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Nuclear polarizability of helium isotopes in atomic transitions
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We estimate the nuclear polarizability correction to atomic transition frequencies in various helium isotopes.
This effect is non-negligible for high precision tests of quantum electrodynamics or accurate determination of
the nuclear charge radius from spectroscopic measurements in helium atoms and ions; in particular it amounts

to 28(3) kHz for 18-2S transition in *He".
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There are various corrections which need to be included
in an accurate calculation of the atomic energy levels. These
are relativistic and QED effects, finite nuclear mass, and, to
some extent, finite nuclear size. There is also an additional
correction which comes from possible nuclear excitation due
to the electric field of the surrounding electrons. This effect
is usually neglected, as it is relatively small compared to the
uncertainties in the nuclear charge radii. There are however
exceptions, where the nuclear polarizability correction can be
significant. The first known example was the 2P;,-25),,
transition in muonic helium u-*He* [1,2], where the polariz-
ability correction is about 1% of the finite nuclear size effect.
Another example is the isotope shift in the 1S-2S transition
frequency between hydrogen and deuterium. The nuclear po-
larizability correction of about 20 kHz was two orders of
magnitude larger than the experimental precision [3], and
helped to resolve experimental discrepancies for the deuteron
charge radius. Another very recent example is the isotope
shift in the 25-3S transition frequency between ''Li and "Li
[4]. The ''Li nucleus has probably the largest nuclear polar-
izability among all light nuclei, with a contribution to the
285-3S isotope shift of about 36 kHz. In this paper we study
in detail the nuclear polarizability correction to atomic tran-
sitions for helium isotopes, 3He, 4He, and 6He, and compare
with currently available and planned accurate measurements
of transition frequencies in helium atoms and ions.

The interaction of the nucleus with an electromagnetic
field can be described by the following Hamiltonian:

Hmt:qA"—a’-E*—ﬁ-é—§<rz>vf, (1)

which is valid as long as the characteristic momentum of the
electromagnetic field is smaller than the inverse of the
nuclear size. Otherwise, one has to use a complete descrip-
tion in terms of form factors and structure functions. Under
this assumption, the dominant term for the nuclear excitation
is the electric dipole interaction. This is the main approxima-
tion of our approach, which may not always be valid. It was
checked however that higher order polarizabilities are quite
small (below 1 kHz) for deuterium [5,6], and this should be
similar for He isotopes. Within this low electromagnetic mo-
mentum approximation, the nuclear polarizability correction
to the energy is given by the following formula [7] (in units
fi=c=1, ’=4ma):
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Epol == ma4<2 53(ra)> (m3&pol) » (2)

where m is the electron mass and the expectation value of the
Dirac ¢ is taken with the electron wave function in atomic
units. For hydrogenic systems it is equal to Z*/7. In the
equation above, &, is a weighted electric polarizability of
the nucleus, which is given by the following double integral:
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where k=11+2im/w and Ey is the excitation energy for the
breakup threshold. The kets |¢y) and |E) denote the ground
state of the nucleus and a dipole excited state with excitation
energy E, respectively. The square of the dipole moment is
related to the so-called B(E1) function by
47 dB(E1)
3 dE
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in units e? fm> MeV~!, which explains the presence of ¢ in
the denominator in Eq. (3). The B(E1) function is, in turn,
directly related to the photoabsorption cross section at pho-
ton energies E
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which allows us to obtain the B(E1) function from experi-
mental data.

If E; is much larger than the electron mass m, one can
perform a small electron mass expansion and obtain a sim-
plified formula, in agreement with that previously derived in

[8]:

19
Ppol = ga’E +5ag og, (6)

RELE VN PR _87Taf dE 1 dB(E1)
T A\ - T 0 ), B aE
(7)

©2007 The American Physical Society


http://dx.doi.org/10.1103/PhysRevA.75.032521

K. PACHUCKI AND A. M. MORO
- 1 2(Hy—-E -
m( (Hy N)> ;

_2atf, |
Yele= 3T 2\ Ny E m
8ma [ dE 1 dB(El)l <2E)
_oma ab 1 al 25,
9 Jg, E & dE

N

where ay is the static electric dipole polarizability and ag o,
is the logarithmically modified polarizability. We have tested
this approximation for *He and *He isotopes, and found that
numerical results differ from the exact formula in Eq. (3) by
less than 0.1%.

In the opposite situation, i.e., when m is much larger that
E, that corresponds to the nonrelativistic limit, the polariz-
ability correction adopts the form (with m being the reduced
mass here)

(8)
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This approximation is justified for muonic helium atoms or
ions, because the muon mass (~106 MeV) is much larger
than the threshold energy E; [see Eq. (10)]. This formula
requires, however, few significant corrections, namely Cou-
lomb distortion and form factor corrections. They were ob-
tained by Friar in [2] for the calculation of the polarizability
correction in w*He. This nonrelativistic approximation, how-
ever, is not valid for electronic atoms since the typical
nuclear excitation energy in light nuclei is larger than the
electron mass.

We consider in this work three helium isotopes, namely
3 He, 4He, and 6He, which are stable or sufficiently long lived
for performing precise atomic measurements. The separation
energy S= E for these helium isotopes are [9]

S,,(°He) = 0.975 MeV,
S,(‘He) =19.8 MeV,
S, (*He) = 20.6 MeV,

S,(*He) =5.49349 MeV,

S, (*He) = 7.71804 MeV. (10)

The separation energy S is the main factor which determines
the magnitude of the nuclear polarizability correction, since
E,q is approximately proportional to the inverse of S.

We first consider the °He isotope. In this case the polar-
izability a(°He) was calculated from two different B(E1)
distributions. The first one corresponds to the experimental
distribution extracted by Aumann er al. [10] from the Cou-
lomb breakup of °He on lead at 240 MeV/u. These data are
represented by the dots in Fig. 1. The second B(E1) distri-
bution corresponds to a theoretical calculation, and was ob-
tained in [11] by evaluating the matrix element of the dipole
operator between the ground state and the 1~ continuum
states. These states where obtained by the solution of the
Schrodinger equation, assuming a three-body model for the
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FIG. 1. (Color online) Electric dipole line strength dB(E1)/dE
in units ¢? fm%/MeV for ®He. The solid line is a fit to the experi-
mental distribution of Aumann et al. [10] (filled circles), extrapo-
lated to 12 MeV. The shadow region indicates the experimental
uncertainty of the data. The dashed line is the calculation of Th-
ompson et al. [11].

“He nucleus, with pairwise neutron-neutron and neutron-a
interactions, plus an effective three-body force. The B(E1)
obtained in this calculation is represented in Fig. 1 by the
dashed line. In spite of the discrepancy between the theoret-
ical and the experimental B(E1) distributions, the deduced
polarizability &, as obtained from Eq. (3), is similar in
both cases: @& he=24.2 fm? versus Apolexp=21.1 fm3. It
should be noted that the experimental data were extrapolated
and integrated up to E;=12.3 MeV, the threshold value for
the decay into two tritons. We do not have, however, experi-
mental data for the B(E1) beyond this threshold. Therefore,
for the final result we take the average and add the polariz-
ability of “He [calculated in Eq. (16)] to partially account for
other decay channels, and obtain

Fpo(*He) =24.7(5.0) fm® =4.3(9) X 107 w3, (11)

where m is the electron mass. For the comparison with other
possible determinations of *He polarizabilities, we addition-
ally present in Table I the static electric dipole and logarith-
mically modified polarizabilities. However, they cannot be
used to determine &, since the E is of the order of the
electron mass m. The resulting contribution to the frequency
of, for example, the 2351—33P2 transition in °He is

E

pol =~ ma(&(ry) + 53(V2)>2351-33P2(m36~1’p01) = hvy,

(12)

(13)

For comparison, the finite nuclear size correction to the same
transition is [16]

Vpor = 0.015(3) MHz.

21
Eg = ?2014"13(”30(53(”1) + &8 (r))p3s,-39p, = Mg,

(14)
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TABLE I. The electric dipole polarizability ap, the logarithmi-
cally modified polarizability ay .. and the weighted polarizability
@y for helium isotopes.

Ref. ap(fm?) Qg log (fm3) @pol (fm?)
*He 0.153(15) 0.615(62) 3.56(36)
[12] 0.130(13)
[13] 0.145
[14] 0.250(40)
‘He 0.076(8) 0.365(37) 2.07(20)
[13] 0.076
[15] 0.0655
[2] 0.072(4)
°He 1.99(40) 4.78(96) 24.7(5.0)
MH
== 1008(2) L =—4253MHz.  (15)
m

The relative magnitude of the nuclear polarizability to the
nuclear finite size for ®He is about 0.35%, so it alters the
charge radius determination at this precision level. However,
the uncertainty of the experimental result of Wang et al. [16]
for the isotope shift between °He and “He, w,
=43194772(56) kHz, is about four times larger than Vpols and
therefore the nuclear polarizability correction at this preci-
sion level is not very significant.

We proceed now to evaluate the *He nuclear polarizabil-
ity. This has been obtained from the total photoabsorption
cross section measured by Arkatov er al. [17-19]. Using Eq.
(5), we extracted from these data the B(E1) distribution
shown in Fig. 2 (filled circles). Then, applying Eq. (6), one
obtains the weighted polarizability of “He:

@(*He) =2.07(20) fm*=3.6(4) X 108 m™3.  (16)

It should be noted that at 100 MeV the dipole approximation
in Eq. (1) may not be correct, since the corresponding photon
wavelength is of the order of the nuclear size. Therefore, we
introduce 10% uncertainty to account for this approximate
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FIG. 2. (Color online) Electric dipole line strength dB(E1)/dE

in units e2 fm2/MeV for “He. The circles correspond to the data of
Arkatov et al. [17-19]. The solid line is a fit to the data.
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treatment. Results for the static polarizability obtained in this
work, along with those obtained in other works, are pre-
sented in Table I. Our static polarizability agrees with that of
Friar [2], which was based on earlier experimental data for
the photoproduction cross section. It agrees also with theo-
retical calculations by Leidemann [13], but slightly disagrees
with the most recent calculations of Gazit et al. [15].

The obtained weighted polarizability gives a relatively
small effect for transitions in neutral helium. The ratio of the
polarizability to the finite size correction is 4.6 X 107*. At
present, there are no measurements for the charge radii at
this precision level. However, from the planned high preci-
sion measurement of the 15-2S transition in “He* [20], one
can in principle obtain the charge radius of the « particle
from the knowledge of the nuclear polarizability. The polar-
izability correction to this transition amounts to

Vpo(15-28, *He") = 28(3) kHz (17)

and is smaller than the uncertainty of about 400 kHz in cur-
rent theoretical predictions, which are due to a?(Za)® higher
order two-loop electron self-energy corrections [21].

For the *He atom, we separately calculate the nuclear po-
larizability corrections coming from the two- and three-body
photodisintegration processes. There are many experimental
results for the photoabsorption cross section as well as theo-
retical calculations. They agree fairly well for the two-body
dissociation, but they significantly differ for the case of
three-body disintegration at high excitation energies
(E,>20 MeV). Since these experimental results have large
uncertainties we prefer to rely on theoretical calculations
which agree with each other very well. In this work, we will
use the calculations of Deltuva et al. [22] and Golak et al.
[23]. The former uses the realistic CD Bonn NN potential,
supplemented with a three-body force to account for the A
excitation, and a full treatment of the Coulomb potential. The
calculation of Golak et al. is based on the AV18 NN interac-
tion in combination with the UrbanalX three-nucleon force,
and considers Coulomb effects just for the ground state. The
B(E1) distributions, extracted from these theoretical photo-
disintegration cross sections, are displayed in Figs. 3 and 4,
respectively, as a function of the excitation energy.

Using these theoretical B(E1) distributions, the result for
the weighted polarizability due to both two- and three-body
disintegration is

@(*He) =3.56(36) fm*=6.2(6) X 108 m™,  (18)

and the related contribution to the frequency of the 1S-2§
transition in He* is

Vool(15-28, He'") = 48(5) kHz. (19)

Hence the magnitude of the nuclear polarizability correction
for *He is almost twice as large as for *He and can be sig-
nificant for the absolute charge radius determination from the
15-2S measurement in hydrogenlike helium. The corre-
sponding contribution to the *He-*He isotope shift in the
235,-2°P, transition of —1 kHz is at present much smaller
than the experimental precision of about 30 kHz [29].
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FIG. 3. (Color online) Electric dipole line strength dB(E1)/dE
in units ¢ fm*/MeV for two-body disintegration of He. The data
are from Fetisov et al. [24], Ticcioni et al. [25], and Kundu et al.
[26]. The solid and dashed lines are the calculations by Deltuva et
al. [22] and Golak er al. [23], respectively.

Our result for the static polarizability of *He is presented
in Table I. It is in agreement with the first calculation by
Rinker [12] which is based on the photoabsorption cross sec-
tion measured at that time; it is also in agreement with cal-
culations of Leidemann [13], but is in disagreement with the
cross section measurement for the elastic scattering of *He
nuclei of 2%®Pb below the Coulomb barrier [14].

In summary, we have obtained the nuclear polarizability
correction in helium isotopes. In most cases, we find that the
correction to the energy levels is smaller than current experi-
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FIG. 4. (Color online) Electric dipole line strength dB(E1)/dE

in units e> fm>/MeV for three-body disintegration of 3He. The data

are from Faul et al. [27] and Berman et al. [28]. The solid and

dashed lines are the calculations by Deltuva er al. [22] and Golak et
al. [23], respectively.

mental precision, but could affect the determination of the
charge radius when more accurate measurements become
available. Together with possible high precision measure-
ments in muonic atoms, it will allow for an improved test of
QED and a more accurate determination of the fundamental
constants.
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