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We calculate the electron energy spectrum of ionization by a high-energy photon, accompanied by creation
of an e−e+ pair. The total cross section of the process is also obtained. The asymptotics of the cross section does
not depend on the photon energy. At the photon energies exceeding a certain value �0 this appears to be the
dominant mechanism of formation of the ions. The dependence of �0 on the value of nuclear charge is
obtained. Our results are consistent with experimental data.
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I. INTRODUCTION

In the present paper we calculate the cross sections � for
formation of ions in interactions of the high-energy photons
with atoms. We calculate also the distribution d� /d� for the
process in which the final state contains an ion and an elec-
tron with energy �. We consider the high-energy asymptotics
of these characteristics, i.e., we consider the photon energies

� � m , �1�

with m standing for the electron mass at rest �we employ the
system of units with �=c=1�. We shall include only the
lowest terms of expansion in �−1 in our calculations.

The simplest mechanism for formation of ions is the
photoionization �photoeffect�, in which the final state con-
sists of ion and the continuum electron. It is also known that
while the energies increase, the Compton scattering on the
bound electron dominates. Recently, Ionescu et al. �1� noted
that at still higher energies ions are produced mainly being
accompanied by creation of electron-positron pairs and pro-
vided estimates for the cross section �.

Here we carry out the calculations for the distributions
d� /d� and for the cross section �. We focus on the case of
not very large values of nuclear charge

��Z�2 � 1, �2�

adding, however, analysis of the case, when ��Z�2 is not
considered as a small parameter. When the unequality �2� is
true, we can separate three scales of the electron kinetic en-
ergies �. Besides the characteristic values of � and m, the
third one is the electron binding energy Ib. For K shell in the
hydrogenlike approximation Ib= I=�2 /2m, with �=m�Z.

We demonstrate that for the energies ��m the distribu-
tion d� /d� is determined by the vacuum assisted mecha-
nism. The ionized electrons can be distinguished from those
of the e−e+ pair since the latter carry mostly energies �i
���m. We show how the distribution can be presented in
terms of the pair creation on a free electron at rest. We show
also that at these values of the electron energies the distribu-
tion does not depend on the details of atomic structure. At
��m the distribution behaves as �−1. This means that in
order to calculate the cross section � one has to include the

region �� I which should be treated separately. We show
that in the asymptotics �1� the cross section reaches a con-
stant value and calculate it.

In Sec. II we present general equations. In Sec. III we
calculate distribution d� /d� for �� I. In Sec. IV we calcu-
late this distribution for �� I. In Sec. V we carry out match-
ing of the energy distributions in the two regions. In Sec. VI
we calculate the cross section of ion production � and com-
pare results of our calculations with experimental data. We
summarize in Sec. VII.

II. NOTATIONS AND GENERAL FORMULAS

In all the processes considered in the paper an electron is
removed from the atom to continuum. It will be instructive to
consider simultaneously a similar process on the free elec-
tron at rest. For the latter case we denote the four-momenta
of the electrons as p1,2 with the time component p10=m and
p1=0. We denote four-momenta of the electron and positron
of the created e−e+ pair as pe and pp correspondingly. For
each pi�i=e , p ,1 ,2� the total energy is Ei=�m2+pi

2, while
kinetic energies are �i=Ei−m. The four-momentum of the
incoming photon is k, while for its three-dimension momen-
tum we can write �k�=�.

In the pair production on the nucleus the latter accepts
linear momentum

q = k − pe − pp. �3�

In the pair production on free electron momentum �3� is
transferred to the latter. In pair production on the bound elec-
tron momentum

Q = q − p2 �4�

is transferred to the residual ion.
The cross section for pair creation in the field of the

nucleus was first calculated by Bethe and Heitler �2�. It can
be represented as

d�BH =
	

�
�FBH��,pe,pp��2
�� − Ee − Ep�d� , �5�

with the phase volume d�= �d3pe /2Ee�2	�3�
��d3pp /2Ep�2	�3�.
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At ��m it is convenient to present momenta pi �i
=e , p� as pi= �Ei , piz ,pit� with the axis z directed along pho-
ton momentum k. The lower index t denotes the components,
which are orthogonal to k. The energy distributions are de-
termined by small pit�m �i=e , p� �2,3� with q being deter-
mined by Eq. �3�. Thus presenting

Ei = �piz� +
m2 + pit

2

2�piz�
, �6�

we find that the longitudinal component of the recoil mo-
mentum q is m /� times smaller than the transverse one.
Hence we can write

q = − pet − ppt. �7�

For the pair creation in the field of the bound electron the
cross section is

d� =
	

�
�F��,pe,pp,p2��2
�� − Ee − Ep − E2 + m − Ib�d�b,

�8�

with F being the amplitude of the process, while d�b
=d��d3p2 /2E2�2	�3� with Ib standing for the ionization po-
tential of the bound state.

To avoid writing complicated expressions which describe
the third order amplitudes FBH and F we present them by the
Feynman diagrams, following �1�. The pair creation in the
field of the nucleus is shown by the diagrams of Fig. 1. The
pair creation on the bound electron is shown by the diagrams
of Fig. 2. The possible permutations of the final state elec-
trons should be added. Figures 2�a� shows creation of pairs
by the photon with further scattering on the bound electron.
In Fig. 2�b� the photon is initially absorbed by the bound
electron with further radiation of a photon which creates the
electron-positron pair.

III. FAST IONIZED ELECTRONS

Here we consider the case of fast ionized electrons with
the energies

�2 � I , �9�

with I being the ionization potential of the K shell electron.
We focus on the energies �2��, since these values provide
the leading contribution to the cross section.

The electrons with the energies �2�� can come from
e−e+ pairs and also can be caused by removal of the bound
electrons to continuum. In the former case the distribution
d� /d� drops as �−1 �2,3�. We shall see that in the latter case
it does not depend on �. Thus the electrons with energies
�2�� are mainly those which are knocked out from the
atom.

Momentum Q should be transferred to residual ion. It can
be transferred by the initial state bound electron or by final
state continuum lepton �electron or positron�. It is known �3�
that each interaction of the continuum electron with residual
ion provides a factor �ZEi / pi. On the other hand, in the
bound state wave function momentum Q is compared to the
bound state characteristic momentum �b. The wave function
reaches its largest values at Q��b, being strongly quenched
at Q��b. Thus in the amplitude F�pi ,Q� �with pi denoting
momenta of the outgoing electrons and that of positron� we
can neglect Q everywhere except the bound state wave func-
tion. This enables us to tie the amplitude of the process on
the bound electron with that on the free electron F0�pi�,
known as triplet production. Such interpretation of the pro-
cesses on the bound electrons reflects the ideas of Bethe �4�
�see also analysis presented in �5��.

Assuming that the bound electron is described by a
single-particle wave function 
�r� we can write for the am-
plitude of the pair creation on the bound electron

F�pi,Q� = 
F�Q�F0�pi� . �10�

Here


F�Q� =� d3r 
�r�exp�− i�Q · r�� �11�

is the Fourier transform of the wave function 
�r� also re-
ferred to as the wave function in momentum space. To sim-
plify notations we shall omit the lower index F further.

Note that the outgoing electrons can be described by
plane waves due to a small value Q�m of momentum trans-
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FIG. 1. Feynman diagrams describing creation of an e−e+ pair in
the field of the nucleus by the photon. Wavy line shows the photon,
solid lines show electron and positron, and dashed line stands for
the interactions between the created pair and the nucleus.
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FIG. 2. Feynman diagrams describing creation of an e−e+ pair
accompanied by removal of the bound electron �denoted by dark
blob� to continuum state with asymptotic momentum p2. Other no-
tations are the same as in Fig. 1.
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ferred to the nucleus. In other words, this is due to the exis-
tence of a kinematical region, where similar process on a free
electron could take place. For example, there is no such ki-
nematical region for the photoeffect, and the plane wave de-
scription for relativistic energies is not sufficient �3�. See a
more recent discussion in �5�.

Replacing d3pe by d3Q in the phase volume we find for
the cross section

d� =
	

�
�F0��,pe,pp,p2��2
�� − Ee − Ep − E2 + m − Ib�

�
1

2Ee

d3pp

2Ep�2	�3

d3p2

2E2�2	�3 �
�Q��2
d3Q

�2	�3 . �12�

Neglecting Ib with respect to m and � we find

d� = d�0�
�Q��2
d3Q

�2	�3 , �13�

with �0 being the cross section of the process
on free electron. After integration over Q providing
	�
�Q��2�d3Q / �2	�3�=1 �normalization condition� we find
the distributions d� to be equal to those of the process on the
free electron.

The triplet production was much studied �6–10�. It was
shown in �6�, that in the considered region the diagrams of
Fig. 2�b� as well as the exchange diagrams of Fig. 2�a� can
be neglected. Analytical expression for the differential distri-
bution integrated over the variables of the e−e+ pair was ob-
tained in �7�. The leading term of expansion in powers of �−1

for the distribution of the ionized electron can be written as

d�

d�2d�2 = ne�
3W��2,�2� . �14�

Here �2= �pe+ pp�2, it can be expressed in terms of variables
of the ionized electron as �2=−2�2��+m�+2�p2t2; t2

= �k ·p2� /�p2, and ne stands for the number of the bound
electrons in the atom. Evaluating Eq. �2.4� of �7� we find

W��2,�2� =
A��2,�2�

�2B��2,�2�
, �15�

with

B��2,�2� = ��2 + 2m�2�2 �16�

and

A��2,�2� = 4�
1 − L + 4m
��2�m − 4�2�� + L�2m2�2�2 + m� + �2��2 − m��

B��2,�2� � . �17�

Here �= ���2−4m2� /�2�1/2 and L= �1/��ln��1+�� / �1−���.
Since the variable �2 can be viewed as the squared energy of the e−e+ pair in their c.m. frame, we can write the limitation

�2�4m2. The upper limit is �2=2m� �7�. The energy distribution can be obtained by integration of the differential cross
section �15� over �2 in these limits. The value is determined by the lower limit of �2, providing

d�

d�2
=

ne�re
2

m
Tf
�2

m
� , �18�

with re=� /m, and �the lower index f comes from “fast”�

Tf�x� =
2

x
�−

x3 + x2 + 2x − 1

x2�2 + x�2 +
2�2x4 + 7x3 + 16x2 + 5x − 3�

3x5/2�2 + x�5/2 ln��x/2 + �x/2 + 1� −
2�1 − 4x�

15 2F1
2,4,
7

2
,−

x

2
�
 . �19�

Here x=�2 /m. The function Tf�x� is shown in Fig. 3. At x
�1 we find

Tf�x� =
14

9

1

x
. �20�

Note that Eq. �19� is not true for �2��. Using Eq. �6� one
can see that momentum transferred to the residual ion cannot
be made as small as Q�m if all the three final state leptons
carry the energies �i��.

Thus Eq. �19� is true for I��2��. Since for �2�m the
distribution behaves as �2

−1, the region �2� I provides a con-
tribution of the same order of magnitude to the total cross
section.

IV. SLOW IONIZED ELECTRONS

Now we consider the case �2� I. In this case the outgoing
electron carries momentum p2 of the order of the binding
momentum ��m. Thus momentum Q transferred to the re-
sidual ion can be as small as � only if momentum q trans-
ferred to the atom is also of the order of �. Hence the am-
plitude of the ionization shown in Fig. 2�a� can be written as

F�pi,q� =
1

Z
FBH�pi,q��

b

�b�p2,q� , �21�

with
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�b�p2,q� =� d3r
p2

* �r�
b�r�exp�− i�q · r�� . �22�

Here 
p2
is the wave function of the outgoing electron with

asymptotical momentum p2 and b denotes the bound elec-
tron. Since p2��, the interactions between the outgoing
electron and the residual ion cannot be treated perturbatively.

Thus we can write

d� =
1

Z2d�BH�
b

��b�p2,q��2
d3p2

�2	�3 . �23�

The Bethe-Heitler distribution

d�BH = Rd��, d�� = dEppetdpetpptdpptd� ,

with �2,3�

R =
8�re

2Z2EeEp

	q4�3 H �24�

and

H = −

−

2

�1 + 
−
2�2 −


+
2

�1 + 
+
2�2 +

�2

2EeEp


−
2 + 
+

2

�1 + 
−
2��1 + 
+

2�

+ 
Ee

Ep
+

Ep

Ee
� 
−
+ cos �

�1 + 
−
2��1 + 
+

2�
�25�

�here we denoted 
−= pet /m, 
+= ppt /m� should be evaluated
for pit�m, as in the Bethe-Heitler case, but now we also
need q��b�m. This means that �pet− ppt���b� pet,pt and
�	−����b /m�1. Introducing variables q and t= �pet

− ppt� /q �−1� t�1�, we can present Eq. �25� in the form

H =
q2

m2�1 + 
+
2�2
� +

4
+
2t2

�1 + 
+
2�2� , �26�

with

� =
Ee

2 + Ep
2

2EeEp
�Ee = � − Ep� , �27�

while the phase volume in Eq. �23� becomes

d�� = dEpppt
2 dppt

dt

2�1 − t2�1/2dq2. �28�

After integration over the positron variables and over t we
find

d� =
14

9
�re

2�
b

��b�p2,q��2
dq2

q2

d3p2

�2	�3 . �29�

The factors �b�p2 ,q� turn to zero at q=0 due to orthogonal-
ity of the wave functions involved. Thus �b�p2 ,q� contains q
as a factor at q→0, and the integral over q on the right-hand
side �RHS� of Eq. �29� provides a finite value.

The factors �b�p2 ,q� have been computed for many cases
in connection with the electron-atomic scattering. Here we
present calculations with the nonrelativistic Coulomb func-
tions. We shall provide results for K shell electrons. Thus the
further results of this section are actually true for the ground
states of relatively light �Eq. �2�� single-electron ions.

Straightforward calculations provide

��K�p2,q��2 = 28	N2 exp�2���

�
�5�„q2 − �p2 · q�…2 + �2�p2 · q�2�

a4�b�2
. �30�

Here �=m�Z is the averaged momentum of the K electron
and

� =
�

p2
=� I

�2
�31�

is the Sommerfeld parameter of interaction between the out-
going electron and the nucleus. The other notations in Eq.
�30� are a= �p2−q�2+�2, b=q2− �p2+ i��2, while �=arg b
=arg�q2+�2− p2

2−2i�p2�. The factor

N2 = N2�	�� =
2	�

1 − exp�− 2	��
�32�

is the squared normalization factor of the outgoing electron
wave function.

Presenting the phase volume of the outgoing electron as
d3p2 / �2	�3=mp2d�2d� / �2	�3, we can carry out integration
over the solid angle �

� d�

�2	�3 ��K�p2,q��2 = q2X�p2,q�, X�p2,q�

=
27

3	
N2 exp�2���

u�p2,q�
v�p2,q�

. �33�

Here u�p2 ,q�=�5�p2
2+3q2+�2� and v�p2 ,q�= ��q2− p2

2�2

+2�2�q2+ p2
2�+�4�3. Combining Eqs. �29� and �33� we can

write

FIG. 3. The function Tf�x� describing energy distributions of
fast electrons as defined by Eq. �19�, with x standing for the electron
kinetic energy in units of the electron mass.
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d�

d�2
=

14

9
�re

2mp2� dq2X�p2,q� . �34�

Introducing

� =
�2

I
= �−2, �35�

we find

d�

d�
=

14

9
�re

2K��� , �36�

with

K��� =
26

3	�
N2�

0

�

dx
e−2�1/���� + 3x�
�x2 + 2�x + �2�3 , �37�

with �=1+�, �=1−�, and �1=arg�x+�+2i���.
Thus the energy distribution can be presented as

d�

d�2
=

�re
2

I
Ts��� �38�

�the lower index s comes from “slow”� with I=m��Z�2 /2
being the K-electron binding energy, and

Ts��� =
14

9
K��� . �39�

The function Ts��� is shown in Fig. 4.
Since N2��−1/2 at �→0—see Eq. �32�—we find a non-

zero value for

K�0� = 1 −
7

3
exp�− 4� � 0.957. �40�

Using Eq. �32� one can present Eq. �37� also as

K��� =
27

3�1 − e−2	/���
J���, J��� = �

0

�

dx
e−2�1/���� + 3x�
�x2 + 2�x + �2�3 .

�41�

At �2� I Eq. �31� provides ��1, and thus ��1. The
lowest order of expansion in powers of �, corresponding to a
plane wave description of the outgoing electron leads to

K��� =
1

�
. �42�

Thus for I��2�m

Ts��� =
14

9

1

�
, �43�

in agreement with the nonrelativistic limit �2�m of Eq.
�18�—see Eq. �20�.

We see that the lowest order expansion in powers of � of
the RHS of Eq. �37� leads to the same result as provided by
the nonrelativistic limit of Eq. �18�. On the other hand, the
function K depends on � in terms of parameter �=�−2, con-
taining also explicit dependence on the parameter 	�. The
latter thus includes the terms which are linear in �, contain-
ing also a numerically large coefficient. We show, however,
that in our case dependence on 	� cancels out at least in the
lowest order terms of �2 expansion.

On the RHS of Eq. �37� dependence on 	� is contained
explicitly in normalization factor N2 determined by Eq. �32�.
Such dependence comes also from the exponential factor of
the integrand of J��� determined by Eq. �41�. Since

J��� = �
1−�

�

dy�4� + 3y − 2�
exp�− 2�1/���

�y2 + 4��3

�we denoted y=x−�+1� is dominated by y�2�� we can
replace it by

J1��� = �
−�

�

dy�4� + 3y − 2�
exp�− 2�1/���

�y2 + 4��3 , �44�

making the relative error of the order �5�1. Since

�1 = arctan
 2

y�
� at y � 0, �1 = 	 − arctan
 2

�y��� at y

� 0 �45�

��=�−1/2�, while for any x�0

arctan x =
	

2
− arctan x−1, �46�

we can write

(a)

(b)

FIG. 4. �a� The function Ts��� describing energy distributions of
slow electrons as defined by Eq. �39�, with � standing for the elec-
tron kinetic energy in units of the ionization potential. �b� The en-

ergy dependence of the difference 
Ts= T̃s−Ts between approximate

function T̃s defined by Eq. �51� and the function Ts.
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J1��� = exp�− 	���
0

�

dy�4� + 3y − 2�
exp�2� arctan�y�/2��

�y2 + 4��3 .

�47�

Integral �47� can be evaluated analytically

J1��� =
3

26 exp�− 	��sinh�	��
1

� + 1
. �48�

Using Eq. �31� we find that the total dependence of the en-
ergy distribution on parameter 	� cancels out. The limiting
Eq. �42� for ��1 can be written as

K��� =
1

� + 1
�1 + O��−5/2�� . �49�

Being more rigorous we should replace 1/ �1+�� by 1−�
+�2.

Thus several next to leading order corrections to the high
energy limit of the function Ts��� can be included by a
simple factor

g��� =
�

� + 1
. �50�

As one can see from Fig. 4�b� the function

T̃s��� =
14

9

1

� + 1
�51�

approximates the function �39� well enough even at �2 close
to zero. The largest relative deviation between the RHS of
Eqs. �39� and �51� takes place at �2=0, being about 4%.

V. MATCHING OF THE TWO REGIONS

The function Tf determined by Eq. �19� describes the en-
ergy distribution at �2� I and does not include corrections of

the order �−1. On the other hand, the function Ts �39� de-
scribes the energy distribution at �2�m since the outgoing
electron is treated nonrelativistically.

One should investigate if there is energy region

I � �2 � m , �52�

where both equations describe the energy distribution, i.e., if
there is a region where corrections to both distributions are
small. The actual analysis show that such a region exists. In
Fig. 5 we show the functions Tf ,s for characteristic value Z
=20. The two descriptions overlap for the energies �2 /m be-
tween 0.1 and 0.2, i.e., for the energies �2�m�Z ��Z
=0.146 for Z=20�.

Taking into account the Coulomb corrections to the wave
function of the outgoing electron in the distribution Tf one
can expand the consistency of the two descriptions to lower
energy values. As we saw in the preceding section, the low-
est order Coulomb corrections can be taken into account by
the factor g given by Eq. �50�, i.e., by changing Tf�x� to

T̃f��2� = Tf�x�g��� . �53�

The function T̃f��2� is also shown in Fig. 5.

VI. TOTAL CROSS SECTION

Now we must calculate the total cross section. Following
analysis of the preceding section, we present

� = �s + � f , �54�

with the two terms on the RHS corresponding to slow and
fast ionized electrons

(b)(a)

FIG. 5. Matching of the two regions of the electron spectrum for the characteristic case Z=20. Dashed line shows the function Tf�x�
defined by Eq. �19�, calculated for the fast electrons with x=�2 /m. Dotted line shows the function �m / I�Ts�mx / I�, describing distribution of

slow electrons. Solid line shows the function T̃f�x� defined by Eq. �53�. In �b� we show the lower part of the spectrum in more detail �the
energy value �2=m��Z�2 /2=5.4 keV corresponds to x�1.07�10−2�.
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�s =
�re

2

I
�

0

�0

d�2Ts
�2

I
�, � f =

�re
2

m
�

�0

�

d�2Tf
�2

m
� ,

�55�

with �0 belonging to the interval determined by Eq. �52�.
Since Tf�x� drops as ln x /x2 at x→�—see Eq. �19�—the
contribution � f has a finite value at �→�. Using Eqs. �18�
and �42� we find

�s =
14

9
�re

2
ln
�0

I
+ cs�, � f =

14

9
�re

2
ln
m

�0
+ cf� .

�56�

The contributions cs and cf come from the regions �2� I and
�2�m correspondingly. Thus the total cross section can be
written as

� =
14

9
�re

2
ln
m

I
+ C� , �57�

with C=cs+cf. In this approach C can exhibit a weak depen-
dence on Z.

Note that the low energy contribution to cs can be calcu-
lated as

cs = �
0

�

d��Ts��� − T̃s���� , �58�

with the functions Ts and T̃s being determined by Eqs. �39�
and �51�. The integral is saturated by ��1, providing the
value cs=−0.027.

The presentation �57� for the cross section can be ob-
tained by noting that the function �53� approximates the en-
ergy distribution well enough. The largest deviations from
the exact curve are of the order of several percent, taking

place at �2� I. Using Eq. �20� we find that T̃f��2�= �14/9�
��m / ��2+ I�� at �2�m, providing the logarithmic term on

the RHS of Eq. �57�. Since at �2� I we can put T̃f��2�
= �m / I�T̃s���, parameter cs is determined by Eq. �58�. The

actual numerical calculations employing the function T̃f��2�
provide values of C changing from 1.23 for Z=1 to 1.31 for
Z=50. Note that the integral over large energies converges
slowly due to a rather slow drop of the function Tf�x�—see
Eq. �18�. For characteristic value Z=20 we obtain cf =C
−cs=1.27, putting �=� as the upper limit of the second
integral on the RHS of Eq. �55�. However, assuming the
upper limits of integration to be 5 or 10 m we find the values
of cf to be 0.67 and 0.91 correspondingly.

For the ground state of a not very heavy �Eq. �2�� single-
electron ion I=m��Z�2 /2 and Eq. �57� can be written as

� =
14

9
�re

2
ln
2

��Z�2 + C� . �59�

If the parameter ��Z�2 is not treated as a small one, one
should use relativistic Coulomb functions for all the elec-
trons and positron. It is known �11� that the ultrarelativistic
particles of the e−e+ pair can be described by the Furry-
Sommerfeld-Maue �FSM� functions �12� which provide the

relative accuracy ��Z�2 /� with � standing for the orbital mo-
menta. Since the pair transfers momentum q�m to the
nucleus or to the outgoing electron the values of �� pi /q
�� /m are important. Thus corrections to FSM functions can
be neglected. The calculation for the pair creation in the field
of the nucleus �11� resulted in an additional contribution f�Z�
to the cross section, which does not depend on the photon
energy, and can be presented as an ��Z�2 series. In our pro-
cess the ultrarelativistic particles of the pair can be consid-
ered in a similar way, providing the same contribution f�Z� to
the cross section.

However, the bound electron and the ionized electron at
�2�m should be described by totally relativistic Coulomb
functions at �Z�1. One can employ the presentation �13� in
which relativistic functions are expressed in terms of an
��Z�2 series with the FSM functions as zero order terms.
Hence in the case �Z�1 the cross section can be written as

� =
14

9
�re

2
ln
m

I
+ CR� , �60�

with CR=C+ ��Z�2
C, while 
C can be presented as a cer-
tain ��Z�2 series.

Until now we considered a single electron ion. Turning to
the case of an atom containing Z electrons or of an ion con-
taining ne electrons one can see that for any bound electron
the structure of the cross section �60� is similar to that of the
single electron case. The contribution cf caused by large en-
ergies �2�m is the same for all the electrons. We saw the
contribution cs to be numerically small for K electrons. Since
the other electrons are less bound, it is still smaller for them
and can be neglected. Thus we can write for a bound electron
with the binding energy Ib,

� =
14

9
�re

2
ln
m

Ib
+ C� , �61�

with C�1.3.
Note that our cross section reaches a constant value at

�→�. On the other hand, the cross section of pair creation
in the field of the nucleus �2� and that on a free electron �6,7�
increase as ln � in this limit. This happens because the loga-
rithmic terms are caused by integration over momentum
transferred q in the former case and over the momentum of
outgoing electron p2 in the latter case. In both cases the
lower limits of integration are of the order m2 /�, causing the
terms ln � in the cross sections. In our case the effects of the
binding are important at the lower limits and we obtain
ln 1/ ��Z�2 instead.

In �14� ionization of internal shells of silver and gold
atoms in coincidence with pair creation was measured for
1 GeV photons. Using Eq. �61� we find the cross sections for
ionization of the K shells to be 7.8 mb in Ag and 5.9 mb in
Au. In the latter case Z=79 and the errors can be about 30%.
The experimental results are 18±6 mb for Ag and
8.3±6.2 mb for Au. Our result for ionization of the L shell in
Au is 37 mb, while the experiment provides 116±76 mb.
Thus our calculations underestimate the experimental data
for silver, being in agreement with the results for gold. In
general, our approach becomes less accurate with increasing
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of the nuclear charge Z. A somewhat better agreement with
experimental results for gold is likely to be due to the larger
experimental uncertainties in this case.

Note that we considered ionization of atoms accompanied
by pair creation in the field of the latter. For not very large Z,
i.e., for ��Z�2�1 we found the field of the bound electrons
to be more important, while interactions with the nucleus
provided correction of the order ��Z�2. The authors of paper
�1� separated the process into two, considering separately the
contributions with interactions between the particles of the
created pair with the nucleus being neglected and being in-
cluded in a semiclasssical way. Now we can compare our
results with the results of �1� where they are shown in Figs.
3 and 4. In our case the cross section drops slowly with Z in
agreement with �1�. The values of the cross sections are also
close in the two approaches, with the relative difference be-
ing about 20–30 %. Unfortunately, the logarithmic scale
used in the figures of �1� does not permit us to compare the
results in some detail. For the case Z=20 considered in �1�
both approaches show the cross section accompanied by pair
creation in the field of the nucleus to be much smaller than
that in the field of the bound electrons. It was found in �1�
that at large Z the former mechanism dominates in formation
of ions. We did not consider the point, noting however that
there is no consistent QED calculation yet and the role of
interference of the two mechanisms is still obscure.

Now we find the values of the photon energy � for which
the considered process is the main mechanism of formation
ions. We must compare the cross section of our process to
the asymptotics of photoionization and to that of the Comp-
ton scattering on the bound electrons. For small and moder-
ate values of Z the cross section of the latter process is larger
than that of the former one at ��m. The total cross section
of the high energy Compton scattering on a bound electron is
equal to that on a free electron �15�. The asymptotics of the
latter is

�C = 	re
2 ln�2y� + 1/2

y
,

with y=� /m. The cross section of our process becomes
larger than �C at certain �=�0. In Fig. 6, we show Z depen-
dence of �0 for the K electrons of single electron ions and of
atoms. The value for hydrogen �0=73.6 MeV is the smallest
one. For the external electrons the values of �0 become still
smaller due to the small values of the binding energies. For
example, the binding energies of 3s and 4s electrons in Na
and K are 4.9 and 4.1 eV correspondingly �16�, providing the
values �0=65.6 MeV and �0=66.7 MeV.

VII. SUMMARY

We analyzed formation of ions by high-energy photons
accompanied by creation of e−e+ pairs. We calculated the
energy distributions d� /d� for creation of ion and a con-
tinuum electron with kinetic energy ���. We showed that
the slow electrons with � being of the order of the binding
energies Ib and the fast electrons with the energies �� I need

separate treatment. We carried out matching of the two re-
gions and found analytical formula �53�, which approximates
the whole spectrum of the outgoing electrons.

We integrated the energy distributions and found expres-
sions �59� and �61� describing the cross sections for the ion-
ization of single-electron ions and of any state in a many-
electron atom. We showed that the high energy asymptotics
of the cross sections does not depend on the photon energy.
We found the values of the photon energies �0 for which
ionization accompanied by pair creation becomes the domi-
native mechanism for formation of ions. The Z dependence
of �0 for K electrons is shown in Fig. 6. The value of �0

appeared to be about 74 MeV in hydrogen, increasing with
Z, and being somewhat smaller for loosely bound external
electrons of heavier atoms.

We carried out calculations for not very heavy atoms—
see Eq. �2�. The approach can be generalized for the case
�Z�1 as well.

Note that a related problem of the influence of atomic
electrons on the pair creation was considered in �17,18�. The
authors focused on modification of characteristics of the cre-
ated pair by atomic field. That is why they used some addi-
tional approximations in the description of atomic electrons.
However, the totally integrated cross section which includes
all inelastic transitions, presented in �19� for the case of hy-
drogen ��=�re

2�19�, can be compared with our result �

=�re
2�18.

Our results are in good agreement with the estimations
made in the pioneering paper �1�. As far as we know, the
only related experiment was carried out in �14�. Our results
are consistent with these data. There are still large errors in
experimental and theoretical analysis. This should stimulate
further development of both.

FIG. 6. Dependence of the photon energy �0 on the value of the
nuclear charge Z. At ���0 the ionization accompanied by creation
of e−e+ pairs is the dominant mechanism of the K shell ionization.
Curve 1 is for the single-electron ions; curve 2 is for atoms with Z
electrons.
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