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We present a joint theoretical and experimental study of the time evolution of electronic states of highly
charged hydrogenic ions formed by capture during transmission through solids as they undergo multiple
collisions and radiative decay. For this transport problem we have developed an inhomogeneous nonunitary
Lindblad master equation that allows for a description of open quantum systems with both sinks (electron loss)
and source (capture) present. We apply this theoretical framework to study transient coherences created in
electron capture by 13.6 MeV/amu Ar'®* ions transmitted through amorphous carbon foils and decoherence
during subsequent interaction with the foil. In the limit of thin targets we can directly probe electron capture
cross sections under single collision conditions, while for thicker targets we follow the partially coherent
dynamics of the open quantum system in interaction with the solid as a function of interaction time. The
calculated results are in close agreement with experimental data obtained at the LISE facility in GANIL.
Photon intensities from excited argon ions were determined through high resolution x-ray spectroscopy in
which individual fine structure components were resolved. Measurements were performed for a wide range of

carbon foil thickness to study the time development of the excited state populations.
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I. INTRODUCTION

The passage of an atom or ion through a solid involves a
rich variety of inelastic electronic processes. Theoretical de-
scription of such interactions remains a challenge, in part due
to large number of degrees of freedom involved. Systems of
such complexity are ideal candidates for applications of open
quantum system (OQS) approaches, within which only the
(sub) system, in the present case the electronic degrees of
freedom of the hydrogenic projectile, is treated explicitly.
The rest of the system, here the solid (its electronic and ionic
degrees of freedom) and the radiation field, is treated as an
environment.

A theoretical description of the partially coherent evolu-
tion of the electronic system requires a generalization of pre-
viously developed OQS approaches. The starting point is the
Lindblad master equation (LME). In its simplest form, fre-
quently employed in quantum optics [1,2], it describes the
unitary evolution of the system in the presence of the envi-
ronment (reservoir) where the latter induces energy exchange
and decoherence in the system. For the transport of projectile
states in the solid, extensions beyond this standard form are
necessary. The interaction with the reservoir cannot only de-
stroy but also transiently induce coherences [3]. Moreover,
electron loss (i.e., ionization) represents a net flux of prob-
ability out of the system into the environment. Such open
quantum systems are not only open with respect to energy
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transfer but also with respect to probability flux. Enforcing
unitarity means unphysical suppression of flux out of the
system and thus distortion of the evolution within the trun-
cated Hilbert space. In Ref. [4] we developed a nonunitary
OQS extension to previous approaches that accounts for
probability flux out of the truncated Hilbert space of the
system. In the application to the projectile state evolution in
the solid this approach permits explicit treatment of the low-
lying states of the ion within a finite Hilbert space of man-
ageable size accounting for the flow of probability towards
highly excited bound states and continuum states. Applica-
tion to transport of hydrogenic Kr*3* through amorphous car-
bon foils [4] has led to satisfying agreement with experimen-
tal data.

The present case of bare argon projectiles (Ar'3*) calls for
a further extension [5]. Unlike Kr***, the projectile is not
carrying any electron prior to entering the foil and, therefore,
a coherent source of probability flux must be taken into ac-
count. Only as the projectile captures an electron (i.e., under-
goes charge transfer Ar'®*— Ar!’), does the one-electron
Hilbert space of the system become occupied. This feeding
proceeds in a partially coherent fashion. At the same time,
the one-electron Hilbert space can be depleted not only by
ionization (Ar!'”* — Ar'3*) but also via a second capture pro-
cess (Ar'7*— Ar'®*). This class of processes therefore re-
quires a generalization of the OQS description to an inhomo-
geneous LME with a coherent source that simultaneously
acts as a sink. Development of a theoretical description is the
goal of the present paper.

The present investigation is partially motivated by an out-
standing discrepancy between experiment and results of clas-
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sical transport theory (CTT) [6]. A much better agreement is
obtained here owing to progress in both theory and experi-
ment. On the theoretical side we have developed a well
founded open quantum system approach with sinks and
sources. In addition, since source density matrices vary sub-
stantially among different approximation methods [6,7], a
considerable effort has been devoted to performing a robust
calculation of electron capture in binary collisions by nu-
merically solving on a three-dimensional lattice the time-
dependent Schrodinger equation (LTDSE).

From the experimental point of view, we present here data
in which the evolution of state populations of an argon pro-
jectile penetrating an amorphous carbon foil at
13.6 MeV/amu has been determined by x-ray spectroscopy.
Photon intensities after foil exit have been detected at GA-
NIL (Grand Accélérateur National d’Ions Lourds) on the
LISE facility. The 2s,,, decay and the Lyman series were
measured using high resolution spectroscopy in which indi-
vidual 2p — 1s fine structure components could be resolved.
The thinnest targets available allow study of electron capture
under single collision conditions. Propagation of the projec-
tile through targets with different thickness allows the dy-
namics to be followed from single collision conditions to
equilibrium corresponding to a thickness of 2 to 200 ug/cm?
(~100 A to 1 um) of the amorphous carbon foil. Multiple
collisions with constituents of the solid and radiative decay
redistribute the initial population created by electron capture.

This paper is organized as follows. In Sec. II we present
the open quantum system approach and the solution by
means of quantum trajectories. The implementation of our
approach for the transmission of argon ions through carbon
foils is described in Sec. III. The calculation of electron cap-
ture defining the initial conditions of the density matrix is
reviewed in Sec. III C. A brief summary of the experimental
measurement of excited states populations by means of x-ray
spectroscopy is given in Sec. IV. Finally we compare experi-
mental findings with numerical calculations of the transport
problem in Sec. V. Atomic units (a.u.), where |e|=m,=%
=1 and c¢=137, will be used throughout this paper unless
stated otherwise.

II. INHOMOGENEOUS NONUNITARY LINDBLAD
MASTER EQUATION

The starting point of a theoretical analysis of open quan-
tum systems (OQSs) is, typically, the reduction of the master
equation for the reduced density matrix to a Redfield equa-
tion by applying the Born-Markov approximation [1-3,8,9].
A further simplification of the relaxation superoperator leads
to the Lindblad master equation [10,11]. The latter is fre-
quently used as it can serve as a suitable starting point for
quantum trajectory methods. Even with such a drastic sim-
plification which treats the coupling to the environment in
first-order perturbation theory and neglects memory effects, a
solution of the equation of motion for the density matrix is
still a formidable task. Difficulties in describing OQSs in
terms of the evolution of the reduced density matrix origi-
nate, in part, from the high dimensionality of the problem.

In a system with N states the direct solution of the quan-
tum master equation (QME) involves Né. couplings. For
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small systems the QME can be solved directly. For a large
system, such as the electronic degrees of freedom of an ion,
where N can easily reach Ny~ 10°, a complete solution is no
longer feasible. The problem can be circumvented by reduc-
ing Ng and, moreover, by reducing the number of couplings
to those assumed to be the dominant ones [12]. An attractive
alternative is solving the full QME by means of a Monte
Carlo discretization with quantum trajectories. Propagating
states rather than the density operator leads to a scaling of
the solution with Nﬁ. This allows treatment of large OQSs
within quantum mechanics. The quantum trajectory approach
requires, however, for the QME to be of the Lindblad form
(or closely related to it [4]), in order to assure positive defi-
niteness of the reduced density operator at any time. The task
is thus to construct a generalized Lindblad master equation
for quantum systems that are open with respect to energy and
probability flux. Such an inhomogeneous Lindblad master
equation (ILME) is then accessible to solutions via a quan-
tum trajectory Monte Carlo (QTMC) technique, just as is the
case for the standard LME. We begin by first briefly review-
ing the standard LME (Sec. IT A) and then present the exten-
sion to an inhomogeneous master equation allowing for ex-
change of probability flux between the system and the
environment (Sec. IT B). The efficient solution by means of a
QTMC method is described in Sec. II C and II D.

A. Unitary Lindblad master equation

Consider a system S with Hamiltonian Hy interacting with
an environment referred to in the following as the “reservoir”
(R) with Hamiltonian Hy through a coupling interaction V.
In the present transport problem the environment is the solid
while the system under consideration is the projectile. Later,
the interaction Vg, will describe collisions of the projectile
with constituents of the solid as well as interaction with the
radiation field. The time evolution of the density matrix p(z)
of the entire interacting system is given by the Liouville-von
Neumann equation

< pl0) =~ L1, ()] 2.1)

with the total Hamiltonian H=H¢+Hp+ V.

Clearly, the solution of the full Liouville-von Neumann
equation is out of reach for realistic systems involving a
large number of degrees of freedom. Instead, the focus is on
a master equation, an equation of motion for the reduced
density matrix of the system of interest o(¢), which is ob-
tained by tracing out all degrees of freedom of the reservoir,
o(t)=Trg[p(2)]. The corresponding reduced density matrix of
the reservoir would be o®(r)=Try[p(¢)]. The reduction usu-
ally entails a number of additional approximations such as
the Born-Markov approximation which neglects memory ef-
fects and treats the coupling Vg in first-order perturbation
theory.

The Lindblad form of a master equation (LME) describes
a unitary time evolution by means of the Lindblad transition
operators S(k),
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+ J IPkS(K)a(1)ST (), (2.2)
where the parameter k may represent a momentum transfer in
collisions or the photon momentum in radiative decay. It can
be discrete or continuously distributed. The Lindblad transi-
tion operators S(k) are explicitly given in Ref. [3] for the
different environmental interactions relevant to the present
transport problem. Equation (2.2) assures the positive defi-
niteness of o(¢) for all times. The important consequence of
this property of the Lindblad form of the master equation is
the possibility to solve it by means of a QTMC technique
opening up a wide range of applications.

B. Inhomogeneous nonunitary Lindblad master equation with
a source

The construction of (2.2) results in the exact compensa-
tion of the loss of probability described by the anticommu-
tator (second term: [ , ], on the right-hand side) by the last
term. Consequently, probability is conserved. The unitarity
constraint

4 o] =0,

P (2.3)

built into the Lindblad equation, poses a hurdle for realistic
numerical simulations because it remains in force when the
Hilbert space is truncated to dimension Ng. For realistic sys-
tems which include continuum states, a strictly unitary evo-
lution is unphysical. Only a subspace P of the Hilbert space
Hg can be represented in a numerical simulation by a trun-
cated basis of dimension Ng. The subspace P is coupled to its
complement () by Vg. The flow of probability between P
and () is therefore not an artifact but real for any computa-
tionally feasible truncated basis set. The point to be noted is
that () refers here to a subspace of the system Hilbert space,
not to the reservoir.

The bilinear form of the transition operators S and S' in
the LME

Il,= f Ak, 4(k) = f k2 8! (B)S,4(0)  (2.4)

corresponds to the decay operator I'" for the states « and 8
via all intermediate states u, where « and S are elements of
P. They will, however, couple also to states outside . u
spans the entire Hilbert space Hg=P @ (). The decay operator
can thus be decomposed as

Tk)= 2 S5, (0)S,pk) =T k) + T LK)
ne(Pa))

(2.5)

FEZ(E) describes transitions within the subspace P with u

e P while outward probability flux is described by the decay
operator for loss
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FIG. 1. Schematic picture of the terms entering the Lindblad
master equation (a) and on the example of argon transport (b).

TLAR) = 2 Sh(0)S,,4(k). (2.6)
2

pel
I'"" causes an explicitly nonunitary evolution within P since
it contributes to the anticommutator in the LME (2.2) but not
to the last term, which would compensate the loss of prob-
ability. The coupling to the orthogonal complement, i.e., to
electronic states not within I?, is, however, not the only pro-
cess that causes change of probability (Fig. 1).

Flux into P occurs in the present case by electron transfer
from the target (the reservoir) to the projectile with ampli-
tude, T,;, where i represents an electronic state index of the
reservoir and « € IP. Because this amplitude is controlled by
the occupation in the target (of assumed to be stationary)
rather than by o, its inclusion into the equation of motion for
o adds an inhomogeneity to the LME in terms of a source (or
gain) density matrix G with elements

Gup=2 Gly= 2 T, T =Tre[ T, Th].  (2.7)

1 1

where the trace is taken over electronic degrees of freedom
in the target. Details of the calculation of the capture ampli-
tudes will be given below. The key point is that capture
generates and replenishes the partly coherent population of
IP. In particular, Eq. (2.7) specifies the initial density matrix
o for an Ar'’* jon. For fermions the gain term must be modi-
fied by the one-electron Pauli blocking term

Gap— Guogll = Ti o). (2.8)

Capture represents not only a gain channel but also a loss
channel. The latter follows from the fact that capture of an
additional electron transforms the hydrogenic system into a
heliumlike system (Ar'7* — Ar'®*), thus removing it from the
one-electron Hilbert space Hg or . The LME (2.2) must be
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amended by an anticommutator of the form representing
capture-mediated probability loss from the one-electron Hil-
bert space,

-3 00],, (2.9)

where

[op= E Tij(a)T;(ﬂ)- (2.10)
ij

In Eq. (2.10) T () denotes the amplitude for a transition of
an electron of the reservoir into a heliumlike state j of the
projectile. This capture amplitude for the second electron
may depend on state («, 8) of the hydrogenic (first) electron
present at the instant of the capture. In a strict independent
particle model for capture the dependence of the amplitude
on the state index (a, ) drops out and I'“ becomes propor-
tional to the unit matrix in P.
Summarizing, the generalized ILME becomes

dZ_tl)z_i[Hs,O'(l)]+Jd3kS(k)0'(t)ST(k _ _[F\P\P o(0)],

- S 0], = 3T 0(0). + 601 - T o).

(2.11)

For the solution of Eq. (2.11) the unitarity constraint [Eq.
(2.3)] no longer applies but is replaced by the inequality

0=Tro(r)]=1. (2.12)

We note that for a nonunitary density operator the measure
for partial coherence is given by

T o*()] _
(Tlo()])*

where the equality holds for a fully coherent state. It should
be noted that the Markov approximation assumes that the
reservoir is not affected by the interaction with the OQS and
thus remains unchanged, i.e., o*(t) — o®(t=0) — o. In the
present case with probability flux from the reservoir to the
system (and back) this assumption implies that charge trans-
fer does not significantly alter the reservoir (the solid), i.e.,
an “inexhaustible” supply of electrons is not only available
for charge transfer but also for screening of the holes left
behind.

(2.13)

C. Quantum trajectory Monte Carlo solution

The popularity of the Lindblad master equation is, in part,
due to the fact that it can be mapped without further approxi-
mation onto a nonlinear stochastic Schrodinger equation
(NLSSE) which can be solved by propagating a Monte Carlo
ensemble of state vectors: i.e., using the quantum trajectory
Monte Carlo [3] or Monte Carlo wave function method
[1,2,8,9]. The Lindblad master equation can be solved by an
ensemble average over quantum trajectories as
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N, traj

o(t)= (2.14)

traj =1

where the index 7 labels one particular stochastic realization
(a quantum trajectory) and N,; is the number of quantum
trajectories controlling the statistical uncertainty. In the limit
Niyj— 0, the ensemble average can be shown to be strictly
equivalent to the solution of the original Lindblad equation
[13].

The time evolution of each trajectory is governed by the
NLSSE,

dt _op , ) .
|d\P7](t)> = <_ ledt— E(F‘l l + F‘l Q + ¢ = <1"\| I >1,‘,7)

ffwmmmmwww”nlﬁww»

+ 2, dMO7(1)|xV).

8

(2.15)

The terms in (2.15) proportional to di (first line)
correspond to continuous changes of the wave function
|W7(t)). Because the right-hand side of (2.15) explicitly
depends on the  expectation  value (FPP(E)%!,?
=(W() [TV (k) | W)y /(¥ () | ¥ (1)) of the decay operator
I'""(k), the equation is nonlinear. The variable N]g(t) counts
the number of jumps for a given quantum trajectory » and a
given parameter k as a function of time ¢ starting with
N/(t=0)=0. The Ito differential, dN/(1)=N(t+dt)-N(1),
takes, for a given quantum trajectory # and an infinitesimally
short time interval dt, the value 1 when a jump occurs and 0
when it does not. This stochastic variable generates different
realizations of quantum trajectories labeled by # and ac-
counts for the stochastic transitions induced by the interac-
tions with the environment described by I'""" (excitations and
radiative decay). Since the Lindblad equation (2.11) contains
an inhomogeneity, the corresponding NLSSE contains a sec-
ond Ito differential dM accounting for the stochastic process
of capture. The structure of this term is different due to the
inhomogeneous term proportional to G in the LME (2.11).
To construct the source term for the NLSSE we first di-
agonalize the source density matrix G (2.7) by means of
the normalized eigenvectors X( for the source channel (i)

with eigenvalues x()

G = 3 [XO)(x) (2.16)
4

Expressed in terms of matrix elements in the « basis of the
system it reads
- () _
Gap=2 Gup=
L

(2.17)

(D)3 () 3 (i)
E E xgl X Bg
8 L
with (a|X§;)>:Xﬁ,.
The reduced density matrix calculated as the Monte Carlo

average over a large number of stochastic realizations (2.14)
yields the Lindblad equation (2.11) when the expectation
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value of the Ito differentials for the system in state |W7(¢)) at
time ¢ is properly chosen. For ng(t) we impose the condi-
tion

dANJ(1)dN, (1) = dNJ(1) g = di{T™ (), Ot

(2.18)

expressing the fact that at most one jump can happen in an
infinitesimally short time interval dr with an average rate
(TP @)Y,

Likewise the stochastic variable dM (’)”(t) counts the num-
ber of feeding events from a reserv01r state i into a system
eigenstate g of the capture process along a stochastic trajec-
tory. Its initial value is set to Mg) "(t=0)=0. This Ito differ-
ential satisfies the condition

(@) Wy = g0
dM, ”(t)dMg,”(t) =dM (1) 6,1 6
= 8yt 8ydtx (1 = Tr[ (1)),
(2.19)

where the index i runs over all occupied states in the target
and unobserved degrees of freedom such as the impact pa-
rameter of the collision. We assume the electronic degree of
freedom of the target to be in the fermionic ground state and
that the depletion of the reservoir by previous capture events
can be neglected.

D. Calculation of quantum trajectories

Within the present formalism the density matrix can be
calculated as

N, traj

o= a3 Pialto) 2 Y0 CE 75000

traj v/ 0 ig

(2.20)

where p; g(to) x(’)(l Tr{o(ty)]) is the rate per unit time that
the state |X ) is created at the time #, as the result of an
electron capture event. [In practice, the integral over £, rep-
resents a convolution and the sum over i and g is calculated
using a Monte Carlo method and the final result resembles
Eq. (2.14) with n— 7,i,g,1,.]

The time evolution of each quantum trajectory is con-
structed by applying the time evolution operator to the initial
state

[weio())y = U(1,10)| XY) (2.21)
The initial state is populated by a stochastic feeding (capture)
process generating the state |Xg ) at time £,,. Subsequently, as
long as no further capture takes place, |[W7(f)) evolves ac-
cording to the NLSSE without a source
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V(1)) = | ity — T 4 TP T - (P
@V (0) =\ = iHgdt = — (T + T4 T (T, )

+ f IPRdNI(O[SE)T (R)); )2 - 1]>|‘If”(z>>
(2.22)

which is (when omitting I'°) described in detail in Ref. [4].

The time evolution operator in Eq. (2.21) is constructed as
a sequence of continuous time evolution operators and dis-
continuous jump operators as

U(t,1,) = Ug)m(t,tn)H Uapkin ) UL (15:,1).
j=1

(2.23)

The application of the continuous time evolution operator

(1)) = Un(j,1;- )W 7(t;21)) (2.24)
results in
—z[HS—(i/z)(r""’+r"‘?+r" )]AL
|\I,7](tj)>=||q,n( 1)”” e (1/2)F”]At|\[fﬂ( 1)>||| (ti_1))
(2.25)

with the time difference Ar=t;~t,_;. The flow of probability
out of P is realized by the contlnuous time evolution operator
UZ.(t;.t;-1) in (2.25) where we use decay operators |
+I'"™ 4T in the numerator and only I'""" in the denominator.
The loss of norm is caused by I'"V+ I which appears only in
the continuous propagation in time, U7 (#;.t,_;), without a
counter term in the jump operator. Apphcatlon of the jump
operator

[W(t; + 6t)) = (kj, 1) W (1)

S(k;)
=[Ot | ———L——|P¢,))
H ||||S(kj)|q}ﬂ(tj)>|||

J“mP

(2.26)

describes transitions within PP leaving the norm unchanged.
The resulting density matrix in Eq. (2.20) can be rewritten
as

droU” (1,1) | XWX U (2,8)

a(z)—N—Z >>

traj » g i

" dMg)”(tO)dM(g") (1) .

m (2.27)
Using Eq. (2.19) and U™(¢,1))=U"(t—t,,0),
o(t) = f dto{1 = Tr o(ty) 1} (1 - 1) (2.28)
0

with
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FIG. 2. (Color online) Model system of radiative cascade of a
hydrogenic argon ion initially in the 5d5, j/, state in the OQS ap-
proach. Solid lines, gain of probability; long dashed lines, internal
radiative transitions within the subspace I’ of states within the box;
short dashed lines, loss to the complement subspace ().

Ft') = LE U™t ,0)GU™ (¢',0).

traj 7

(2.29)

The interpretation of Egs. (2.28) and (2.29) is as follows.
a(t") would correspond to the solution of a LME by an en-
semble of trajectories in the absence of a source [see Eq.
(2.11)] where G would represent the initial conditions, i.e.,

o(t'=0)=G. (2.30)

It should be noted that additional capture events during the
time interval [,,] are included in terms of the effective loss
operator I'“ in (2.25). Equation (2.28) represents, in turn, the
sum (average) over all propagated capture density matrices
initialized at different capture times ¢, weighted by the
“blocking factor” {1-Tr[ o(t,) ]} which expresses the fact that
capture at 7, is suppressed when the one-electron Hilbert
space is already occupied (Pauli blocking). Finally, taking
the trace over (2.28) results in an implicit equation

T o(r)] = f dig{1 = Tl ot PTe[ 6 - 1)]  (2.31)
0

for the time-dependent norm of the nonunitary density op-
erator.

III. IMPLEMENTATION FOR RADIATIVE DECAY AND
ION-SOLID INTERACTIONS

A. Radiative cascade

We first implement and apply the newly developed
method to a model system where an exact solution for the
entire system (Hy) is available against which we can test the
present algorithm for the subspace P. For this purpose we
consider the cascade from a state radiatively decaying into
the ground state. The model system we analyze is an excited
hydrogenic argon ion initially in the 5d5, ;,, state as shown
in Fig. 2. We artificially decompose the Hilbert space into
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three subspaces: (i) the subspace containing the initial state
serving as a source of probability, (ii) the simulated subspace
P spanning states reached directly by radiative transitions
from the initial state, i.e., all states within the shells n=2, 3,
and 4, and (iii) the complement subspace () playing the role
of the sink which is here the ground state (1s). We compare
the ILME for the time evolution within the reduced space P
within which the radiative decay of the initial state is treated
as an environmental source term G and the decay into the
ground state as loss to the complement with the direct solu-
tion of the unitary LME within the larger space (Hg) includ-
ing the initial and ground states.

The radiative decay enters the ILME (2.11) in three terms:
(i) a source term G feeding P, (ii) as internal transitions
within P (via ™" and §) and (iii) as loss P— () (via I'"9).
The decay of the initial state representing the source term G
is constructed from the transition operators Sl(.;)(j) [3]
describing radiative decay for the polarization directions
J=x,y, and z as,

xyz

Goglt) = 2 SIS (D) ak(0), (3.1)
J

with the initial state i=5d5, 1/,. Equation (3.1) describes both
the growth of population [diagonal elements of o(¢)] as well
as build-up of coherences in the off-diagonal elements of
o(t). Unlike the case of a truly open quantum system coupled
to a large reservoir which we will consider below for ion-
solid collisions, we account in the present test case for the
depletion of the reservoir,

Oﬁ(t) _ e_Tr[S(V)S(")*]IO_ﬁ(t — 0) , (32)
which corresponds to an exponential decay of the state i with
the rate Tr[SS™]. The initial population ox(t=0) of the source
term is set to one resulting in a source term in the ILME

Xyz

Goplt) = X SU(3)SY) ()5S T, (3.3)
J

In this particular case of a one-electron system, blocking
terms of the form (1-Tr[o(z,)]) do not appear and I"*=0.
As a sensitive test case for the inhomogeneous Lindblad
equation we compare its prediction with an exact solution for
the transient build-up and decay of coherences between the
4pspn and 4fs, states due to radiative transitions (Fig. 3).
This exact solution is obtained via the LME where P spans
over all relevant subspaces, i.e., n=5. For short times the
coherence o, increases exponentially according to 1—exp(

—SE;)SZ.)*t) with the corresponding gain rate S(CZ)S(L;)* as indi-
cated in Fig. 3. For longer times, transitions within the sub-
space P and loss to () result in beats and the decay of the
coherence density matrix elements. The agreement between
the ILME and the exact solution is, to within the graphical
resolution, perfect thus lending support to the validity and
accuracy of the present approach to open quantum systems
with sources and sinks.
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FIG. 3. (Color online) Absolute magnitude of coherence be-
tween the Ar!™* states 4p3p,m, and 4fsp , for mj==1/2,1/2, and
3/2 populated by radiative decay from SJMJ - Solid lines, exact
calculation; symbols, calculation according to the ILME for the
system displayed in Fig. 2; dashed lines, exponential increase.

B. Ion-solid interaction

We apply the open quantum system approach next to the
transport of electronic states of highly charged ions penetrat-
ing solids. We focus on bare argon ions (Ar'3*) with a ve-
locity of v,=23 a.u. traversing thin amorphous carbon foils.
One interesting feature of this class of transport problems is
that the environmental interaction is switched on suddenly
when the projectile enters the solid and ceases suddenly after
exiting the solid, thus allowing the time-resolved study of the
evolution of the internal state of ions on an attosecond to
femtosecond time scale.

The evolution of projectile states traveling through a solid
is obviously a complex problem due to the many-body dy-
namics involved. To gain insight into the dynamics we sub-
divide the target into its individual constituents and consider
their interaction with the projectile. The solid is composed of
ionic cores and electrons bound to these cores. The relevant
processes in ion-solid transport can be divided into two
groups: exchange of energy and momentum with the solid
and exchange of constituents. The latter consists of electron
capture from the target to the projectile and the inverse pro-
cess, transfer of electrons from the projectile to the target.

The Hamiltonian of the system outside the foil is the un-
perturbed hydrogenic Hamiltonian

Hg=-V32~Z,/r+AH, (3.4)

including relativistic corrections AH_,, i.e., for the fine struc-
ture and the Lamb shift. Eigenstates of Hg can be described
by the quantum numbers n,/,j, and m;.

The system Hamiltonian inside the solid contains addi-

tionally the contribution from the wake field [14,15] as

Hf;olid) — HS + V(W), (35)

which is the target polarization induced by the high nuclear
charge of the projectile. We employ a sudden approximation
for the transition from Hy to H(SSOhd) at the foil entrance at
which the interaction V") is switched on. Likewise, we
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switch off V) at the exit surface and project onto atomic
final states in vacuum (eigenstates of Hg) invoking, again, a
sudden approximation. The interaction with the environment
includes scattering at the ionic cores, FP(C), scattering at the
electron gas, I'"®) and radiative decay I'™. The total decay
operator is thus

’=rre 4 he o, (3.6)

Details can be found in Ref. [3]. Tonization, described by
"0 is discussed in detail in Ref. [4].

In contrast to previous studies we include here charge
transfer from the target to the projectile, accounting for the
presence of a source. Since the relevant projectile velocity is
high (v,=23 a.u.) charge transfer is significant only from
the 1s shell of carbon. Therefore, we treat the electron cap-
ture by an initially fully stripped ion (Ar'8*) from the 1s shell
of carbon. Within the independent electron model [16] the
double occupancy of the 1s shell is accounted for by multi-
plying the charge transfer probabilities by a factor 2. Accord-
ingly, the source term reads

Gop(t) =2n4v, Tf[Ta,c(ls)T:a,c(ls)](l - Trlo(n)]). (3.7)

where the current of particles per unit time is expressed as a
product of the number density of the target atoms n, and the
projectile velocity v,. The product Ta,C(ls)T:?,C(ls) is the cap-
ture density matrix for capture from the ls orbital to the
projectile orbitals (a,8), whose diagonal elements are the
collisional cross sections [7]. The trace in (3.7) extends over
unobserved degrees of freedom, here the impact parameter of
the Ar-C collision.

We assign the various terms of the ILME to the following
processes: the system space I’ consists of all bound states of
Ar'™* up to n,,,=4. We estimate the population of higher
excited states up to n=10 by extrapolation of the n,l,m dis-
tributions using scaling properties drawn from classical
transport theory [6,17-19]. Ionization (Ar'7*— Ar!8*) as
well as excitation to high-lying excited states are described
by I'"?. G describes the electron capture channel converting
Ar'® jons into Ar'”* ions. Additional capture, (Ar'7*
— Ar'%*), is neglected since its probability during the propa-
gation distance considered in the experiment is small.

C. Calculation of the source term

The transfer of an electron from a carbon atom to the
impinging argon ion may be treated through a number of
approximations. Common approaches are the continuum
distorted-wave (CDW) approximation [20-23] and the clas-
sical trajectory Monte Carlo (CTMC) method [24-28]. Ex-
perience shows that CDW and CTMC results agree reason-
ably well for charge transfer in many ion-atom collision
systems regarding the total and n-level resolved cross sec-
tions for the dominant channels but, typically, do not agree as
well for €-resolved cross sections.

The situation is even less clear for coherences, i.e., off-
diagonal elements of the density matrix. Which of the two
approaches yields a more realistic input in the present case of
Ar-C collisions is not readily predictable. Therefore, in order
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to test which approximation is better suited for the present
system, we have performed a benchmark calculation by em-
ploying the lattice time-dependent Schrédinger equation
(LTDSE) approach [7,29-31]. For computational conve-
nience, we focus on n=3 and use the LTDSE approach to
provide clues as to the validity of CDW or CTMC which we,
then, extrapolate to higher n-levels. In the LTDSE approach
the electronic wave function and the operators (i.e., kinetic
and potential energy) are represented on a numerical grid.
The wave function is then propagated in time and analyzed
to yield, for example, channel-resolved charge transfer prob-
abilities. The method has recently been described in detail in
Ref. [7]. That work also introduced a hybrid approach aug-
menting the LTDSE treatment of the problem within a rela-
tively small spatial grid surrounding the distance of closest
approach between the target and projectile, where the inter-
action is strongest and most complex, with time propagation
through an atomic-orbital close-coupling (AOCC) expansion
involving only the very small number of bound states needed
in the space outside this inner region.

Here we have adapted the LTDSE-AOCC method [7] to
describe the collision of Ar'®* with a carbon atom. In order
to represent the screening of the nuclear charge experienced
by the one active electron due to the other electrons in car-
bon, we use a parametrized Hartree-Fock model potential
[32,33] to describe the interaction of the electron with the
carbon core. We also adopt the so-called semiclassical ap-
proximation in which the projectile trajectory is a straight
line, representing a very good approximation given the rela-
tively high velocity considered here.

The grid consists of 320 knot points and extends from
—3.32 to 3.32 a.u. in each of the three Cartesian directions,
resulting in a linear mesh spacing 4 times smaller than the
Ar'7* (1s) radial expectation value. A Fourier representation
of the derivative operators was adopted as in previous work
[7] yielding an optimal representation for the given number
of knots. The potential was softened near the electronic ra-
dial distance r=0 (i.e., r— \r>+s). By performing repeated
eigensolution of the lattice Hamiltonian with variation of the
“softcore” parameter s, its value is chosen and fixed by
matching the Hartree-Fock expectation value of energy for
C(1s). A value of s=7.36X 107 for carbon yielded (E)=
—11.326 a.u. Similarly, a softcore parameter for the
projectile-electron Coulombic interaction of 4.526 X 107>
gave (E)=-162 a.u. for Ar'7*(1s). With the softcore param-
eters fixed, partial diagonalization of the lattice Hamiltonian
yielded wave functions for the deeply bound states of Ar'7*
for n=1,2,3 that were needed in analysis of subsequent
stages of the calculation, and analytic wave functions were
computed for projection onto the states in the n=4 and 5
manifolds.

In order to localize the electronic probability density after
charge transfer to the center of the numerical grid, calcula-
tions were performed in the projectile frame. The carbon
atom was placed at an initial distance of —2.515 a.u. from
the Ar'®* ion along the z direction, referred to the origin of
coordinates at the center of the cubic grid. This internuclear
separation was well beyond the radial expectation value of
the C(1s) state on the grid ({r)~0.27 a.u.) and not overlap-
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FIG. 4. (Color online) State selective charge transfer cross sec-
tions computed using the LTDSE (@), CDW (4), and CTMC (H)
approaches for Ar'8*+C at a projectile velocity of 23 a.u. for dif-
ferent shells: n=1 and n=2 (a); n=3 (b); and n=4 (c).

ping with the complex absorbing potential near the edge of
the grid (see Ref. [7]). The split operator method was then
used to propagate the carbon atom past the ion along a
straight line, for various impact parameters ranging from b
=0.01 to 0.65 a.u., up to a distance of z=+2.515 a.u. (with
a time step of 8.725X 1075 a.u.). At that point the time-
evolved wave function was projected onto the set of eigen-
states of Ar'”* and the resulting amplitudes were used to seed
the extended AOCC time propagation which was carried out
including the projectile bound states of interest. A number of
tests indicated that the charge transfer probabilities (or den-
sity matrix elements) were converged with respect to inter-
nuclear distance (or equivalently, propagation time) already
at the conclusion of the lattice calculation owing to the high
velocity of the collision and the small dipole moment
~n*/Z, of the highly charged ion [34].

Figure 4 presents a comparison of the LTDSE results with
those from our CDW and CTMC calculations. For the states
within the n =3 manifolds, the LTDSE results lie in between
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FIG. 5. (Color online) Cross sections for Ar'8*+C— (Ar!7*)”
+C* collisions at v,=23 a.u. for electron capture into different
shells within different approximations [CTMC (H); CDW (4 ); and
LTDSE (¢)]. The scaling with n for results obtained with CTMC is
indicated for small n as «n~2 (dashed line) and in the limit of high
n as «<n=> (dotted line).

those from CDW and CTMC, with CTMC practically always
above LTDSE and CDW always below. On average, CDW is
somewhat closer to the LTDSE than is CTMC for the domi-
nant np cross sections. Therefore, we choose CDW as the
approximation to include the higher n levels for the present
collision system. For n=4, the LTDSE show a very similar
pattern in comparison to CDW and CTMC as for n=3, ex-
cept for the f states, where they decrease with increasing m;
much faster than CDW. Regarding the behavior of the cap-
ture cross section summed over / and m;, capture into n=2 is
strongest and drops off rapidly for higher shells (Fig. 5). This
decrease is first proportional to n~> for lower n and n~> for
higher n. This feature is reproduced by all three approaches.
A more sensitive test is provided by the real and imagi-
nary parts of the off-diagonal density matrix elements,
which, in addition, are important input quantities for the
transport simulation. The three approaches agree for the rela-
tive magnitudes and phases, with the LTDSE results again
lying generally between those of CTMC and CDW and more
closely to CDW than to CTMC. Table I shows intrashell
coherences for the LTDSE and CDW results, with CTMC
omitted for clarity of the display, for the n=2 and n=3 mani-
folds. The differences between LTDSE and CDW are typi-
cally quite small, the largest difference being about 30%.
This observation is particularly interesting and somewhat
surprising since for charge transfer in p-He collisions,

TABLE I. Intrashell coherences of the electron capture density matrix for a bare Ar
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FIG. 6. (Color online) Schematic illustration of the experimental
arrangement.

CTMC has proven to be more accurate than the CDW ap-
proximation [7]. We suspect the origin to lie in the different
spatial extent of the wave functions. Charge transfer via de-
localized wave functions of lower charged ions appears to be
better described within a classical sampling of the phase
space (CTMC) than by a perturbation treatment (CDW). For
highly charged ions the electronic wave functions are more
localized at the vicinity of the nucleus and consequently a
perturbation treatment within the CDW approximation is ex-
pected to perform better than the classical calculation.

IV. EXPERIMENT

The experiment described here gives access, with a high
accuracy, to the evolution of the population of Ar'’* excited
states in transport through a solid. It has been performed on
the LISE (Ligne d’Tons Super Epluchés) facility at GANIL
(Grand Accélérateur National d’Tons Lourds - Caen, France).
The setup is depicted schematically in Fig. 6 where
13.6 MeV/amu fully stripped Ar'®* ions are directed onto
either solid foils or gaseous targets. The beam intensity, in
the range 10-800 nA e, is measured by a Faraday cup allow-
ing to obtain the number of ion projectiles (N,;) with a
typical precision better than 1%. Fourteen self-supported car-
bon foils of thickness ranging from 2.1 (30%) to 160

18+ jon colliding with

a carbon atom (v,=23 a.u.) in atomic units X107 (1 a.u. corresponds to 2.8 X 10717 cm?) calculated by
different methods (CDW and LTDSE) for the n=2 and n=3 manifolds.

CDW LTDSE
250 2P0 2.525+il7.15 2.243+i20.04
350 3po 1.455+i7.868 1.404+i8.936
350 3d, ~1.904+i0.711 ~2.582+i0.789
3po 3d, 0.314+i2.568 0.475+i4.196
3p.; 3dy, 0.054+i0.829 0.021+i1.275
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TABLE II. Energy of observed lines in eV with the global transmission 7}, and T, for each type of

detectors. Ep;

and Ey,;, correspond to energies in the projectile and laboratory frames, respectively. Energies

of the Lyman line are taken from Ref. [38]. For 25 — 1s we provide the energy of the center of the theoretical

distribution of the 2E1 decay mode [39].

Epro Eip(©7) Transmission T’
21— 1s 3318.18 3831.36 8.09X 1077 (£12%)
2p3p—1s 3322.99 3836.73 8.09X 1077 (x12%)
3p—1s 3935.36 4543.78 2.61X107%(x17%)
4p—1s 4150.19 4791.82 2.63X107%(x17%)
Sp—1s 4249.60 4906.60 2.59X107%(x17%)
25— 1s 1660 1636 4.43%107%(x4 %)

(£5%) pglem? (ie., from 105 A to 8000 A) are used. Target
thicknesses and purity are measured by 1-2 MeV a-particle
Rutherford backscattering method, which has been per-
formed before and after the GANIL irradiation. Only targets
where impurities (mainly oxygen) contribute less than 3% to
the total capture signal have been retained. The effective tar-
get thickness can also be varied by tilting the target with
respect to the beam axis. This allows a fine scanning (i.e.,
overlapping measurements with different foils) and to extend
the range of thickness up to 230 ug/cm? (11000 A). We
note that the total interaction (penetration) time of the beam
with the thinnest foil is less than 9 a.u. or 200 attoseconds.
This corresponds to an impulse electronic excitation on an
ultrashort time scale comparable to shortest xuv pulses cur-
rently available [35]. Either CH, or N, have been used as
gaseous targets and lead both to identical results in the ratio
between different fine structure components as discussed in
the last section.

To reach high precision in the measurements of Lyman
intensities, we employ high-transmission high-resolution
Bragg-crystal spectrometers specifically designed for this
type of experiment. A resolution better than 5 eV is required
to resolve the two fine-structure components 2p; (see Table
II, for Lyman energies) while keeping the detection effi-
ciency as high as possible taking into account the low count-
ing rates. Their principle of operation has been already de-
scribed in detail in Ref. [36]. Briefly summarized here, high
transmission is achieved by using a highly oriented pyrolytic
graphite (HOPG) crystal with a mosaic spread of 0.4°, and a
large (60X 60 mm?) home-made localization chamber. This
position sensitive detector, working in the proportional re-

gime, is filled with 1.15 atm of Ar(CH,) and sealed by a thin
aluminized Mylar window (12 um of Mylar and 10 ug/cm?
of Al). The spatial resolution reached was better than
500 um. The two spectrometers are used in a vertical geom-
etry to remove line broadening due to the Doppler effect and
placed at an angle ®;=30° on each side of the beam axis.
For this geometry and angle, the recorded 4 keV line inten-
sities are polarization-insensitive (the graphite crystal acting
as a polarizer). Also, if the two arms of the spectrometers
have equal length (equal target-to-crystal and crystal-to-
detector distances), the effects associated with the mosaic
spread vanish at first order. Under these conditions, the larg-
est remaining contribution to the system resolution comes
from the optical quality of the beam which has been consid-
erably improved using a specific configuration of the GANIL
facility; we make use of the first cyclotron (CSS1) combined
together with the alpha spectrometer that allows, thanks also
to the beam optics elements of the LISE beam line, to get
high current intensity (up to 800 nA e) within a beam spot
less than 1 mm of height and an almost horizontal parallel
beam of a width around 6 mm. Finally, the spectrometer I,
with two equal arms of 1630 mm length, was specifically
designed to record the fine structure components of the 2p;
— 1s transition and a resolution of ~2.5 eV at 3.8 keV was
achieved [see Fig. 7(a)]. The spectrometer II, with two equal
arms of 775 mm length, allows to obtain precisely either the
3p— ls transition [Fig. 7(b)] or higher members of the Ly-
man series from 4p to the end [Fig. 7(c)] with a resolution of
~6.5 eV or 8 eV, respectively. Under these conditions, an
overall crystal spectrometer transmission 7, of ~107% is at-
tained (see Table II).

(b) 3p

12x103
4p
10x10%

8x103

6x10°

Counts

4x103

2x10°

FIG. 7. Typical spectra re-
corded by the crystal spectrom-
eters with a d=47.2 ug/cm?
(=4300 a.u.~0.23 um) carbon
target thickness (solid lines): (a)
observation of 2p;— ls transitions
(dashed line, spectrum obtained
with a CH,; gaseous target and
normalized to the 2ps3, compo-
nent); (b) the 3p—1s transition
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To monitor these crystal spectrometers two Si(Li) detec-
tors were placed at ®;=120° and ©,;=150° with respect to
the beam direction to record the complete series of Lyman
(np— 1s) transitions emitted by the ion projectile. The en-
ergy resolution was 4% and 7% corresponding to linewidths
of 125 eV at 3.02 keV (®,=120°) and 200 eV at 2.85 keV
(®,=150°), respectively. Hence, we can clearly identify the
Ar'™* 2p —1s and 3p — 1s peaks.

The experimental population per incident ion P, *(d) for a
certain target thickness d is deduced from the recorded emis-
sion intensities, /,, ,1,(d), via the following equation:

PoR(d) = _aporsld) (4.1)

BanlszrOanp
where B,, .|, is the branching ratio and N, the number of

ion projectiles. This population can be written as

d

PEP(d) = Py (d) + PE(d) + v, fo P, (2)dz.

4.2)

P,, stands for the population at the exit of the foil. Two
aspects are to be considered: (i) after leaving the foil, higher
excited states relax in a radiative cascade and thus contribute
to the observed np populations through the term denoted by
PZ;SC (for details see Ref. [37]); (ii) the emission during trans-
port through the foil corresponds to the integrated population
P,,(d) weighted by the total decay rate v, of the observed
transition. In the limit of very thin targets where the single
collision condition is fulfilled, this third term is negligible
and we can write

PEP(d) = P,,,(d) + PE2<(d). 43)

The precision on the determination of the absolute np popu-
lations P, P(d) leads to error bars not larger than 20% mainly
due to the uncertainty on the global transmission T, (see
Table II). A comparison with the previous data (Ref. [6])
shows a discrepancy in the absolute magnitude of about a
factor of 2 due to the fact that in Ref. [6] the absolute trans-
mission was underestimated. Indeed, in Ref. [6], the detec-
tion system was specially designed to record the intensities
of long-lifetime excited states and not the prompt intensities
of the np states leading, in this case, to an underestimated
absolute solid angle. Here, great care was taken on the evalu-
ation of the transmission. Another pertinent quantity that can
be also studied is the evolution of the relative Lyman inten-
sities for which systematic experimental uncertainties cancel
out. In particular those from fine-structure components like
the ratio R,

]2171/2~> ls(d)
]2173/2~> ls(d) ’

where the error is only due to statistical uncertainties and
Bremsstrahlung background. In the present paper, we will
present only the values measured in the case of gaseous tar-
gets, which will be discussed and compared to the initial
capture density matrix source term in a subsequent section.
Experimentally, whatever the gas (CH, or N,), we found a
value of 0.54+0.01 (2%).

R/(d) = (4.4)

PHYSICAL REVIEW A 75, 032714 (2007)

Most of the populated exited states decay via single pho-
ton modes towards the ground state very fast, i.e., immedi-
ately after leaving the foil within a few 107'*s for the np
states. On the other hand, the 2s state has a lifetime of 3.5
X 107 seconds for Ar'7* and decays via two modes: a two-
photon mode (2E1) and a single photon magnetic mode
(M1) with branching ratio of 97% and 3%, respectively
[38,39]. At a projectile velocity of v,=23 a.u. (i.e., an en-
ergy of 13.6 MeV/amu), the lifetime translates into a propa-
gation distance of z,,=173.6 mm. Consequently, only a
small window, Aa, around a given distance z=a behind the
target can be covered by a spectrometer placed at 90° with
respect to the beam axis. We choose an observation position
of a=50 mm, and a specific collimator of Aa=2.25 mm was
designed to combine good enough detection efficiency (a
few 1075, Table II) and spatial resolution that ensures enough
precision in the determination of the 2, population. Typical
spectra are shown in Ref. [40]. The 2s state population is
deduced from the recorded 2E1 intensity, /5, by the follow-
ing relation:

L (d)
P3P(d) = arha . 45)
2B35" | Nproi T2y f e asdy
a—Aa
where B%fl”=97% denotes the branching ratio and T, the

global transmission of the particular setup used. The uncer-
tainty on P5."(d) is found around 15% for the full range of
target thickness. The present experimental data on the evo-
lution of the absolute 2s population as a function of carbon
target thickness are fully consistent with our previous mea-
surements that were acquired during a previous experiment
dedicated to the production and transport of long-lifetime
excited states alone [6,40]. The experimental observables we
will discuss and compare with theoretical calculations are the
np populations P, P(d), the metastable 2s population P3"(d),
and the 2p fine structure ratio for gaseous targets.

V. COMPARISON BETWEEN THEORY AND EXPERIMENT

In this section we present numerical results obtained by
the QTMC simulation and compare them with the experi-
mental data. We investigate different aspects of the time evo-
lution of the reduced density matrix () ranging from the
ultrashort limit of single collision conditions to transport ef-
fects due to multiple scattering. The relative shell popula-
tions are considerably modified by transport (Fig. 8). Unless
otherwise stated, we use the capture density matrix obtained
by the LTDSE calculation for n=4. For n=4 we use for the
off-diagonal elements relative coherences calculated using
the CDW approximation. In the single capture regime, or
equivalently at short propagation lengths, capture into n=2 is
dominant. The relative populations are directly proportional
to the cross sections in Fig. 5 plus cascade contributions as
indicated in Eq. (4.3). With increasing transport length ex-
cited states get either ionized by collisions or radiatively cas-
cade to the ground state. Therefore the relative weight of
P(n=1) increases while all P(n>1) get depleted during
transport relative to P, the total occupation of Ar!”*. The
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FIG. 8. (Color online) Evolution of relative n-shell populations
of Ar'™ populated by electron capture as a function of propagation
length through carbon foils. The simulated shell populations P(n)
are normalized to the overall charge state probability P of Ar'7*.

ratios between P(n=2), P(n=3), and P(n=4) population
fractions remain almost constant. The long time limit is char-
acterized by three components: (i) feeding by capture, (ii)
collisional excitation of the ground state, and (iii) collisional
redistribution and ionization of excited states and intrashell
mixing by the wake field. At the longest propagation length
considered (d=3x10* a.u.) an equilibrium seems to be es-
tablished between these different processes.

By examining the relative populations of different states
within each shell (Fig. 9) we can investigate transport effects
in more detail. According to Fig. 4, capture cross sections are
largest for p states and rapidly decrease for states with higher
angular momentum. This general trend is reproduced by all
approximations employed for the initial capture. On the other
hand, transport tends to populate higher angular momentum
states as is clearly seen in Fig. 9 at large propagation lengths.
This is due to the interplay of two processes: collisions and
mixing by the wake field. Collisions tend to drive the angular
momentum of the bound electron to large |m , where the
quantization axis is aligned with the beam axis. The wake
potential, by contrast, is responsible for / mixing while pre-
serving m;. The interplay of both processes makes states with
all magnitudes and orientations of angular momentum rap-
idly accessible [6]. For the present collision system the con-
sequence is that in the limit of long propagation lengths the
relative intrashell probabilities are statistically distributed. In
other words, the distribution within each shell is proportional
to the number of available states ~2[/+1. Overall, we ob-
serve a dramatic change of relative populations from the
single-collision capture limit to equilibrium mixing, which is
reached at propagation lengths of d~=~2000 a.u.

The dependence of experimental populations deduced
from emitted photon intensities on the electron capture den-
sity matrix is shown in Fig. 10. Transport simulations using
GPY and G'TPSE agree with experimental data in the entire
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FIG. 9. (Color online) Evolution of relative populations of Ar!*

initially populated by electron capture as a function of propagation
length through carbon. The simulated populations are presented as a
function of n and [. The results are normalized to the overall prob-
ability in the corresponding shell: (a) P(n=2,1); (b) P(n=3,1); and
(c) P(n=4,1).

range of interaction times confirming the accuracy of capture
cross sections in the single capture regime and of the descrip-
tion of the dynamical evolution. For thin foils the results
reflect the single-collision capture cross sections. When look-
ing closer we observe that G*™PSE reproduce the measure-
ments slightly better than those obtained by CDW for p
states. This is due to the fact that cross sections for electron
capture into p states obtained by the CDW approximation are
smaller than those obtained by LTDSE. The resulting differ-
ence in photon intensities persists during transport.

Since CTMC cross sections for capture into p states are
higher than those obtained with LTDSE, populations calcu-
lated using GS™C are larger than the present measurements.
Results using GS™C are within the experimental resolution
for the 2s intensity in the single collision regime but the
discrepancy increases during transport as the 2s state mixes
with other states. These conclusions contrast those found in
Ref. [6] and are due to improvements in the calibration of the
experimental data (the present intensities for p states are
somewhat smaller than those reported in Ref. [6]).
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FIG. 10. (Color online) Absolute populations P, »,(d) of excited Ar'”* jons as a function of foil thickness during transport through an
amorphous carbon foil (v,=23 a.u.) for (a) n=2 and (b) n=3,4. Symbols: experimental data; lines, results from full simulation within the
QTMC method using different capture density matrices as input: solid lines, LTDSE; dotted lines, CDW; dashed lines, CTMC.

Alternatively to the present QTMC method, the Lindblad
master equation can also be solved directly using a limited
set of couplings. An example of such an approach is the
master equation approach (MEA) [12,36] in which the colli-
sional transition rates are calculated in plane-wave first Born
approximation and the wake field is calculated following
[41]. Figure 11 displays results from the MEA with the same
electron capture density matrix used in our QTMC approach.
The MEA results agree with the data for thin foils while it
overestimates the populations for longer propagation lengths.
These differences to the QTMC solution emerge in the mix-
ing region starting at about 10 ug/cm? pointing to different

Propagation length [um]

0.01 0.1 1

treatments of the dynamics. Also shown for comparison in
Fig. 11 are photon intensities obtained from our classical
transport theory (CTT) to follow the time evolution of the
active electron [6] and using an incoherent capture source
calculated with CDW. The differences with respect to QTMC
are not dramatic and the largest ones are observed for in-
creasing foil thickness for the 2s, 3p, and 4p intensities.
These differences are mainly due to the fact that the CTT
simulations displayed in the figure neglect (i) coherences in
the electron capture source and (ii) the radiative decay while
ion is inside the solid. Overall, QTMC results describe the
data more accurately than the other approaches and the
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FIG. 11. (Color online) Absolute populations P,,,,(d) of excited Ar'™ ions as a function of foil thickness during transport through an
amorphous carbon foil (v,=23 a.u.) for (a) n=2 and (b) n=3,4. Symbols, experimental results; solid lines, QTMC results using LTDSE for
capture; dashed lines, CTT calculation using CDW for capture; dotted lines, MEA calculation using LTDSE for capture into n=3 and CDW

for capture into n>3.
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LTDSE method provides the most accurate input for electron
capture.

VI. SUMMARY AND OUTLOOK

We have presented a joint theoretical and experimental
study of the production and transport of electronic states dur-
ing the passage of Ar'®* ions through amorphous carbon
foils. We have addressed two different aspects of the ion-
solid interaction: (i) the production of excited states in elec-
tron capture and (ii) the modification of these states in trans-
port through a solid.

We have performed accurate calculations of the electron
capture density matrix as initial conditions for quantum
transport by means of the solution of the time dependent
Schrédinger equation on a lattice (LTDSE) and compared
them with results obtained by the classical trajectory Monte
Carlo (CTMC) method and by the continuum distorted wave
(CDW) approximation. The agreement with measurements
validates our nonrelativistic quantum mechanical calcula-
tions (CDW and LTDSE).

We have described the transport of electronic states
through a solid by means of an open quantum system ap-
proach. We have developed an extension of the standard
open quantum system approach to account for probability
flux into the simulated system as well as out of the system.
Along these lines we proposed an inhomogeneous Lindblad
master equation and its solution by a quantum trajectory
Monte Carlo method. This generalization enables us to incor-
porate ionization as well as electron capture. The overall
good agreement between theory and experiment demon-
strates the accuracy of the calculation and underlines the va-
lidity of the present approach. Overall, the present open
quantum system approach and the new measurements have
been found to be in much better agreement than previous
comparisons [6].

There remains, however, one noteworthy discrepancy that
appears already in the single collision regime and thus points
to a deficiency of the diagonal elements G(n,l,j) of the ini-
tial capture density matrix: the ratio between different fine
structure components is, as long as the capture is treated to
be spin independent, fixed by the transformation matrix be-
tween orbital angular momentum and fine structure states
(nlj) (Clebsch-Gordan coefficients) as

12j+1
G(n,l,j)=— G(n,l). 6.1
(n,1,j) 221 (n,) (6.1)
Equation (6.1) predicts, for  example, that

G(2p,2)! G(2ps;,)=1/2. This ratio is independent of the par-
ticular approximation of the capture density matrix. Experi-

PHYSICAL REVIEW A 75, 032714 (2007)

mentally, this ratio is found to be systematically enhanced by
10% to about Izp”z_,18/12,,3/24505410.01. We surmise that
this discrepancy is due to the onset of relativistic effects at
v,=23 a.u. (v,/c=0.17). Preliminary calculations employ-
ing the relativistic eikonal approximation (REA) [42—44] in-
dicate that this ratio is indeed enhanced by relativistic ef-
fects, however the magnitude of the enhancement is
insufficient to explain the experimental data in detail. As the
region of validity of the REA lies at higher interaction po-
tentials the partial agreement is inconclusive. This problem
awaits further study by extending lattice-based solutions of
electron capture using the Dirac equation or other relativistic
approximations.

Finally we would like to point out that the Lindblad equa-
tion and its Monte Carlo solution can be used as a versatile
tool adaptable to describe the coherent dynamics of a wide
range of quantum systems that are strongly perturbed by
their environment. The present formulation is expected to
have applications beyond the field of ion-solid interactions.
Examples include the coherent dynamics of electrons in
quantum dots and quantum wells driven by THz pulses
where electrons are continuously captured from and lost to
the conduction band. The generalization presented here over-
comes the restriction of the Lindblad master equation to uni-
tary evolution making it a powerful framework for a large
number of problems. Further extensions, in particular inclu-
sion of contributions beyond the Markov approximation (i.e.,
memory effects) do not play a significant role in the present
context but may be of importance in other systems and are
deferred to further study.
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