 5,

s1 = 20�c − 1� ,
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s0 = 256c3 − 203c2 + 88c − 16. �38�

If we wish to know the total number of real roots for Eq. �36�
exactly, then we must examine the sign of each term in the
SH sequence �37� at P= ±�. Our task is simplified by the
fact that at these limits the sign of each element in the se-
quence �37� is determined by the highest monomial and its
coefficient. Thus we need examine only the sequence defined
by Eq. �38� �P4 ,4P3 ,−5P2 ,20�c−1�P ,256c3−203c2+88c
−16�. For c�1, the coefficient of the fourth term in this
sequence is positive. For c�0.32 the last term in the se-
quence is positive. Let us consider the case c�1. At P=
−� the signs of the terms in the sequence are

�+ ,− ,− ,− , + � . �39�

There are �−�=2 sign changes in this sequence. At P= +�
the signs of the terms in the sequence are

�+ , + ,− , + , + � . �40�

There are �+�=2 sign changes in this sequence. The exact
number of real roots of D�H�P�� is then given by

�−� − �+� = 0, �41�

which implies that there are no level crossings for any P and
c�1. This is an example of a case where two parameters are
tunable in a physical system and the method of SH se-
quences allows us to identify a large portion of the corre-
sponding two-parameter space which does not contain any
crossings at all. More generally algebraic technique allows
us to systematically account for the effects of multiple pa-
rameters in the problem when looking for level crossings.

A similar analysis using the sequence �37� for c=0.2
yields exactly two real roots for Eq. �36�. They can be veri-
fied to be P=−0.86,−0.25 by solving Eq. �36�. It is worth
noting that the ordering of the terms in the left-hand side
�LHS� of Eq. �41� is important. If the interval of interest is
�l ,r� then the SH method prescribes the number of real roots
to be �l−�r. If this quantity turns out to be negative the
coefficients of D�H�P�� can no longer be considered purely
real �10�.

We make three observations about the method of SH se-
quences, stated in order of increasing importance. First, it is
important to note that the SH sequence does not immediately
provide the numerical value of the real root, it only indicates
its presence in an interval. However, by using successively
smaller intervals in a search one may isolate the root and
obtain its value �10�.

Second, it is of use to know that the coefficients of the
polynomials in the SH sequence can be related to the subdis-
criminants of D�H�P�� �10�, which will be discussed below.
In fact S0 in Eq. �37� is the discriminant of D�H�P ,c�� as
defined in Eq. �36�, i.e., S0=D[D�H�P ,c��]. Knowledge of
this fact can be employed to save computational time and
effort. For instance, if the total number of roots is the only
information desired, as in the example above, then only the
coefficients of the leading monomials in the SH sequence,
i.e., the si need be computed. This can be done by calculating
the relevant subdiscriminants.

Third, often the greatest use of SH technique is to be able
to isolate large intervals of �multi�parameter space which do
not contain any real roots. This corresponds to regimes in the
spectrum that do not have crossings. The use of SH tech-
nique to find such intervals has the advantage that each spe-
cific numerical parameter value does not have to be investi-
gated, in contrast to searching the spectrum.

Fourth, the SH analysis shows how it is possible to gain
information about crossings even if the Hamiltonian is not
fully specified. In fact it may happen that an experiment
requires staying away from the crossings in a system de-
scribed by the Hamiltonian H�P ,c�, and c is a parameter
about which the only information we have is c�10. Then,
even though H�P ,c� is not fully known, the SH analysis in
the example above implies that a crossing will never be en-
countered, since c�1.

6. Minimum separation between crossings

Given a Hamiltonian, what is the minimum separation
between two �avoided� crossings in its spectrum? The coef-
ficients of a polynomial can provide a lower bound for the
separation between any two roots of the polynomial. This
bound is of use in implementing any root-isolation proce-
dure, including the method of SH sequences delineated
above. It also provides a measure for the proximity of
avoided crossings, which as we have seen in Sec. VI A can
be important for their “interaction.”

Consider a discriminant D�H�P�� of the form

D�H�P�� = �
i=0

k

diP
i, �42�

where k	2 is the degree of the discriminant and di are its
coefficients. We define the Euclidean norm of D�H�P�� as

�D�H�P��� =��
i=0

k

�di�2. �43�

It can be shown that if S and S� are any two roots of
D�H�P��, then �31�

�S − S�� �
�3�D†D�H�P��‡�

k�k+2�/2 �D�H�P���1−k, �44�

where it should be noticed that the discriminant of D�H�P��
is under a radical as well as within a modulus.

Let us evaluate this bound for the discriminant

D�H�P�� = �P + 1��P − 2��P2 + 1� , �45�

whose roots are −1, 2, and ±i. The discriminant of D�H�P��
is −3600, the Euclidean norm �8. This implies a minimum
separation �0.07.

The usefulness of Eq. �44� is limited in the cases where
D[D�H�P��]=0, i.e., when there is more than one crossing at
the same parameter value, a phenomenon which is certainly
not rare. In such cases it is sometimes possible to remove the
repeated factors by hand and apply Eq. �44� to the remaining
polynomial factor. MATHEMATICA for instance has the com-
mand FactorSquareFree which performs this function.
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7. Degeneracy of an (avoided) crossing

Can we tell, without looking at the spectrum, exactly how
many eigenvalues are coincident or avoid each other at a
particular parameter value? We divide the answer to this
question into two parts. In the first part we show how much
information can be extracted from the discriminant itself. In
the second part we introduce subdiscriminants and quantify
the information that can be extracted from them.

(a) Discriminants. It will be sufficient to consider cross-
ings only. Before we answer the question posed above, it is
useful to reiterate the definition of a crossing: We define a
crossing to be the intersection of two eigenvalues. If m ei-
genvalues coincide at the same value of the parameter, the
number of crossings is given by the ways to pick a pair out
of m curves, i.e., the binomial factor � m

2
�. Since every cross-

ing leads to a quadratic factor in the discriminant according
to Sec. VI B, the corresponding exponent of the parameter in
the discriminant will be 2� m

2
�=m�m−1�. Given the form of

the discriminant, we can follow this chain of reasoning back-
wards in order to extract the number m of intersecting eigen-
values. For example in Sec. III, we found �=4P2. In this
case, the exponent of P implies that

2�m

2
� = 2. �46�

This has the solution m=2 and points to the intersection of
two eigenvalues at P=0.

The retrodictive power of this analysis decreases for more
general cases. One such case is where the eigenvalues all do
not coincide at the same value of the corresponding physical
observable �energy for example�, although they may coincide
for the same value of the parameter P.

Let us consider the simplest possible situation of this type
by considering an example where the dimension of the Hil-
bert space is n. We assume that m eigenvalues are coincident
at a single point and also that the remaining n−m eigenval-
ues are coincident at another value of the corresponding
physical observable. Both intersections occur at the same
value of the parameter, say P=a. Then the discriminant has a
factor

�P − a�2��m

2
�+�n−m

2
�� = �P − a�c. �47�

Given c �from the form of the discriminant�, the two parti-
tions of n can be uniquely found to be

m =
n

2
± �2c − n�n − 2��1/2. �48�

For n=2, c=2, we get m=0,2, which corresponds to the
specific case of Eq. �46�. So even in this case we can retrod-
ict. We now consider the general case of partitioning n ei-
genvalues among r crossing points—all at the same param-
eter value—in order to see if the number of crossings is
unique for each partition. For a matrix H�P� with n eigen-
values distributed amongst r crossing points, such that ni�
	2� eigenvalues coincide at the ith point, the total number of
crossings equals the half the corresponding exponent in the
discriminant, which we label c:

�n1

2
� + �n2

2
� + ¯ �nr

2
� =

c

2
. �49�

Simplifying, we see that the equation to be solved becomes

n1
2 + n2

2 + ¯ + nr
2 = c + n , �50�

where we have used the fact that �i=1
r ni=n. Since c+n is a

fixed �known� integer, the question now becomes: “For every
partition of n into a sum of integers each greater than two, is
the sum of the squares of those integers unique?” Interest-
ingly we have not been able to answer in the negative for any
specific r, although we have not tried to prove the result for
arbitrary r. The answer may already exist in number theory,
and would enable us to retrodict the crossing degeneracy
exactly albeit for a special category of spectra, where from
physical considerations we can argue for the absence of any
nondegenerate states at some value of the parameter P. How-
ever, it should be noted that we will still be unable to distin-
guish between different orderings of the ni on the ordinate of
the spectrum. For example we will not be able to tell, in
order of decreasing �say� energy, if 3,2,6 or 6,3,2 eigenvalues
are meeting in the spectrum at 3 different points for the same
value of the parameter.

If some of the eigenvalues do not cross at all, different
partitions can readily be shown to yield the same exponent c.
Consider n=6. In one case let six eigenvalues coincide pair-
wise at three different crossing points �for the same value of
P�. This yields c=2�3� � 2

2
�=6. In the second case, let three

eigenvalues coincide at a single crossing point, and the re-
maining three not at all. This yields c=2� � 3

2
�=6 also. Hence

in this case it is not possible to deduce the number of eigen-
values crossing at a parameter value uniquely.

As far as the discriminant is concerned, the answer to the
question posed in the beginning of this section can thus be
answered as follows. It is not generally possible to decipher
uniquely from the discriminant how many eigenvalues are
coincident at a particular parameter value without looking at
the spectrum. However, if the spectrum can be consulted the
combinatoric accounting of the exponents of the factors in
the discriminant provides a very useful check on the correct-
ness of the discriminant itself. This is particularly true if the
comparison is made for values of the parameter which cor-
respond to known symmetries—and hence degeneracies—of
the spectrum. An example of this will be provided in the
section on atoms in �8�.

(b) Subdiscriminants. There exist mathematical objects
that rigorously count the number of times a root is repeated
for a given polynomial �10�. These are called subdiscrimi-
nants �Sq

D� and are generalizations of the discriminant �S0
D�,

which tells us if any root occurs at least twice. For a p-fold
�p	2� root of the characteristic polynomial Eq. �6�, subdis-
criminants up to Sp−2

D will be zero.
In terms of the eigenvalues of H�P� the qth subdiscrimi-

nant is defined as �10�
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Sq
D�H�P�� = �

I�	1,...,n

#�I�=n−q

�
�i,j��I

i�j

n−q

��i − � j�2. �51�

Here � means “is a subset of,” # means “number of ele-
ments in,” and � means “is a member of.” The summation is
over I, which is chosen to be an �n−q� tuple of numbers
chosen from the set 	1, . . . ,n
. The product is over all the
choices of I. For simplicity we will often suppress the H�P�
label on the SD’s in what follows, i.e., we will refer to
Sq

D�H�P�� simply as Sq
D.

We further explain the notation of Eq. �51� by providing
an example. If we calculate S0

D, i.e., with q=0, there is then
only one way to choose I: It is a single n-tuple 	1, . . . ,n

containing all values from 1 to n. The product is then evalu-
ated by letting i , j run over all the n values in I subject to the
constraint i� j. We can then see that the S0

D actually gives us
back the discriminant of Eq. �7�:

S0
D�H�P�� = �

i�j

n

��i − � j�2. �52�

Let us now pick a case where q�0. We assign a value to n
in order to make the example transparent. Let n=3. In this
case, explicitly from Eq. �52�

S0
D = ��1 − �2�2��2 − �3�2��1 − �3�2, �53�

which equals zero when any two of the roots are equal. Let
us consider q=1. The number of elements in I is now n−q
=3−1=2 and the summation is over the three 2-tuples
	1,2
 , 	2,3
, and 	1,3
. Taking the product so that i , j run
over the values in each 2-tuple so that i� j holds, we find

S1
D = ��1 − �2�2 + ��2 − �3�2 + ��1 − �3�2, �54�

which equals zero only when all three roots are equal, i.e.,
when the corresponding Hamiltonian has a threefold root. In
this case, of course S0

D from Eq. �53� is also zero. Thus for a
threefold root Sq

D’s up to q=3−2=1 are zero. We see that the
subdiscriminants account for root multiplicities in a natural
way, and thus inform us of the number of �avoided� crossings
at a particular parameter value. However, as in Sec. VI B�a�
we cannot distinguish between �avoided� crossings that occur
at different values of the energy but the same value of the
parameter. For this, the spectrum has to be consulted. The
method of subdiscriminants is useful when the discriminant
does not display the multiplicities of its roots explicitly.
Some caution needs to be exercised when using this method
if the same parameter value corresponds to crossings as well
as avoided crossings.

Subdiscriminants may be found without consulting the
spectrum and an analog exists to Eq. �9� for discriminants,
written using the determinant of the �n−q�� �n−q� Hermite
matrix of the characteristic polynomial G�E� in Eq. �6� �10�:

Sq
D�H�P��

= 

N0 N1 . . . . . . Nn−q−1

N1 . . . . . . Nn−q−1 Nn−q

. . .

. . . Nn−q−1 Nn−q . . . . . .

Nn−q−1 Nn−q . . . . . . N2n−2q−2


 ,

�55�

where the �i , j�th matrix element is given by the Newton sum
Ni+j−2 defined by

Nw = �
i=1

n

�i
w. �56�

The Newton sums are basically sums of powers of the eigen-
values of D�H�P��; they can also be obtained purely from the
coefficients Ci of Eq. �6� from the recurrence relations:

N0 = n ,

CnN1 + Cn−1 = 0,

CnN2 + Cn−1N1 + 2Cn−2 = 0. �57�

More generally,

CnNd + Cn−1Nd−1 + ¯ + Cn−d+1N1 + dCn−d = 0. �58�

Subdiscriminants are specializations of subresultants, which
are defined in Mathematica and Maple. Using such functions
we can verify that the first two subdiscriminants of the poly-
nomial

P�P − a�3 = P4 − 3aP3 + 3a2P2 − a3P , �59�

where a is a real constant, vanish. This confirms the exis-
tence of the threefold root at P=a.

C. Symmetries and crossings

If the discriminant is a polynomial whose roots can be
found algebraically, which is usually not the case, the values
of the parameter at which �avoided� crossings occur can be
found in terms of the remaining parameters of the physical
system. Apart from allowing us to track the crossing trajec-
tories for the full parameter space of the physical system,
these analytic expressions can also reveal other useful infor-
mation. For example if the analytic expressions for a number
of crossings imply they are close-lying, but can never be
made to coincide exactly, they point to a symmetry of the
physical system that is only approximate and not exact. An
example of this is given using atoms in the accompanying
paper �8�.

The roots of the discriminant D�H�P�� can be obtained in
terms of radicals only if the Galois group of the discriminant
is solvable �32�. Is this the case only if the original Hamil-
tonian is solvable, or more specifically, only if the Galois
group of the characteristic polynomial G�E� �Eq. �6�� is solv-
able? At present we are not aware of an answer to this ques-
tion.
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A further question to be discussed in Sec. VIII C below is
whether the symmetry of the discriminant in a certain param-
eter is also true of the spectrum. For example if the discrimi-
nant is even in P, is the spectrum also invariant under the
transformation P→−P? If so, the discriminant could be used
to find the symmetry of the spectrum even when the Hamil-
tonian cannot be analytically solved, i.e., for arbitrary size n.

D. Visualizing crossings

Crossings can sometimes be difficult to visually distin-
guish in a spectrum, especially if there are many eigenvalues
spaced closely together. In this section we show how the
discriminant can provide a visual aid to locating crossings
that is often superior to the spectrum.

Although the discriminant equals zero whenever there is a
crossing in the spectrum, typically it is not easy to locate
these zeros in a plot of the discriminant. The reason for this
difficulty can be seen from the following example. Imagine a
Hamiltonian defined on a Hilbert space of dimension 5, and
depending linearly on a parameter P. Using n=5 and q=1 in
Eq. �16� we find the degree of the discriminant could be as
large as 20 in P. For such a nonlinear polynomial it is not
easy to capture on a single scale the full range of features as
each of the monomials dominates in a different regime of the
parameter P. A smoother representation better suited to our
purpose is provided by

L†D�H�P��‡ = log†D�H�P�� + 1‡ �60�

which dips to zero at every level crossing, where D�H�P��
=0. The argument of the logarithm is bound from below by
one and the logarithm itself by zero due to the nonnegativity
property of the discriminant (D�H�P��	0) discussed in Sec.
IV. In Eq. �60� the logarithm has been taken to the base e.

Plots illustrating Eq. �60� are shown in the accompanying
paper, along with the relevant spectra. Before moving on we
pause to mention two issues. First, in practice we have often
found it necessary to scale D�H�P�� with some number NS

�0 in order to optimize the visibility of the logarithm in Eq.
�60�. That is we usually plot log�D�H�P�� /NS+1� and adjust
NS to obtain good visibility.

Second, in all the spectra we plot, Eq. �60� does not dis-
play avoided crossings. The reason for this is as follows. In
principle, a polynomial that is everywhere non-negative
(such as D�H�P��) exhibits a minimum at values of the pa-
rameter that correspond to complex pairs of roots. Equation
�60� is indeed capable of revealing this behavior, but it turns
out that all the avoided crossings in our spectra are very
shallow, and the minima corresponding to them are washed
out by stronger features due to crossings nearby. Such “hid-
den” avoided crossings are quite well known in molecular
physics �33� and are referred to in the accompanying paper
�8�.

VII. THE WIGNER–VON NEUMANN THEOREM

The simple 2�2 example demonstrated in Sec. III above
allows us to make contact with the seminal paper of Wigner
and von Neumann �2� which established the rules for curve

crossing in systems described by parametrized matrices.
Rewriting Eq. �1� as

M�P� = �E1 V

V E2
� = �E1 0

0 E2
� + �0 V

V 0
� , �61�

we interpret it to be a representation of the operator equation

M̂�P� = M̂o�P� + V̂�P� . �62�

The �avoided� crossings in the spectrum of the operator

M̂�P� are related to its symmetries by assuming that its rep-
resentation in Eq. �61� was made using the eigenbasis �C� of

some operator Ĉ which commutes with both M̂o�P� and

M̂�P� and therefore also with V̂�P�, i.e.,

�Ĉ,M̂�P�� = �Ĉ,M̂o�P�� = �Ĉ,V̂�P�� = 0. �63�

Evaluating the matrix element of the last relation in Eq. �63�
we find

�C��V̂�P��C�� = 0, �64�

unless C�=C�. Equation �64� implies that barring “acci-

dents” the matrix elements of V̂�P� vanish unless the two

states in the Hilbert space of M̂�P� have the same symmetry.

Here by symmetry we mean the eigenvalue of Ĉ. In particu-

lar the matrix elements of V̂�P� equal zero if the states are
not of the same symmetry. We are now ready to examine the
relation of curve crossing to symmetry. Looking at the rep-

resentation of M̂�P� in Eq. �61� we see that in order to have
a level crossing between the eigenvalues �± of the real sym-
metric matrix M�P� the conditions are

E1 − E2 = 0,

V = 0. �65�

If the two eigenstates of M�P� are of different symmetry then
V�0 and only the first condition remains to be satisfied �15�.
This can be arranged using a single tunable parameter. On
the other hand, if the two states are of the same symmetry
then V�0 except accidentally. In this case two tunable pa-
rameters are required to effect a crossing between �±. If
M�P� were to be a Hermitian matrix, a single tunable param-
eter would still suffice to make two eigenstates of different
symmetry cross. However, the number of tunable parameters
required to make two eigenstates of the same symmetry cross
would be three �34�. This is so because V is no longer purely
real and two parameters are required to make its real and
imaginary parts separately equal to zero.

The arguments given above are the essence of the Wigner-
Neumann noncrossing rule, which is sometimes broadly
stated as “states of the same symmetry do not cross, except
accidentally.” In the accompanying paper we will show the
results of algebraic technique are not only compatible with
the Wigner–von Neumann theorem, but in fact provide ex-
plicit and interesting examples of it. For example, for the real
symmetric atomic Breit-Rabi Hamiltonian where the mag-
netic field is the only tunable parameter, we confirm that all
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crossings occur between states of different symmetry, i.e.,
there are no accidental crossings. Further, all avoided cross-
ings occur between states of like symmetry. In this case by
symmetry we mean the eigenvalues of the projection of the
angular momentum along the direction of the magnetic field.

The Wigner–von Neumann noncrossing rule is very use-
ful as a general guideline, and in the construction of corre-
lation diagrams in particular. However when �avoided� cross-
ings do occur it does not provide precise quantitative
information about their location, number or degeneracy. It
was partly a dissatisfaction with the Wigner–von Neumann
theorem that led us to investigate techniques that could yield
more quantitative information about �avoided� crossings, ac-
cidental or otherwise.

VIII. DISCUSSION

Here we discuss three aspects of the work presented
above. First, we mention the original contributions of this
article in order to distinguish them from the material that has
been collated from the existing literature. Second, we present
a critique of algebraic theory. Last, we point out some inter-
esting directions for future research.

A. Original contributions

To the best of our knowledge, the following results pre-
sented in this article are original: In Sec. V B, the discussion
of the direct product basis as the algebraically most conve-
nient representation for �avoided� crossing analysis; in Sec.
V C the mention of the translational invariance of the dis-
criminant under addition of an arbitrary function to the diag-
onal elements of H�P�; in Sec. VI B 1 the use of Eq. �18� to
connect the presence of every �avoided� crossing to a qua-
dratic factor in the discriminant and hence to derive the
bound on the total number of �avoided� crossings in Eq. �23�;
in Sec. VI B 5 the use of Sturm-Habicht sequences to show
that crossings can be found even if information about the
Hamiltonian of the system is incomplete; in Sec. VI B 7�a�
the derivation of the combinatoric connection between the
�algebraic� degeneracies of the roots of the discriminant and
the �spectral� degeneracies of the Hamiltonian; and in Sec.
VI D the method of visualizing crossings using the discrimi-
nant.

B. Critique

We list criticisms of algebraic technique in the order of
appearance of the results in the article.

In Sec. II it is claimed that algebraic technique is a good
way to distinguish between finely avoided crossings and ac-
tual crossings. As pointed out in �35� for some purposes the
distinction is not worth making, since crossings are unstable
to arbitrary, small perturbations. Such instabilities can even
arise if the spectrum is calculated with a truncated Hilbert
space, and are not due to any physical effect. An example of
this is the H2

+ molecular ion which can be solved exactly and
yields symmetry-allowed crossings. When basis sets are used
to calculate the spectrum however, these crossings turn into
avoided intersections �15�. As mentioned in the same section

�Sec. II� a shortcoming of algebraic technique is that it does
not yield information about eigenvalues, eigenvectors or the
physical variable such as energy being described by the spec-
trum. It cannot provide information about how big the gap in
an avoided crossing is, for instance.

In Sec. VI A it is pointed out that the proximity of
�avoided� crossings along the ordinate of the spectrum can-
not be obtained from the discriminant. Two crossings may
occur for the same value of the energy spectrum abscissa,
�i.e., parameter� but may be widely separated in energy.

In Sec. VI B 7 it was found that although algebraic tech-
nique can tell us the exact number of crossings at any pa-
rameter value, it cannot describe the way in which eigenval-
ues are distributed among the crossings except in very
special cases.

Not addressed in the treatment above is a difficulty we
encountered while applying algebraic technique to some
typical atomic problems: Sometimes for a given Hamiltonian
the discriminant is identically zero. This occurs when some
remaining symmetry has not been removed from the prob-
lem, and makes algebraic study of the �avoided� crossings
impossible. In this case an expression for the discriminant
may be recovered either by putting in a symmetry-breaking
term in the Hamiltonian “by hand,”—or by treating the two
subspaces with different symmetry independently as un-
coupled problems. A typical example in this class is the Stark
Hamiltonian for a polar molecule �36�, where even after the
application of an electric field there remains a degeneracy
between the ±M subspaces where �M� is the projection of the
angular momentum along the electric field. A transverse field
can be introduced “by hand,”—or the ±M manifolds can be
treated separately �as they do not interact with each other in
the problem� in order to recover the discriminant.

As an overall comment we reemphasize that the sharpest
restrictions on algebraic technique arise from the expense of
the symbolic computation required to make it useful.

C. Future directions

We discuss a number of interesting questions raised by the
work presented in this article. The roots of a polynomial can
be solved in terms of radicals if the Galois group of the
polynomial is solvable �32�. Thus the eigenvalues of H�P�
can be obtained in terms of radicals if G�E� �Eq. �2�� has a
solvable Galois group. Similarly, the roots of D�H�P�� can
be obtained in terms of radicals if its Galois group is solv-
able. An interesting question is the link between the solvabil-
ity of the two polynomials G�E� and D�H�P��. Does one
imply the other, and is the converse true? Is it possible to
obtain the parameter values for the �avoided� crossings in
terms of radicals even if the eigenvalues of the Hamiltonian
cannot be so obtained?

A question similar in nature to the one asked above is as
follows: Is the spectrum always symmetric in some param-
eter P if the discriminant is also? We have seen explicit
examples of this in Sec. III where �=4P2 and in Sec. VI
where D�M�P��= Pr

2+ P2. In �8� we will see a case where the
discriminant is asymmetric, as is the spectrum. The answer
to the question posed would seem to lie in the examination of
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the Ci in Eq. �2�. If they are even functions of P, both
D�H�P�� and the eigenvalues of H�P� should be as well.
However it is not clear if the conclusion is necessarily the
opposite if all or some of the Ci are odd or of no particular
symmetry in P. Further, a spectrum can be symmetric in a
parameter even if the individual eigenvalues are not. An ex-
ample of this is the Breit-Rabi spectrum presented in the
accompanying paper �8�. If a link can be made in the general
case, the discriminant can be used to predict the symmetry of
the Hamiltonian with respect to the parameter P. This would
be especially useful if the spectrum cannot be solved alge-
braically.

There is also the open question mentioned at the end of
Sec. VI B 7�a�. It would be interesting to see if the partition-
ing of m eigenvalues among r crossing points with a mini-
mum of two eigenvalues per point can be done to yield a
unique number of crossings for each partition. This would
imply we can extract the crossing degeneracies uniquely
from the discriminant in a special case where there no non-
degenerate states exist at a particular parameter value. How
to do this efficiently for large m is a separate question, as the
number of partitions p�n� grows quickly with n as p�n�
�e
�2n/3 / �4n�3� �37�.

Most of the examples in this article as well as the realistic
problems in the accompanying paper deal with one or two
tunable parameters. Obvious extensions of our work include
generalizations to a larger number of parameters �i.e., multi-
variate polynomials� of Sturm-Habicht technique, for in-
stance. Also, an important class of systems to which alge-
braic technique should be extended is that of open or
dissipative systems �38� such as in microwave cavities. In
these systems, the eigenvalues have finite linewidths which
may be exchanged at an avoided crossing, leading to inter-
esting effects such as resonance trapping �39�. Such systems
are most generally described by non-Hermitian matrices.
This requires a treatment where H�P� is no longer Hermitian
and many of the conclusions of this article will have to be
suitably modified.

As a closing remark we mention that a variety of math-
ematics seems to be linked to questions regarding level-

crossing in physical systems. In this article we have used
linear algebra, complex analysis, combinatorics and alge-
braic geometry, and touched upon the theory of partitions.
From our perusal of other sources it seems there are more
links. We end the section with the following intriguing quote
�40�: “The place of discriminants in the general theory of
hypergeometric functions is similar to the place of quasiclas-
sical approximation in quantum mechanics.”

IX. CONCLUSION

Mathematical techniques for algebraically locating and
analyzing �avoided� crossings in physical systems have been
developed in some detail. The chief tool used in this ap-
proach is the discriminant, an elegant bookkeeping device
for matrix Hamiltonians of size less than 5�5 and a very
useful diagnostic for systems of larger dimension.

Given a physical system, we have shown how to find a
bound on the number of �avoided� crossings in its spectrum,
the scaling of this bound with the size of the Hilbert space,
and the parametric dependencies of the Hamiltonian, the in-
terval in which the �avoided� crossings all lie in parameter
space, the number of crossings at any given parameter value,
and the minimum separation between the �avoided� cross-
ings. We have also shown how crossings can reveal the sym-
metries of the physical system, how �avoided� crossings can
always be found without solving for the eigenvalues, how
they may sometimes be found even in case the Hamiltonian
is not fully known, and how crossings may be visualized in a
more direct way than revealed by the spectrum. In the ac-
companying paper �8� we apply these techniques to atoms
and molecules in the context of Feshbach resonances.

ACKNOWLEDGMENTS

M.B. would like to thank Dr. S. R. Muniz for encouraging
him to pursue this research, and Dr. L. Baksmaty, Professor
S. Basu, and Dr. M. Trott for technical help. This research
was funded by DOE and ARO.

�1� W. R. Hamilton, Dublin Univ. Rev. Q. Mag 1, 795 �1833�.
�2� J. von Neumann and E. P. Wigner, Z. Phys. 30, 467 �1929�.
�3� L. Landau, Phys. Z. Sowjetunion 2, 46 �1932�.
�4� C. Zener, Proc. R. Soc. London, Ser. A 137, 696 �1932�.
�5� M. V. Berry and M. Wilkinson, Proc. R. Soc. London, Ser. A

392, 15 �1984�.
�6� J. R. Walkup, M. Dunn, D. K. Watson, and T. C. Germann,

Phys. Rev. A 58, 4668 �1998�.
�7� R. G. Unanyan, N. V. Vitanov, and K. Bergmann, Phys. Rev.

Lett. 87, 137902 �2001�.
�8� M. Bhattacharya and C. Raman, following paper, Phys. Rev. A

75, 033406 �2007�.
�9� M. Bhattacharya and C. Raman, Phys. Rev. Lett. 97, 140405

�2006�.
�10� S. Basu, R. Pollack, and M. F. Roy, Algorithms in Real Alge-

braic Geometry �Springer-Verlag, Berlin, 2003�.
�11� I. Freund, J. Opt. A, Pure Appl. Opt. 6, S229 �2004�.
�12� V. V. Stepanov and G. Muller, Phys. Rev. E 58, 5720 �1998�.
�13� W. D. Heiss and W. H. Steeb, J. Math. Phys. 32, 3003 �1991�.
�14� T. J. Davis, Eur. Phys. J. D 18, 27 �2002�.
�15� D. R. Yarkony, Rev. Mod. Phys. 68, 985 �1996�.
�16� C. M. Bender, H. J. Happ, and B. Svetitsky, Phys. Rev. D 9,

2324 �1974�.
�17� C. M. Bender and S. A. Orszag, Advanced Mathematical Meth-

ods for Scientsists and Engineers �McGraw-Hill, New York,
1978�.

�18� A. Nishino and T. Deguchi, Phys. Rev. B 68, 075114 �2003�.
�19� N. Johansson and E. Sjöqvist, Phys. Rev. Lett. 92, 060406

�2004�.
�20� N. Johansson and E. Sjöqvist, Phys. Rev. A 71, 012106

M. BHATTACHARYA AND C. RAMAN PHYSICAL REVIEW A 75, 033405 �2007�

033405-14



�2005�.
�21� A. A. Kotze and W. D. Heiss, J. Phys. A 27, 3059 �1994�.
�22� R. Gonzalez-Ferez and J. S. Dehesa, Phys. Rev. Lett. 91,

113001 �2003�.
�23� H. C. Longuet-Higgins, Proc. R. Soc. London, Ser. A 344, 147

�1975�.
�24� A. J. Stone, Proc. R. Soc. London, Ser. A 351, 141 �1976�.
�25� E. A. Yuzbashyan, W. Happer, B. A. Altshuler, and S. B. Sas-

try, J. Phys. A 36, 2577 �2003�.
�26� P. D. Lax, Linear Algebra �Wiley, New York, 1997�.
�27� J. P. Tignol, Galois’ Theory of Algebraic Equations �World

Scientific, Singapore, 2001�.
�28� N. V. Ilyushechkin, Mat. Zametki 51, 230 �1992�.
�29� A. G. Akritas, Elements of Computer Algebra �Wiley, New

York, 1989�.
�30� A. Cohen, H. Cuypers, and H. Sterk, Some Tapas of Computer

Algebra �Springer, Berlin, 1999�.

�31� M. Mignotte, Mathematics for Computer Algebra �Springer-
Verlag, Berlin, 1991�.

�32� D. Cox, Galois Theory �Wiley, New York, 2004�.
�33� T. P. Grozdanov and E. A. Solov’ev, Phys. Rev. A 42, 2703

�1990�.
�34� E. Teller, J. Phys. Chem. 41, 109 �1937�.
�35� C. A. Mead, J. Chem. Phys. 70, 2276 �1978�.
�36� T. Hain, R. M. Moison, and T. J. Curtiss, J. Chem. Phys. 111,

6797 �1999�.
�37� T. Apostol, Modular functions and Dirichlet Series in Number

Theory �Springer-Verlag, Berlin, 1990�.
�38� J. Wiersig, Phys. Rev. Lett. 97, 253901 �2006�.
�39� E. Persson, I. Rotter, H. J. Stöckmann, and M. Barth, Phys.

Rev. Lett. 85, 2478 �2000�.
�40� I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, Dis-

criminants, Resultants, and Multidimensional Determinants
�Birkhauser, Boston, 1994�.

DETECTING LEVEL…. I. MATHEMATICAL… PHYSICAL REVIEW A 75, 033405 �2007�

033405-15


