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Double-bound equivalent of the three-body Coulomb double-continuum wave function
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In cross-section calculations of electron or photon double ionization processes of two-electron atoms, it is
desirable to have a symmetric description of initial and final states. In this contribution, we search the doubly
bound analog, for S states, of the well-known and widely used three-body Coulomb (C3) double-continuum
wave function. This is performed with two alternative approaches: through an analytic continuation of the C3
continuum and through a “C3 approach” of the Hylleraas equation for S bound states. The double-bound
analog consists of the product of two Coulomb bound states (one for each electron-nucleus interaction)
multiplied by a Coulomb distortion factor which describes the electron-electron correlation. Our result differs
from Pluvinage’s wave function which is commonly misbelieved to be the bound counterpart of the C3 double
continuum. With a rigorous treatment of the analytic continuation of the distortion factor, the double-bound
equivalent of the C3 model is also found. Though the purpose is not to obtain good two-electron bound states,
the found bound wave functions are tested, in the case of helium, through various local and mean quantities
which probe different regions of the configuration space, in particular those close to the two-particle coales-

cence points.
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I. INTRODUCTION

In this contribution we are interested in the inter-relation
between the description of the double-continuum final state
and of the doubly bound initial state of two-electron atoms.
This is particularly important in the theoretical study of the
double ionization of helium, whether by electron [(e,3e) ex-
periments] [1] or photon [(7y,2¢) experiments] [2] impact.
The full three-body Coulomb problem has been extensively
studied, but no exact wave function is known for either the
scattering or the bound states. Hence approximate wave
functions are generally used when calculating double ioniza-
tion cross sections. The choice of both the initial and final
wave functions leads to different results [1,2] (see also recent
discussions in [3-5]), so that it is important to try to under-
stand the origin of these differences. Moreover, it is well
known that having a symmetric description of the initial and
final states is desirable since it avoids spurious contributions
in the calculated cross sections. In this way, even relatively
simple—but correlated—initial- and final-state wave func-
tions can yield calculated cross sections in agreement with
experimental data (see, e.g., the recent study of (e,3e) pro-
cesses [4,6]). This, however, is true as long as the wave
functions include correlation in a “similar” way (we shall
return to this point below).

In this report, we investigate the issue of constructing
symmetrically double-continuum and double-bound approxi-
mate solutions for two-electron atoms. Generally speaking,
this is not an easy task. Suppose, for example, that—in order
to improve the description of a two-electron state—one in-
troduces static (dynamic) screening effects in a bound (con-
tinuum) trial wave function: how can one modify the con-
tinuum (bound) wave function to include these effects to the
same extent (or in a similar way)? Since there is no straight
answer to this question, we have considered the “relatively
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simple” case of the well-known and widely used double-
continuum three-body Coulomb (C3) wave function [7] (also
called 3C or BBK model). The main aim is to find its doubly
bound equivalent (for S states) in order to have, for the first
time, a symmetric description of correlated bound and con-
tinuum wave functions. This, curiously, has not been pre-
sented in the literature. The reason is possibly found in the
common misbelief that the helium Pluvinage wave function
[8] is the answer (see, e.g., [5,6,9]). We shall show here that,
while the mathematical approaches in both the continuum
and bound cases present some similarities, this is not the
case.

Though it has known shortcomings and kinematical limi-
tations in applicability, the C3 wave function has been, and is
currently, successfully used for calculating cross sections for
single and double ionization, amongst other processes
[1,2,10]. The C3 wave function is an approximate model
describing the dynamics of three charged particles. In the
case of two electrons in the field of a nucleus, it consists of
the product of two Coulomb wave functions (one for each
electron-nucleus interaction) multiplied by a distortion factor
which describes the electron-electron correlation. The
strength of the C3 continuum lies in the fact that it contains
a large part of the multiple-scattering terms in the three two-
body Coulomb potentials. Moreover, by construction, the C3
wave function (i) satisfies Kato’s cusp conditions at all two-
body coalescence points [11] (it fails, however, to satisfy the
triple coalescence condition; see, e.g., Ref. [12]); (ii) it has
the correct asymptotic behavior when all interparticle dis-
tances are large (so-called region (),). The main shortcom-
ings, on the other hand, are the failure in describing the
proper behavior: (i) at intermediate interparticle distances;
(ii) when one particle is far away from the other two. More-
over, because of its asymptotic nature, its range of applica-
bility is restricted to sufficiently large momenta. In order to
correct some of these deficiencies, several improvements of
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the original C3 double-continuum wave function can be
found in the literature. Most of them, built preserving its
simple mathematical form, introduce coordinate -or velocity-
dependent effective charges (see, e.g., [1,9,13-19]), thus in-
cluding dynamical screening. However, the choice of effec-
tive charges—though submitted to physical constraints—is
arbitrary. According to the kinematical conditions of a
double ionization process, the resulting cross sections can be
either better or worse than those obtained with the original
C3 wave function (see, e.g., Refs. [9,20-22]). Moreover, it is
difficult to justify a different choice of effective charges for
varying kinematical experimental conditions.

The original C3 wave function has been used in combi-
nation with several trial ground-state wave functions, for dif-
ferential cross-section calculations of double ionization pro-
cesses, in particular for helium. Recently, curious results
have been observed for high-energy (e,3e¢) processes: the
use of sophisticated bound wave functions yield an agree-
ment with experimental data which is worse than when rela-
tively simple helium wave functions are used [3-5,23]. In
particular, the rather simple Pluvinage wave function [8]
gives good agreement [6] with the absolute experimental
data of [21]; this was partly attributed to the fact that “the
Pluvinage wave function is the doubly bound analog of the
C3 wave function” [6] (and so the initial state is treated in
equal manner to the final state). Practically the same level of
agreement was subsequently found also with other simple
bound wave functions [4,24]. In constructing Pluvinage-type
wave functions with a superposition of configurations, it was
observed that the agreement is lost [5,25]. The explanation of
these results is found in the way the correlation is introduced
in both initial and final states. Only when radial and angular
(by angular we mean interparticle dependent only) correla-
tions are not mixed in the initial state—similarly to the C3
continuum—agreement with high-energy (e,3e) differential
cross sections is found.

As the initial state is concerned there exist in the literature
many trial wave functions (in the case of helium, some
reaching extremely good energy levels; see, e.g., [26], and
references therein). According to the variational principle, by
adding more terms (and hence more variational parameters)
it is possible to improve the ground-state energy. Trial wave
functions can be constructed either with terms of a chosen
mathematical—and presumably good—form or using the
principle of superposition of configuration with a suitable
basis set (in the latter case, one may systematically increase
the number of terms). Screening effects can be included ei-
ther directly (by using effective charges) or indirectly (for
example, through a superposition of configurations). Con-
trary to the bound state, the construction of a mathematical
final state is much more delicate. Only few closed forms for
the correlated double continuum are known, and the system-
atic improvement by addition of more terms is not at all
obvious, and quickly becomes cumbersome. One of the most
used final states is the C3 wave function. Besides the im-
provement through the introduction of effective charges,
some attempts to go beyond the C3 model, including higher
orders of Coulomb-like wave functions, have also been re-
ported (see, e.g., [27-30], and references therein).

Let us now return to the issue of having a symmetrical
description of initial and final states. While it is relatively
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easy to improve the initial double bound state, one should
improve the double-continuum state in an equal manner, i.e.,
with a similar degree of correlation: this is generally not
feasible. As mentioned above, in this contribution, we con-
sider the C3 wave function and search its bound equivalent
for S states. The result can then be used as a starting point
from which to go further. For example, with a superposition
of configuration of these equivalent bound § states, one can
envisage to construct—in a systematic way—better bound
states which are still of the same family (work in prepara-
tion). This is exactly the approach considered recently with
Pluvinage-type wave functions [5,25]: however, as men-
tioned above, Pluvinage’s wave function is not the bound
analog of the C3 continuum, and hence these studies were
based on a starting point which is wrong if one aims at a
symmetric description.

Since the C3 model was first introduced in the literature,
its different versions have been widely used as final-state
wave function to calculate cross sections for single and
double ionization processes whether by electron, proton, or
photon impact. We have already mentioned that, in collision
calculations with approximate solutions, it is desirable to
have a symmetric description of the initial and final states.
The answer in the case of C3-like wave functions and its
application, for example, to (e,3e) processes, could help to
elucidate the discrepancies observed on the calculated cross
sections [4-6,9,20,21]. While the double-bound counterpart
of the continuum C3 wave function is absent from the litera-
ture, we should mention—for completeness—that, in the
case where two particles of a three-particle system form a
bound compound, C3-like wave functions have been re-
ported. Dewangan [31] developed an approach adequate for
the process of electron-impact excitation of hydrogen: one of
the electron-nucleus Coulomb wave function is replaced by a
bound atomic eigenfunction, and the momentum correspond-
ing to the electron-nucleus motion is set to zero. A much
more mathematically careful study of this situation has been
presented by Berakdar [32] and later on by Garibotti er al.
[33]. In Berakdar’s work, the author has given an asymptoti-
cally correct solution for the case where two of the particles
are bound in any arbitrary state while the third has an arbi-
trary momentum. On the other hand, Garibotti ef al. have
derived the C3 analog corresponding to this situation by per-
forming, on the double-continuum C3, the analytic continu-
ation to the complex plane of one of the particles’ relative
momentum.

We would like to point out that there is no intention here
to obtain good two-electron wave functions for S states. The
aim is to find the double-bound analog of the C3 wave func-
tion, in order to have a truly symmetric description of the
double bound and double continuum. The result can be con-
sidered as a starting point for further improvements.

To achieve our aim, we organize the paper as follows. We
need first to briefly describe how the C3 wave function cor-
responding to positive energy is constructed, and indicate
which approximate Hamiltonian it effectively satisfies and
what terms are neglected from the three-body Hamiltonian
(Sec. II). We then search the doubly bound analog (for S
states) of the C3 double-continuum wave function in Sec. III.
Two different approaches are used: through an analytic con-
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tinuation (Sec. IIl A) and through a “C3 approach” but for
the bound S states Schrodinger equation (Sec. III B). The
second derivation allows us to show which terms of the Hyl-
leraas Hamiltonian (see, e.g., [4]) are neglected to obtain the
doubly bound analog of the C3 double continuum. The
bound function obtained from either of the two procedures
corresponds to the product of two Coulomb bound states
multiplied by a Coulomb distortion factor; thus the bound C3
satisfies too all the cusp conditions at the two-body coales-
cence points. In Sec. IV, the bound electron-electron distor-
tion factor is discussed in more detail: a simple approach
(Sec. IV A) yields a bound analog, while a rigorous approach
(Sec. IV B) gives the doubly bound equivalent sought after.
For illustration, the mean and local energies for the found
wave functions are compared in the case of the ground state
of helium. The behavior of the bound states near the two-
particle coalescence points is also studied (Sec. V) through
dynamical quantities (associated to photoabsorption and
Compton scattering) which probe various parts of the con-
figuration space. A summary of our findings, and perspec-
tives for future work are presented in Sec. VI. In what fol-
lows, atomic units are used throughout.

II. C3 DOUBLE-CONTINUUM WAVE FUNCTION
Let us start from the nonrelativistic Schrodinger equation
HY =EV, (1)

corresponding to two electrons in the presence of a nucleus
of charge Z. For notation simplicity, we consider the nucleus
to be infinitely heavy and fixed at the origin of coordinates.
Let r; and r, represent the two electrons positions and ry,
=r,-r, the electron-electron relative vector. In terms of the
interparticles coordinates r, r,, r;, (labeled 1, 2, and 12,
respectively), the Hamiltonian reads

1 2 1 2
H= —5V1+V1 + —5V2+V2

+(_V%2+ Vi) + Vo,V =ViV), (2)
where
Z7;
L= —i | =
Vj rj (.] 1$2)7 (33)
V=2 (3b)
2

are the Coulomb potentials (z;=z,=—1). It is worth remind-
ing that r;, does depend on the vectors r; and r,, even
though in the Hamiltonian the three variables seem to be
independent. The last bracket in the definition of the Hamil-
tonian H corresponds to the kinetic operator, named crossed
term hereafter, which mixes the coordinates and gives the
nonseparable character to the three-body system. Whether
the energy E of the system is positive or negative, no closed-
form solution for ¥ is known up to now.

Consider the case of the double continuum, where the two
electrons have momenta k; and k,, respectively. Without loss
of generality, let us start by writing
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P = ekiTipkanag, 4)

Upon replacement into Schrodinger equation (1), one easily
obtains the equation for ®

I_, . I_, .
—Evl—lkl'V]+Vl + _5V2_1k2'v2+v2

K+ i
+[—V%2—i(k1—k2)'V12+V12]+< 12 2—E>

+(V2'V12—V1‘V12)}D=0. (5)

Consider the energy of the system to be E=(k}+k3)/2. If we
neglect the crossed term, Eq. (5) becomes a separable differ-
ential equation. The three parts of the Hamiltonian are
solved, respectively, by a Kummer confluent hypergeometric
function [34] |F,(ia,1,-i(kr+k-r)), with the appropriate &
and a. Collecting the results, we get the C3 double-
continuum wave function

"“I,C?, :Nc3eik].r1]Fl(l.a1,1,— i(klrl +k1 . rl))

Xeik2‘r21F1 (iaz, 1,— i(kzrz + k2 . rz))

X Fy(iap, 1,=i(krip +kpp - 1)), (6)
where

ki, =(k; - k,)/2, (7a)

Z7; .
og:;l (j=1,2), (7b)

J

212

a1y = ilzz (7C)

The overall multiplying factor defined in [7] is
Nc3 = 8_(W/2)alr(1 - ial)e_(”mazr(l - 1.0[2)6_(”/2)&12
XT(1 —iay,),

where I'(z) represents the Gamma function [34]. The W5 is
the product of two plane waves (one for each electron) mul-
tiplied by three distortion factors D(a,k,r) (the confluent
hypergeometric function) corresponding to the three Cou-
lomb interactions. Alternatively, the W3 can be expressed in
terms of the product of two continuum Coulomb wave func-
tions C(a,k,r) (for electrons 1 and 2) by a distortion factor
(for the r;, part)

W3 =NesCla,ky,r)Clay, ko, 1) D(ap. ks, r10). (8)

If we define the approximate Hamiltonian H 3 by
1o 1o,
Hc3= —EV1+V1 + —5V2+V2

+[= V- ik, —ky) - Vip + V5], 9)

W - satisfies exactly the following equation:

032706-3



L. U. ANCARANI AND G. GASANEO

HesWe3=EVes. (10)

The eigenvalue E=(k?+k3)/2 and the wave function W are
fully defined only through the momenta k; and k,. Equation
(9) is mathematically separable, and the solutions for the r,
and r, parts are, in principle, unrelated to the r, part. How-
ever, the solution of the ry, part is fixed by the momentum
conservation (k;—k,) and the external constraint given by
Egs. (7a) and (7c¢); in this sense therefore it is not fully in-
dependent of the r; and r, parts. Note also that the factor
D(ay,,K,,1,) does not contribute to the energy, in agree-
ment with the concept of distortion factor.

Explicitly, the term neglected in the full Schrodinger
equation (1) reads

(H-Hea)We3=[(Vy- Vip =V - Vi) ik —ky) - Vo[ Wy
= ™M™ | F (i, 1,— i(kyry + kg - 1))
XV, Fi(iay, 1,—i(kyry + Ky - 1))
= 1Filiay, 1,=i(kory + Ky - 1))
XV FiGiay, =ik +k;-1y))]
XV iy 1 Fi(iap, 1= ilkprin + Kip - 11p)).

(11)

This term depends on the W -5 itself, and hence on the energy
E.

The C3 function has been widely used in collision physics
to describe the double continuum: it treats all Coulomb in-
teractions on an equal footing and presents the correct
asymptotic behavior when all interparticle distances are large
(with the proper logarithmic phases which are the signature
of Coulomb potentials) [7]. Moreover, by construction, the
C3 function has also the correct behavior at the two-body
coalescence points, and hence satisfies Kato’s cusp condi-
tions [11]. At the three-body coalescence it fails because it
does not includes the appropriate logarithmic terms as can be
seen from its power-series expansion [12].

In Sec. I B, we shall search for the doubly bound
equivalent of W3, but starting from the bound S-state
Hamiltonian. To do so, we shall use an alternative writing of
W . It is obtained by application of Kummer relation [see
Eq. (13.1.27) of [34]] to the first two hypergeometric func-
tions,

= e W) B (1 - dag, Lilkr + K1) (j=1,2),

(12)
so that
Wes=Neze L Fi(1 =iy, 1Li(kry + Ky - 1))
e ®2 F (1 —iay, 1,i(kyr, + Ky - 15))
X F(iap, 1,—i(kori; + ki 1p)). (13)

Let us therefore consider again the Schrodinger equation (1)
applied, this time, to

PHYSICAL REVIEW A 75, 032706 (2007)

= e—ik,rle—ikzrz(P. (14)
One gets

1, ki
- _Vl + lklrl . Vl +i1— + Vl
2 ry

1 k
+ <— Evg + iszz . V2 + l_2 + V2> + (— V%z + VlZ)
r

2
K+ i3
+<%—E>+(V2'V12—V1‘V12)

+i(k1f'1—k2f'2)'V12]€0=0, (15)

where the last term, named mixed term hereafter, also mixes
the variables. One may recognize that the first two brackets
are the differential equations for the functions F,(1
—ia;,1,i(k;rj+Kk;-r;)) (j=1,2). Hence we may take

o= F,(1 —iay,1,ilkir; +Kk; 1))
X F (1 —ian, 1,i(kyry + Ky - 1)) X, (16)
so that
¥ =C(ay,ky,r)Clas. ks, 1o)X (17)

Setting the energy E =(k%+k§)/ 2, and assuming y depends on
the variable r;, only, Eq. (15) reduces to

[(=Vi+ Vi) + (V5 Vi = V- Vo) +i(kyF) = kotts) - Vol
0 (18)

(note that the operators apply to ¢ and not to y). It does not
appear from this equation that the remaining part y of ¥
should be the distortion factor D(a,,K,,r,) like in Eq. (8).
This is related to the fact that neglecting the crossed term at
this stage is not the same as neglecting it when getting V'
from Eq. (5). This can be seen in the following way. Using
Kummer relation (12) backwards, Eq. (18) becomes

e_iklrle_ikzrz{f[— Vi =ik —ky) - Voo + Vo] + Q}X= 0,
(19)
where the operator Q reads
Q = efinekimigikne®onl F (i), 1,— i(kr; + Ky - 17))
XV, Fi(ias, 1,—i(kyrs + Ky - 15))
—1Filiay, 1,=i(kyry + Ky - 13))

XV FiGa,1,—ilkiry+ Kk, -1)]- V), (20a)

={,F1(1 —iay, 1,i(k;ry + Ky - 1y))
X[(— isz'z - lkz) + Vz]lF](l - iaz, 1,i(k2r2 + kz . 1‘2))
= Fi (1 —iay, Li(kyry + Ky - 1))[(= ik By = iKy) + V]
><1F1(1—ial,l,i(k1r1+k1-l‘l))}~V12. (20b)

[The second form of Q, Eq. (20b), is given here as it will be
used in Sec. I B.] It is now clear that, if we neglect the
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action of operator Q in Eq. (19) (i.e., exactly as we did when
constructing W ;) the remaining equation is solved by y
=D(a;5,Kk;,,1}5), and the C3 function is recovered [see Eq.
(17)]. This point will be of relevance in Sec. III B.

Two more observations. If we neglect both the crossed
and mixed operators in Eq. (18), we are left with the follow-
ing differential equation for y:

(= Vi, + Vip)x=0. (21)
The solution is a Coulomb function C(1/(2k),k,r;,) with

k— 0 (arbitrary direction ﬁ) i.e., a Bessel function [see Eq.

(13.3.1) of [34]]
]0( N2(rpy +k - 1‘12))~ (22)

The approximate solution for the double continuum is then

W =N(kj, — O)C(al,kl’rl)c(az’kZ’rZ)IO( V2(’”12+f( : rlZ))-

(23)

It is interesting to note that the limit k;,— 0 of the C3 func-
tion (6) gives the same answer.

If, on the other hand, we had ignored the electron-electron
interaction from the outset, there would be no dependence on
ri,. The corresponding independent particles model for the
continuum wave function is the product of the Coulomb
wave functions [i.e., Eq. (17) where the correlation function
x=1] with the same energy E=(k3+k3)/2.

III. DOUBLY BOUND ANALOG OF THE C3 DOUBLE-
CONTINUUM FUNCTION

In this section we look for the doubly bound analog of the
C3 double-continuum function. We shall proceed in two
quite different ways which give the same answer. First we
use the analytic continuation (Sec. IIT A) and then use a “C3
approach” for S bound states (Sec. III B). To make the nota-
tion more explicit, in what follows the superscript “B” will
be added whenever a bound state is involved. On the other
hand, the subscript “C3” will be maintained to remind that a
quantity originates from the C3 continuum.

A. Analytic continuation

We can find the doubly analog of the C3 by performing its
analytic continuation. We shall focus here on the S bound
states only. Let us first expand each term of the W ; wave
function (8) in partial waves,

Ves= (E Ry 1, (r1) Py (cos 91))(2 Ry, 1,(r2) Py (cos 92))
I A
X <E AZIZ’kIZ(rlz)PIIZ(COS 012)) N (24)
I

where P(cos ) are Legendre polynomials, 6, (respectively
05, 0),) is the angle between k; and r; (respectively k, and
ry, and k;, and rp,). R, k(r) are the /; Coulomb partial
waves (j=1,2),
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L+1-ia) .
N\ = ,—(72)a; (1 j 1. —ik.r;
R[j’kj(r./) e 21+ 1) r2,+2) (2ik;r;)ie™"i

X F (L + 1 =i, 20+ 2,2ik;r), (25)

and the Ajk,, are given by

Pl +iay,)
(i) (2L, = D!

Allz,klz(rlz) = e ™nl(1 - jayy)

X (= ikyoryp)12

X F (L +iayy, 21+ 2,= 2ikyory). (26)

For S-states of the two-electron system, we retain only the
[=0 contribution of each expansion, and find

Y= Rox, (r)Rox,(r)Ag s, ,(712)
=Nc3(3_iklrl lFl(l - ia1,2,2ik1r1)e_ik2r2
X 1Fl(l - ia2,2,2ik2r2) 1F1(ia12,2,— 2ik12r12). (27)

We can now perform the analytic continuation by replac-
ing k; by iZz;/n;, so that ia;=n;, where n;=1,2,3,... (j
=1,2) ) [33]. The two contlnuum Coulomb partlal waves in r|
and r, get transformed into the product ¢, (r1)@,,(r,) of two
radial hydrogenic bound functions

27
0,(r) = e—Z”"1F1<1 - n,z,—r),
n

of principal quantum numbers n; and n, (here we have ex-
plicitly set zl =z,=—1). The energy E of the system becomes

Ef=- ZZ . The corresponding Gamma factors I'(1-n,),
n?

which are closely related to the Jost function, present a pole
for any value of n;. As in the case of the two-body Coulomb
problem (see Ref. [33]), these poles (zeros of the S matrix)
remove the exponentially divergent part of the continuum
wave function leading thus to the bound states ¢, (r).

The issue remains of how to perform the analytic continu-
ation of the third confluent hypergeometric function in Eq.
(27). Indeed, the modulus

1
k12=E(k%+k§—2k1 ‘kz)l/z (28)

depends on ki, k, and the angle between k; and k,, and
varies from |k;—k,|/2 to (k;+k,)/2. The following question
arises: what should replace k;, in Eq. (27)? We should re-
member that a well defined bound state must be independent
of any quantization direction or spacial orientation of the
reference system. The angular dependence in Eq. (28) needs
a particular treatment which shall be given in Sec. IV B. For
the moment, let us ignore the mathematical link between k
and ki,k,. Since k; and k, become imaginary by analytic
continuation it is reasonable to expect the modulus k, to
become imaginary as well. We can thus replace ki, by a
single value ix. Based on this assumption, we can write
down what can be considered as the doubly bound analog of
the continuum C3 function,
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"1'12’3(’119”2, K) = ng‘}(nl’nb K)(Pnl(rl)(Pnz(rZ)
1
X]Fl<_,2,2Kr12>, (29)
2K

where N§3[n],n2,f<] is the normalization factor of the S
bound state. Independently of the choice of x (which will be
discussed below, Sec. IV), the bound function (29) satisfies
all two-body Kato cusp conditions.

B. C3 approach for two-electron S bound states

We shall now adopt an approach similar to that used to
find the C3, but for the S bound states. The idea is to see
whether it is possible, in this way, to recover the doubly
bound analog (29) of the C3 continuum function. For §
bound states, we use the Hylleraas equation (see, e.g., [4]),
i.e., the Schrodinger equation where Euler angles have been

removed,
2 9 1[&# 29
—— |+ VitttV
r1(9r1 2 (97'2 r2(9r2

1(i
2 &r?+
+{ (i+ii>+v }

B ar%z 712(97'12 12

J Jd J
+ (-f'l 'f'12_+f'2‘f'12_)_ ’\I’B=EB\PB, (30)
0"”1 (97‘2 07’12

where we label E? the energy. The last term on the left-hand
side involves mixed partial derivatives and introduces the
nonseparability character of the system.

Because of the presence of vectors, we cannot start by
writing the equivalent of relation (4). Without loss of gener-
ality, we start instead from the bound equivalent of relation
(14), i.e.,

q,B — e—Zrllnle—ZrzlnquB . (3 1)

Upon substitution in Eq. (30), one gets the equivalent of Eq.

(15)

(192 2 a) Z1 Z 9
St |t +——+V,
d }1272

1
2
F 2 9 z 7,
Nt |+ V|t Tz E"+
(97'12 r]207r12 2}’11 27’!2

(7)‘1 07r2 ﬁrn
. Z . . Z\
+(rl'r12_—r2’r12_>_}(,03=0. (32)
ny ny/ dryp

We notice that the pure r; and r, parts are solved exactly by
. . 2zr .
confluent hypergeometric functions F 1(1 -n;,2, 7;‘) (J

=1,2), and therefore set
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2Zr2

ny

i

B 2Zr1
"= F|1=-n.2,— || F|| 1 =ny2,
n
so that
WP = @, (r) @, (r)x”. (33)

2 2
Taking EB=—§—%, we are left with
1 2

(i+ii>+v
0”7'%2 r1207r12 12

P R
+ —rl‘r12_+r2'r12_
(9}’1

(97’2 071"12
. Z . . Z)
+(l‘1-rlz——rz-r12—>—}(p3=0. (34)
ny ny/ dryp

This equation is the bound equivalent of Eq. (18) with the
last two brackets identified as crossed and mixed terms, re-
spectively. As in the continuum case, the r, dependence
does not appear clearly. This difficulty is due to the choice of
the starting function (31), exactly as when we used expres-
sion (14) for the continuum case. One has to be careful to
check what terms are to be neglected. We recall that the
continuum C3 is recovered from Eq. (18) when the action of
operator Q in Eq. (19) is neglected. Let us therefore consider
only the /=0 contribution of operator Q, given its form
(20b). We first replace the gradients by their radial compo-
nents, i.e., V12=f‘12%2 and Vj=f'j6,—i/ (j=1,2). Second, we
take only the /=0 partial wave of |F(1-ia;,1,i(k;r;
+k;-1)), ie., \Fi(1-ia;,2,2ik;r;). Finally, we perform the
analytic continuation k;—iZz;/n;. We thus get the S bound
equivalent of operator Q,

" 27r, Z. Z. . 0
Q"= Fi|\1-n.2,— — T Ih-—Ky |+
ny Ny 1y ory

2Zr2 2Zr2
X]Fl ] —n2,2, B - lFl 1 _n2»27 n
2 2

{( Z. ZA> R a}
X - — I ——K{|)+ri—
np ny ﬁrl

2Zr1 R J
X F l—n1,2, ‘I . (35)
i n or
1 12

Equation (34) can then be written as follows:

oF (ﬁ2+2 a)(zf( ZlA()A Iy
I —/— & = ) =y = P —
XB (9}"2 r]2(9r12 ny ! ny 2 12(97‘12 12
12
+Q3}x3=0, (36)

which is the bound equivalent of Eq. (19). Hence by neglect-
ing the action of QF and setting K’=%(%k1—%k2)-f12, we

obtain the following differential equation for x:
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-

&r%z T
This is the /=0 equivalent of the differential equation for

F (ia12,1 —i(k12r12+k12‘l‘12)); the solution is Slmply XB

=F 5z ,2,2K’r12). Together with Eq. (33), we thus find the
bound analog (29), i.e., formally, the same answer found
when performing the analytic continuation of the C3 con-
tinuum function. The question remains, however, of how to
relate «’ with the value « of Eq. (29) which itself is linked to
ki, defined by Eq. (7a).

To summarize, a C3 approach for S bound states can be
used to obtain the doubly bound analog of the C3 function,
as long as one makes the same approximations as those made
to obtain the double-continuum C3.

Because of its apparent similarity, it is also interesting to
compare the present study with that which leads to Pluvinage
wave function. The latter is the solution of Schrodinger equa-
tion (30) where the action of the mixed partial derivatives is
ignored: in this case the differential equation becomes sepa-
rable. The exact, diagonal, solution is the product of three /
=0 Coulomb solutions, one for each two-body problem (two
attractive and one repulsive) [4,5,25]. Labeling by n; and n,
the two bound functions, and taking a continuum Coulomb
function corresponding to an energy x>, one obtains a
Pluvinage-type wave function

2 4 1%
) 2k ’—+V12}XB 0. (37
rlzﬁr12 arz

\I,f’LU(nl sy, K) = NIB;LU(nl’n% K) QDnl(r])(Pnz(rZ)

Xe_iKrlle](l _ L,Z’ZiK}”]z), (38)
2Kk

where Nf;LU(nl,nz,K) is the normalization factor. By con-
struction, this wavefunction satisfies Kato’s cusp conditions.

2
an Zan + K2
which is not the energy E? of the C3 approach. Suppose now
that, in searching the doubly bound analog, instead of the C3
we had started from the product of three continuum Coulomb
wave functions C(a,k,r), one for each two-body interaction,
i.e., Eq (8) with D(Cllz,klz,rlz) replaced by C(Ct’lz,klz,rlz).
By performing the analytic continuation as done in Sec.
IIT A, and proceeding in the same way we wrote Eq. (29), we
would get exactly the function (38). In this sense, Pluvinage
wave function is thus the doubly bound analog of the product
of three Coulomb continuum wave functions, and not—as
commonly believed (see, e.g., [5,6,9])—of the C3 function.

As for the continuum case, let us make two more obser-
vations. If we neglect both the crossed and mixed terms in
Eq. (34), we get the bound equivalent of Eq. (21), that is,

F 2 9
[—(—2+—— +Vi [X2=0.
(?rlz rin (9}”12
The solution is then a [=0 Coulomb partial wave
ez F (1~ k_2 21k_rl2) in the limit k—0, i.e., a Bessel
functlon 1,(2\rp) /Ny, [see Eq. (13.3.1) of [34]] which is

exactly the /=0 partial wave term of the Bessel function (22),
solution of Eq. (21). Collecting the results, we have

: B
However, it corresponds to an energy Ep ;=
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I (2\r )
WE=NBo, (r) @, (r) =", (39)

\12

where N® is the normalization factor. This wave function is
nothing else than the /=0 partial wave term of the continuum
wave function given by Eq. (23). It will appear again below,
as a special case of We4(ny,n,,«), the doubly bound analog
of the C3 continuum.

If on the other hand, we neglect the electron-electron in-
teraction from the outset, one finds the independent particles
model (see, e.g., [35]), i.e., Eq. (33) with no correlation func-
tion (x®=1) but with the same energy =L _Z

oy 2n3°

IV. BOUND ANALOG AND EQUIVALENT OF THE r,
DISTORTION FACTOR

Let us look more closely at the analytical continuation of
the distortion factor |F,(ie5,2,—2iki,ri,) of relation (27).
We shall proceed in two different ways. The first one (Sec.
IV A) assumes that k;, becomes imaginary (ix) by analytical
continuation and hence the double-bound analog wave func-
tion (29) is used. While this approach is not mathematically
strict, it has the merit of (i) yielding a rather simple function;
(ii) allowing for a comparison with the Pluvinage wave func-
tion [8] in the case of the ground state. The second one (Sec.
IV B) deals properly with the angular dependence of k,, is
mathematically rigorous, and gives the proper double-bound
equivalent of C3.

A. Simple approach: k, taken as a parameter

By simple analytic continuation (rotation in the complex
plane), one can replace k;, by ik, with « treated as a param-
eter. Indeed, as k; and k, become imaginary by analytical
continuation [k;—iZz;/n; (j=1,2)], relations (7a) and (7¢)—
though not used—suggest this transformation. In this case «
is not linked in any way to k,k,, and hence to ny,n,. The
resulting double-bound analog wave function is given by Eq.
(29). Since the correlation function x? of Eq. (37) gives no

contribution to the energy, in agreement with the concept of
distortion factor, the energy E?= 22—% ZZ 5 is the same as that

obtained for the independent particle model
If we now focus on the ground state, n;=n,=1, within the

model we get

1
WEa(1,1,6) = Nes(1, 1,K)e_zr‘_zr21F1<ﬂvz’zKﬁz) :

(40)

The confluent hypergeometric plays the role of correlation
function and is always positive; the double-bound analog
wave function \Iflé3(1,l,f<) has therefore no nodes as it
should be for the ground state of two-electron atoms. To
relate lI”é(l ,1,x) to the real three-body problem, a proce-
dure to fix the arbitrary value « should be implemented. This
can be done, for example, by optimizing the mean energy (E)
of the full three-body Hamiltonian, Eq. (30), with respect to
the variational parameter . In the case of helium (Z=2), one
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finds (E)=-2.878 54 a.u. [N2;(1,1,-0.255)=1.550] for k=
—0.255. This calculation (and all the others presented in this
section) was performed with FORTRAN and MATHEMATICA
codes, with an accuracy of up to five significative figures.

If we let k— 0, the first derivative in Eq. (37) is removed,
and the hypggeometrlc function reduces to a Bessel function
1,(2\r ) /Nr, [34]. The corresponding ground-state wave
function reads

—
_Z,I_Z,ZII (2Vryp)

N2

V1,1, — 0) = N2s(1,1,k — 0)e

(41)

where, for helium, Nf%(l ,1,k—0)=1.45923 and yields
(E)=-2.874 62 a.u. Note that this wave function is the same
as that given by Eq. (39) for n;=n,=1, obtained by neglect-
ing the crossed and mixed terms in the C3 approach for S
bound states.

Because of its apparent similarity, let us compare
WE.(1,1,«) with Pluvinage’s wave function (energy E%, =
-7+ k) [8]

\Pf;LU(l’ 1, K) = Nf;LU(l’ 1, K)e_Zrl—Zrze—iKrlz
i
F1<1 __,2,2iKr12>, (42)
2k

where the optimized parameter for helium «=0.41 yields a
ground-state mean  energy of (E)=-2.8788 a.u.
[Nf;w(l ,1,0.41)=1.535]. Note that, contrary to
\If§3(1 ,1, k), the real function \Iff;w(l ,1, k) presents an in-
finite number of unphysical nodes.

B. Rigorous approach

A more rigorous approach for the distortion factor
Filiayy,2,-2ikior ,) consists in the following procedure.
The presence of the scalar product k, -k, in Eq. (28) suggests
using an expansion in Legendre polynomials,

1Frian,2,= 2ikioryp) = Egl(kl,kz,rn) l(kl kz)
(43)
where the coefficients are given by
27 Rtk i
gl(kl,kz,’”lz)=_f Fil =.2,—ikr,
kik Ik 1=k k
KB+ks -k
N ————— |kdk.
2k ky

For § states, we retain only the /=0 contribution in Eq. (43),
that is,

271_ k1+k2 l
golki,ka,r12) = f' a E,Z,—ikru kdk. (44)

kika J -1,

We have thus removed the problem of the angle k 1 -lA(z in ky5;
all possible k, values are taken into account through Eq.
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(44). This is quite different from the previous approach
where k;, takes only one value. Since the function
go(ky,ky,r1,) depends now only on the modulus of k; and ks,
we can perform the analytic continuation, i.e., k; replaced by
—iZ/n; (j=1,2). We thus obtain the integral '

277” nz Z/n1+Z/n2 1
| f 1F1<— —,2,—kr12>kdk,
V4 k

|Ziny=Zin,)|

gnl,nz(rIZ) =

which can be easily evaluated numerically. Collecting the
results, we get the doubly bound equivalent of the C3 con-
tinuum function,

Wes(ny,ny) = Nlé3(”1le)Qonl(71)¢n2(r2)gnl,n2("12)- (45)

Note that, like the doubly bound analog W&,(n,,n,,«) [Eq.
(29)], the double-bound equivalent wave function
WE.(ny,n,) (i) satisfies Kato cusp conditions at all two-body
coalescence points and (ii) has a correlation function which
is a positive function. However, contrary to ‘Ifé(nl Ny, K),
the doubly bound equivalent W2;(n;,n,) is free of varia-
tional parameters.
Specifying \Ifg3(nl ,n,) for the ground state, we have
27 1
WE(1,1) =NE,(1, 1)e-Z’1e-Z’zf 1F1<— o krn)kdk.
0

(46)

For helium, the corresponding mean energy and normaliza-

tion factor are, respectively, (E)=-2.86276 a.u. and
NZ4(1,1)=0.221 96. o
The energy eigenvalue EZ= % % associated with

WE.(ny,n,) is the same as that of lI'm(nl .1, k), Eq. (29),
i.e., the energy corresponding to the independent particle
model. Indeed, in both cases, the distortion factors do not
contribute to the energy. However, they produce substantial
differences when they are used to represent the real three-
body Coulomb problem. This is already illustrated through
the mean energies given above (E) when compared with that
of the independent particle model (E)=-2.75 a.u. The effect
of correlation on the real three-body Coulomb problem will
further appear below through the study of the local energy
and through the dynamical tests discussed in Sec. V.

Let us now compare graphically the correlation functions
found above, in the case of the ground state (n,=n,=1) of
helium. In Fig. 1, we have plotted W&,e?"1*72 /N2 (the nor-
malization factor is omitted for the purpose of the compari-
son), for several \I’C3, as a function of the electron-electron
distance r,. All of them have the linear behavior 1+r,/2
near r,=0 (Kato’s cusp condition at the electron-electron
coalescence), but differ as ry, increases. We compare the
results corresponding to ‘I’Bé(l ,1,k=-0.255) [Eq. (40)],
WE, (1,1,k=0.41) [Eq. (42)], ¥2,(1,1,k—0) [Eq. (41)]
and \1’23(1 ,1) [Eq. (46)]. As can be seen from the figure, all
correlation functions—except for Pluvinage’s—present simi-
lar behaviors (monotonic increase, with no nodes). For the
first atomic units, however, also the Pluvinage correlation
function of W%, ,(1,1,k=0.41) presents a monotonic behav-
ior, while its asymptotic behavior is quite different.
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FIG. 1. Several correlation functions \Iflé3ez(’l+’2)/Nlé3 for the
ground state of helium (Z=2) are plotted vs the electron-electron
distance ry,. The double-bound equivalent W2,(1,1), Eq. (46), is
shown with a solid line, while Pluvinage W, (1,1,k=0.41) is
shown with solid line plus open circles. Two double-bound analogs,
corresponding to two choices of the parameter «, are also presented:
W2.(1,1,k=-0.255) with a dot-dashed line and We,(1,1,k—0)
with a dotted line. The function 1+r;,/2 suggested by Patil [36] is
shown with a dashed line.

We may further compare the effect of the correlation
functions through the analysis of the local energy (as done
recently, for example, in Refs. [4,5,38]) which provides a
very strong test of any trial wave function. Indeed, only for
the exact wave function, the local energy defined as [37]

E(ry,rp,r12) = HY(ry,r),r12) (47)

W(ri,ra,r10)
will be a constant throughout the entire configuration space,
i.e., an eigenvalue of Eq. (30), and hence equal to the mean
energy [this is the case, for example, for the hydrogenic ions
of nuclear charge Z, for which the local and mean energies
are equal to E=-Z%/2n* (a.u.)]. For any other trial wave
function, the local energy will not be a constant value; the
averaging over the whole space smooths out the variations of
the local energy and provides a finite constant value.
The variation with respect to the exact numerical value
(Epyqe;=—2.903 724 a.u. in the case of helium [26]) may be
represented by the quantity SE=E(r|,ry,r15)—E, e small
values of SF are then a sign that a wave function behaves
well locally. For illustration purposes, we have chosen to
take the six cuts of the three-dimensional space (ry,r,,r2)
considered in Figs. 1 and 2 of Ref. [38]. In this way,
the comparison can be easily extended to the functions con-
sidered in that paper. In Figs. 2 and 3 we have plotted
the quantity SF as a function of the mutual angle

PHYSICAL REVIEW A 75, 032706 (2007)

0,,=arcos[ (ri+13—71,)/ (2r,r,)] for a selection of (ry, r,)
values. To avoid overcrowding the figures, we have included
the results corresponding to the same wave functions as in
Fig. 1, except for that of Patil. To facilitate the comparison,
the same line symbols as in Fig. 1 are used, and the same
vertical scale is used for the six panels. The observed varia-
tions of OFE with 6, differ only through the chosen correla-
tion functions. The three wave functions W&,(1,1,x=
-0.255) [Eq. (40)], W5, ,(1,1,k=0.41) [Eq. (42)], and
‘IfléS( 1,1,k—0) [Eq. (41)] are seen to be bunched together
in all situations. On the other hand, the double-bound equiva-
lent wave function ‘Ifé(l ,1) [Eq. (46)] is separated from the
previous ones. Since, by construction, all wave functions
considered satisfy the electron-electron cusp condition, the
local energy does not present any divergency near 6;,=0
when r;=r,.

V. DYNAMICAL TESTS FOR THE DOUBLE-BOUND
WAVE FUNCTIONS

The simultaneous excitation and ionization, as well as
double ionization, of atoms by photon impact offer a series
of dynamical tests for the double-bound wave functions
WB(r,,r,). The ejection or excitation of two electrons
strongly depends on the electron-electron correlation of both
initial and final states [12]. In particular in the high-energy
nonrelativistic regime, the photoionization cross sections are
closely linked to the Coulomb singularities of the electron-
nucleus and electron-electron interactions [12]. The photoab-
sorption might occur through the shake-off (SO) and quasi-
free (QF) mechanisms. The first process corresponds to the
case where one of the electrons is ejected with high energy
while the second remains bound to the nucleus (ionization-
excitation) or leaving the atom with low velocity. The QF
mechanism, on the other hand, is associated with the situa-
tion where both electrons share the absorbed photon without
any participation of the nucleus. In both situations the cross
sections are related to the correlation matrix defined by Suric
et al. [12]

M)\:

2
f d&r,Cy(r) PP (0,ry) | , (48)

where C,(r,) defines a hydrogenic bound state (A
={n,l,m}) for ionization-excitation, or a continuum wave
function (A =Kk,) for double ionization [12,39]. The shake-off
ratio of double-to-single ionization cross section is given at
high photon energies by

Rsp=1-2R,, (49)

where

M
R,= - ; (50)

fd3r2|\lf3(0,r2)|2

and the sum runs over all possible bound states of the re-
sidual ion. On the other hand, the total cross section for the
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FIG. 2. The difference SE=E(r|,ry,r12) — E e calculated with four helium bound wave functions is plotted as a function of the mutual
angle 012=arcos[(r%+r§—r%2)/(2r1r2)] for three pairs of (r|, r,) values indicated in each panel (all with same vertical scale). The same line
symbols as in Fig. 1 are used, i.e., ‘1’23(1,1) with a solid line, ‘I’I;LU(l,l,KZOA-l) with a solid line plus open circles, ‘I’&(l,l,x:
—0.255) with a dot-dashed line, and \Pg3(1 ,1,k—0) with a dotted line.
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FIG. 3. Same as Fig. 2, but for three other pairs of (r, r,) values.
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TABLE I. Ratios R,—in relative percentages—of the single to total ionization for photoabsorption by
helium, for n=1-5. The present results correspond to the functions \Iflé3(1 ,1,k=-0.255), \Iflé3(1 ,1,k—0),
and W2,(1,1). For comparison, are included the values reported by Dalgarno and Sadeghpour [43] obtained
with the 20-parameter Hylleraas wave function ‘I’SO), and by Jones et al. [5] obtained with the Pluvinage

wave function \Iff;w(l 1, k).

n w20 WE (1,1,k) WE (1,1, k=-0.255) WE.(1,1,k—0) W (1,1)
1 92.94 96.75 96.88 95.78 98.68
2 445 1.46 1.416 2.15 0.47
3 0.55 0.27 0.25 035 0.095
4 0.18 0.10 0.092 0.12 0.036
5 0.08 0.05 0.044 0.06 0.017

double ionization through the quasifree mechanism is found
to be proportional to [12]

GQFOCfd3r|\IfB(r,r)|2. (51)

As explained by Drukarev [40], the correction to the R, due
to the quasifree mechanism is related to the quantity C given
by

fd3r|‘I’B(r,r)|2
C= mn , (52)
where M, corresponds to the evaluation of M, with A
={1,0,0}.

The expression defining the matrix M, is obtained by tak-
ing the high-energy limit of the complete transition matrix
for single or double photoionization and using the electron-
nucleus Kato cusp conditions. Thus the photoabsorption pro-
cess probes the double-bound wavefunction W5(r;,r,) at the
origin of the coordinate of the fast emitted electron. M, is
given by the sudden approximation, i.e., by projecting the
initial-state wave function onto the final state of the
shaken-up electron. The quasifree mechanism, on the other
hand, is associated to the electron-electron cusp condition; it
thus tests a different part of the configuration space, the re-
gion where the electrons are close to each other.

Compton scattering provides another test for the bound
wave function W3(r,,r,). Indeed, the ratio of double to total
ionization cross section corresponding to high photon energy
is given by [41]

RC: 1- E Onlm» (53)

n,l,m

where

2
Ot = J &’r, f &ryC, () VE(r )| . (54)
Contrary to M, where the bound wave function appears only
through it’s form W%(0,r,), 0,,,,, is an average over all the
coordinates ry, thus testing the wave function on the whole
configuration space.

We have calculated several of these quantities in the case
of helium. In Tables I-III, we give the results obtained with
the bound wave functions: W2,(1,1,x=-0.255) [Eq. (40)],
WE.(1,1,k—0) [Bq. (41)], and WE,(1,1) [Eq. (46)]. We
shall compare them with those obtained with Pluvinage’s
wave function lIfji’;w(l ,1,x) [Eq. (42)] and with the 20 pa-
rameters, highly correlated, Hylleraas function of Hart and
Herzberg [42], noted here W SO). The results corresponding to
Pluvinage’s function are taken, except for C, from Ref. [5].

In Table I, we give the results—in relative percentages—
obtained for the ratios R,, leaving the residual ion in the ns
state (n=1-5). One observes that of the three functions stud-
ied in this paper, it is \Ifg3(1 ,1,k—0) which gives the best
results when compared to the benchmark values obtained
with \1,1(30) and reported by Dalgarno and Sadeghpour [43]. In
the independent particle model only R, contributes to photo-
absorption; indeed, the contribution of all other ns states van-
ishes by orthogonality (see definition of M,). Since the
bound wave functions introduced in this paper have only
angular correlation, the quantities R, we have presented are
just testing the angular correlation factors.

In Table II, we present the results obtained for C. In this
case VB, (1,1,k), WEi(1,1,k=-0.255) and W2;(1,1,x
—0) wave functions are giving similar results to that corre-
sponding to q,go) that we have calculated for comparison.
We may again compare the results with that corresponding to
the independent particle model. The value C;py,=1/8 re-
ported by Drukarev [40] is far from the values obtained with

TABLE II. Calculated values for the quantity C defined by Eq. (52). The results corresponding to
WE.(1,1,k=-0.255), WE,(1,1,k—0), and WE,(1,1) are compared with our calculations for the Pluvinage

and the 20-parameter Hylleraas wavefunctions.

20
PO WE, (1,1, k)

WE(1,1,k=-0.255)

WE(1,1,k—0) wE.(1,1)

C 0.0636 0.0626

0.0633

0.0599 0.0731
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TABLE III. Ratios o, —in relative percentages—of the single to total ionization for Compton scatter-
ing of a photon off helium, leaving the residual ion in the ns state indicated. The present results correspond
to the functions ‘1’23(1 ,1,k=-0.255), ‘1’23(1 ,1,k—0), and ‘1’23(1 ,1). For comparison, we have included
the values reported by Suric et al. [41] obtained with ‘I’SO), and those obtained with \Ifﬁw(l ,1, k) reported

by Jones et al. [5].

nl w20 WE (1,1,k) WE (1,1, k=-0.255) WE.(1,1,k—0) W (1,1)
Is 96.00 97.15 97.22 95.99 98.98
2s 2.49 0.78 0.77 1.23 0.23
3s 0.28 0.14 0.13 0.19 0.04
4s 0.09 0.05 0.05 0.065 0.02

our correlated functions: the difference can thus be attributed
directly to the angular correlation factors.

Finally, in Table III, we give the results—in relative
percentages—obtained for o, ;,, for ns states (n=1,2,3,4).
In this case, again, the function \Ifé(l ,1,k—0) is showing
the best agreement when compared with the benchmark val-
ues obtained with \I’SO) and reported in Ref. [41].

Of the three functions introduced in Sec. 1V, \Plé3(1 1L,k
—0) yields the overall best results for the quantities R, C,
and o,,,, when compared to reference values. Surprisingly,
the description given for o,,;,,, which tests the function over
the whole configuration space, is also quite good. This is
related to the fact that the function \I’g3(l ,1,k—0) gives a
distribution of probability quite similar to that of the highly
correlated \Pgo , in spite of not including any radial correla-
tion. One has to be careful, though, in drawing conclusions.
The dynamical tests discussed above are, by no means, con-
clusive on the quality of a bound-state wave functions. In-
deed, it is worth reminding that the double-bound analog and
equivalent wave functions studied yield rather bad mean
ground-state energies thus indicating that much of the corre-
lation is missing.

VI. SUMMARY AND PERSPECTIVES

In this paper we have studied the double-bound analog for
S states of the doubly continuum C3 wave function. We have
first briefly discussed the way to obtain the double-
continuum C3 in order to identify the terms neglected from
the full three-body Hamiltonian. In this first part, we have
given the Hamiltonian satisfied by the C3 function, and un-
derlined the fact that the momentum k;,=(k,—Kk,)/2 should
be considered altogether with the Schrodinger equation in
order to get the correct function.

The doubly bound analog for S states is given by the wave
function W2,(n,,n,,) [Eq. (29)], and not—as commonly
believed—by the Pluvinage wave function [Eq. (38)]. The
result is obtained with two different procedures. The first one
is based on the double analytic continuation of the con-
tinuum C3 wave function. This method allows us to ensure
that we are dealing with the correct bound version of the C3
double continuum. Alternatively, starting from Hylleraas
Hamiltonian and identifying the terms equivalent to those

neglected in the double-continuum case, the double-bound
analog is formally recovered. In both procedures, we are left
with an undetermined quantity which represents the magni-
tude of the relative momentum kj,, or its analytic continua-
tion . For bound states, one may consider it as a variational
parameter to be determined by minimizing the mean energy
corresponding to the full three-body Hamiltonian. A rigorous
treatment (using a full expansion in terms of angular func-
tions followed by an analytic continuation of the electron-
nucleus momenta) allowed us to find the double-bound
equivalent of the C3 wave function, given by Eq. (45). The
result does not depend on any quantization axis as physically
expected and is a parameter-free wave function. Like for the
C3 continuum, by construction, both the double-bound ana-
log (29) and equivalent [Eq. (45)] wave functions satisfy
Kato cusp conditions at all two-body coalescence points as
can be observed from the study of the local energy per-
formed in Sec. IV B.

While the energy corresponding to the double-bound C3
wave function is the same as that corresponding to the inde-
pendent particle approach, the distortion factors lead to a
much better mean energy of the full three-body Hamiltonian.
This issue will be further discussed in a separate paper,
where different basis sets constructed with double-bound C3
functions will be investigated. Both ground and excited
states of He-like systems will be studied.

Different dynamical tests to the wave functions intro-
duced here have been performed. They are associated to
cross sections corresponding to photoabsorption and to
Compton scattering. The values for R, C, and o, of Egs.
(50), (52), and (54), respectively, calculated with the wave
function \1’23(1 ,1,k—0) (special case of the double-bound
analog of C3) present the best general agreement when com-
pared with the highly correlated 20-parameter Hylleraas
function of Hart and Herzberg.

The study presented in this paper addressed the two-
electron problem case. The generalization to the case of
N-electron systems is straightforward. The analytic continu-
ation used in Sec. III A can be applied to the CN wave func-
tion, a generalization of the C3 to N particles as described by
Berakdar (see, e.g, [1]). By following the same steps, the
N-bound analog for S states of the CN continuum wave func-
tion is then the product of N Coulomb bound states multi-
plied by M=N(N—-1)/2 Coulomb distortion factors,
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and involves M parameters «;,. The extension to general
masses is straightforward.

Since we have now in our hands a symmetric description
of correlated bound and continuum wave functions, it would
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be very interesting to investigate their effect in the study of
double ionization processes.
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