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We derive the nonretarded energy shift of a neutral atom for two different geometries. For an atom close to
a cylindrical wire we find an integral representation for the energy shift, give asymptotic expressions, and
interpolate numerically. For an atom close to a semi-infinite half plane we determine the exact Green’s function
of the Laplace equation and use it to derive the exact energy shift for an arbitrary position of the atom. These
results can be used to estimate the energy shift of an atom close to etched microstructures that protrude from
substrates.
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I. INTRODUCTION

An important aim of current experimental cold atom
physics is to learn how to control and manipulate single or
few atoms in traps or along guides. To this end more and
more current and recent experiments deal with atoms close to
microstructures, most importantly wires and chips of various
kinds �cf., e.g., �1–4��. If these microstructures carry strong
currents then the resulting magnetic fields and possibly ad-
ditional external fields often create the dominant forces on
the atoms, which can then be used for trapping and manipu-
lation. However, since an atom is essentially a fluctuating
dipole, polarization effects in those microstructures lead to
forces on the atoms even in the absence of currents and ex-
ternal fields, and for atoms very close to them these can be
significant. Provided there is no direct wave-function over-
lap, i.e., the atom is at least a few Bohr radii away from the
microstructure, the only relevant force is then the Casimir-
Polder force �5�, which is the term commonly used for the
van der Waals force between a pointlike polarizable particle
and an extended object, in this case the atom and the micro-
structure.

The type of microstructures that can be used for atom
chips and can be efficiently manufactured often involve a
ledge protruding from an electroplated and subsequently
etched substrate �6�. Here we model this type of system in
two ways: first by a cylindrical wire �which is a good model
for situations where the reflectivity of the electroplated top
layer far exceeds that of the substrate�, and second by a
semi-infinite half plane �which is an applicable model if the
reflectivities of the top layer and substrate do not differ by
much�. While in reality the electromagnetic reflectivity of a
material is of course never perfect, it has been shown by
earlier research that interaction with imperfectly reflecting
surfaces leads to a Casimir-Polder force that differs only by a
minor numerical factor from the one for a perfectly reflecting
surface �7,8�. Thus we shall consider only perfectly reflecting
surfaces here, which keeps the difficulty of the mathematics
involved to a reasonable level.

II. ENERGY SHIFT AND GREEN’S FUNCTION

We would like to consider an atom close to a reflecting
surface and work out the energy shift in the atom due to the

presence of the surface. As is well known, if the distance of
the atom to the surface is much smaller than the wavelength
of a typical internal transition, then the interaction with the
surface is dominated by nonretarded electrostatic forces
�5,8,9�. At larger distances retardation matters, but at the
same time the Casimir-Polder force is then significantly
smaller and thus hard to measure experimentally �see, e.g.,
�10–12��. In this paper we shall concentrate on small dis-
tances that lie within the nonretarded electrostatic regime, as
these lie well within the range of the experimentally realiz-
able distances of cold atoms from microstructures �6�.

In order to determine this electrostatic energy shift one
needs to solve the �classical� Poisson equation for the elec-
trostatic potential �

− �2� =
�

�0
, �1�

with the boundary condition that �=0 on the surface of a
perfect reflector. The charge density � would be the atomic
dipole � of charges ±q separated by a vector D, i.e.,

��r� = lim
D→0

q���3�
„r − �r0 + D�… − ��3��r − r0�� �2�

for a dipole located at r0. Since the dipole is made up of two
point charges, one can find a solution to the Poisson equation
�1� via the Green’s function G�r ,r��, which satisfies

− �2G�r,r�� = ��3��r − r�� , �3�

subject to the boundary condition that it vanishes for all
points r that lie on the perfectly reflecting surface. For the
purposes of this paper it is advantageous to split the Green’s
function in the following way:

G�r,r�� =
1

4��r − r��
+ GH�r,r�� . �4�

The first term is the Green’s function of the Poisson equation
in unbounded space, and thus the second term is a solution of
the homogeneous Laplace equation, chosen in such a way
that the sum satisfies the boundary conditions required of
G�r ,r��.

The total energy of the charge distribution is given by �13�
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E =
1

2
� d3r��r���r� , �5�

with

��r� =
1

�0
� d3r�G�r,r����r�� . �6�

Thus for a dipole with the charge density �2� the total energy
is

E = lim
D→0

� 1

8��0

q2

�r + D − �r + D��
+

1

8��0

q2

�r − r�

−
1

8��0

q2

�r + D − r�
−

1

8��0

q2

�r − �r + D��

+
q2

2�0
�GH�r0 + D,r0 + D� − GH�r0 + D,r0��

−
q2

2�0
�GH�r0,r0 + D� − GH�r0,r0��� . �7�

The first two terms in this expression are the divergent self-
energies of the two point charges. The third and fourth terms
are the energy of the dipole, which also diverges in the limit
D→0. None of these are interesting for us because they are
the same no matter where the dipole is located. The energy
shift due to the presence of the surface is given by the re-
maining four terms, which all depend just on the homoge-
neous solution GH�r ,r��. In the limit D→0 these four terms
can be written as derivatives of GH, and thus we obtain for
the energy shift of a dipole �=qD due to the presence of the
surface

�E = 	 1

2�0
�� · ���� · ���GH�r,r��	

r=r0,r�=r0

, �8�

where r0 is the location of the dipole.
When applying this to an atom one also needs to take into

account that for an atom without permanent dipole moment
the quantum-mechanical expectation value of a product of
two components of the dipole moment is diagonal,


�i� j� = 
�i
2��ij , �9�

in any orthogonal coordinate system. This implies that for an
atom the energy shift due to the presence of the surface reads

�E = 	 1

2�0
�
i=1

3


�i
2��i�i�GH�r,r��	

r=r0,r�=r0

. �10�

Thus the central task in working out the nonretarded energy
shift of an atom in the vicinity of a surface is to work out the
electrostatic Green’s function of the boundary-value problem
for the geometry of this surface. In the next two sections we
are going to do this for two different surfaces: for a cylindri-
cal wire of radius R and for a semi-infinite half plane. In
either case we assume that the surfaces are perfectly reflect-
ing, which enforces the electrostatic potential � to vanish
there.

III. NONRETARDED ENERGY SHIFT NEAR A WIRE

To calculate the energy shift, we first determine the
Green’s function of the Poisson equation in the presence of a
perfectly reflecting cylinder of radius R and infinite length. A
standard method of calculating Green’s functions is via the
eigenfunctions of the differential operator. In order to find a
solution to Eq. �3� we solve the eigenvalue problem

− �2	n�r� = 
n	n�r� . �11�

The eigenfunctions 	n�r� must satisfy the same boundary
conditions as required of the Green’s function. Since −�2 is
Hermitian, the set of all its normalized eigenfunctions must
be complete,

�
n

�	n�r��
	n�r��� = ��3��r − r�� . �12�

Thus one can write

G�r,r�� = �
n

�	n�r��
	n�r���

n

. �13�

If we apply this method to unbounded space we can easily
derive a representation of the Green’s function in unbounded
space in cylindrical coordinates,

1

4��r − r��
=

1

4�2 �
m=−�

� �
−�

�

d��
0

�

dk
k

k2 + �2


 eim��−���+i��z−z��Jm�k��Jm�k��� . �14�

Depending on whether one chooses to carry out the k or the
� integration one is led to two different representations for
this Green’s function. For our purposes the more convenient
representation is found by performing the k integration �see
Ref. �14�, formula 6.541�1.��, leading to

1

4��r − r��
=

1

2�2 �
m=−�

� �
0

�

d� eim��−���+i��z−z��


 Im����Km�����, for � � ��, �15�

which is of course a well-known result �15�. To derive the
Green’s function �4� that vanishes on the surface of the cyl-
inder �=R �see Fig. 1� we now just need to find the appro-
priate homogeneous solution GH�r ,r��, which satisfies

− �2GH�r,r�� = 0. �16�

The general solution of the homogeneous Laplace equation
in cylindrical coordinates can be written as

�
m=−�

� �
0

�

d� eim�+i�z�A�m,��Im���� + B�m,��Km����� ,

�17�

where A and B are some constants. Since G�r ,r�� and there-
fore GH�r ,r�� must be regular at infinite � we must have
A�m ,��=0. This and the requirement that the sum of Eq.
�15� and GH�r ,r�� must vanish at �=R lead to
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GH�r,r�� = −
1

2�2 �
m=−�

� �
0

�

d� eim��−���+i��z−z��



Im��R�
Km��R�

Km����Km����� . �18�

The energy shift can now be determined by applying formula
�10� in cylindrical coordinates. Taking into account the sym-
metry properties of the modified Bessel functions, we find
for the energy shift of an atom whose location is given
through �� ,� ,z�,

�E = −
1

4��0
���
��

2� + ��
��
2 � + �z
�z

2�� , �19�

with the abbreviations

�� =
2

�
�
m=0

�

��
0

�

d� �2 Im��R�
Km��R�

�Km� �����2,

�� =
2

��2 �
m=1

�

m2�
0

�

d�
Im��R�
Km��R�

�Km�����2,

�z =
2

�
�
m=0

�

��
0

�

d� �2 Im��R�
Km��R�

�Km�����2.

The prime on the sums indicates that the m=0 term is
weighted by an additional factor 1 /2.

Using numerical integration packages such us those built
into Mathematica or Maple, one can evaluate these contribu-
tions to the energy shift. We show the numerical results in
Figs. 2–4. We have chosen to show the various contributions
to Eq. �19� as a function of the ratio of the distance d=�
−R of the atom from the surface of the wire to the wire
radius R and multiplied by d3 so as to plot dimensionless
quantities.

For most values of d=�−R the integrals over � converge
quite well, as for large � the dominant behavior of integrands
is as exp�−2�d�. Likewise is the convergence of the sums

over m very good for reasonably large values of d. In fact, as
shown by dot-dashed lines in Figs. 2–4, convergence is so
good that from d /R
20 upwards it is fully sufficient to take
just the first summand in each sum for �. However, conver-
gence is less good for small d and thus the numerical evalu-
ation of the energy shift becomes more and more cumber-
some the closer the atom is to the surface of the wire. Neither
the integrals over � nor the sums over m converge very well,
so that it is worthwhile finding a suitable approximation for
small d. Another motivation for a detailed analysis of the
limit d→0 is of course also to check consistency: if the atom
is very close to the surface of the wire �d�R� then the cur-
vature of the wire cannot have any impact on the shift any

φ
ρ

R

FIG. 1. An illustration of the geometry of the dipole near a wire.
The radius of the wire is R, and the distance of the dipole from the
center of the wire is �.
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FIG. 2. The energy shift due to the z component of the atomic
dipole, multiplied by d3, where d is the distance of the dipole to the
surface of the wire. The solid line is the exact expression calculated
numerically, the dot-dashed line is the m=0 term alone, and the
dashed line is the m=0 term plus the single integral derived through
the uniform asymptotic approximation for the Bessel functions, Eq.
�20c�. The cross on the vertical axis gives the exact value for d
→0.

0 10 20 30 40
d/R

0.06

0.08

0.1

0.12

0.14

d3 Ξ ρ

FIG. 3. Same as Fig. 2 but for the energy shift due to the �
component of the atomic dipole. The solid line is the exact expres-
sion calculated numerically, the dot-dashed line is the m=0 term
alone, and the dashed line is the m=0 term plus the single integral
derived through the uniform asymptotic approximation for the
Bessel functions, Eq. �20a�.
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longer and the energy shift should simply be that of an atom
close to a plane surface, which is well known �16�.

To find a suitable approximation for small d, we separate
off the m=0 terms in �� and �z. In all the other summands
and in �� we scale by making a change of variables in the
integrals to a new integration variable x=�� /m. The domi-
nant contributions to those integrals and the sums come from
large x and large m, so that one can approximate the Bessel
functions by their uniform asymptotic expansion �see Ref.
�17�, formulas 9.7.7–10�. Then the sums over m become geo-
metric series and can be summed analytically. Taking just the
leading term in the uniform asymptotic expansions for the
Bessel functions we find the following approximations:

�� 

1

�
�

0

�

d� �2 I0��R�
K0��R�

�K1�����2

+
1

��3�
0

�

dx�1 + x2A�A + 1�
�1 − A�3 , �20a�

�� 

1

��3�
0

�

dx
1

�1 + x2

A�A + 1�
�1 − A�3 , �20b�

�z 

1

�
�

0

�

d� �2 I0��R�
K0��R�

�K0�����2

+
1

��3�
0

�

dx
x2

�1 + x2

A�A + 1�
�1 − A�3 , �20c�

with the abbreviation

A�x� =
R2

�2 e−2��1+x2−�1+x2R2/�2�� 1 + �1 + x2

1 +�1 + x2R2

�2 �
2

.

These are easy to evaluate numerically. We show the numeri-
cal values as dashed lines in Figs. 2–4. Furthermore, these
approximations allow us to take the limit d→0. Taking this
limit under the x integrals and retaining only the leading
terms in each case, we can carry out the x integrations ana-
lytically and obtain

�� 

1

8d3 , �� 

1

16d3 , �z 

1

16d3 . �21�

Inserting these values into Eq. �19� we see that they give the
energy shift of an atom in front a perfectly reflecting plane
�16�. This is an important consistency check for our calcula-
tion, as the atom should not feel the curvature of the surface
at very close range. In Figs. 2–4 the limiting values �21� are
marked as crosses on the vertical axes. Since we have taken
along only the first term of the uniform asymptotic expansion
for each of the Bessel functions, we cannot expect any agree-
ment of the approximations �20a�–�20c� beyond leading or-
der. However, in practice these approximations work quite
well beyond leading order: as Figs. 2–4 show, approxima-
tions �20b� and �20c� work very well for almost the entire
range of d; approximation �20a� works reasonably well for
small d and then again for large d �because at large distances
the m=0 term dominates everything else�. In this context we
should also point out that the m=0 contributions to �� and
�z do not contribute to leading order, but behave as d−2 in
the limit d→0 and thus need to be taken into account for
asymptotic analysis in this limit beyond leading order.

At large distances d the energy shift �19� is dominated by
the first terms in each of the sums over m, i.e., the m=0
terms for �� and �z and the m=1 term for ��. For large d,
�� and �z behave as 1/ �d3 ln d�, but there is no point in
giving an asymptotic expression as further corrections are
smaller only by additional powers of 1 / ln d and these series
converge far too slowly to be of any practical use. �� falls
off faster: to leading order we obtain ��
3�R2 / �32d5� for
large d.

Furthermore, if d is not just large compared to R but also
compared to the typical wavelength of an internal transition
in the atom, then the energy shift would be dominated by
retardation effects, which cannot be calculated with the elec-
trostatic approach of this paper, but which require a quanti-
zation of the electromagnetic field �9�. For this reason the
extreme large-distance limit of the energy shift �19� is not of
practical importance and thus we see no reason to report on it
in more detail.

IV. NONRETARDED ENERGY SHIFT NEAR A
SEMI-INFINITE HALF PLANE

Next we wish to calculate the energy shift of an atom in
the vicinity of a perfectly reflecting half plane. The geometry
is sketched in Fig. 5. The required boundary conditions are
that the electrostatic potential ��r� vanishes at the angles

0 10 20 30 40
d/R

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
d3 Ξ φ

FIG. 4. Same as Fig. 2 but for the energy shift due to the �
component of the atomic dipole. The solid line is the exact expres-
sion calculated numerically, the dot-dashed line is the m=1 term
alone, and the dashed line is the single integral derived through the
uniform asymptotic approximation for the Bessel functions, Eq.
�20b�.
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�=0 and �=2�. We shall calculate the Green’s function for
this case by using the method of summation over eigenfunc-
tions of the operator −�2, as explained at the beginning of
Sec. III. If we determine the set of eigenfunctions 	n�r� that
satisfy the correct boundary conditions, then the Green’s
function �13� will also satisfy these boundary conditions.
Normalized eigenfunctions that vanish at �=0 and �=2�
and that are regular at the origin and at infinity are in cylin-
drical coordinates

	n��,�,z� =
1

�2�
ei�zJm/2�k��

1
��

sin
m�

2
, �22�

with the corresponding eigenvalue 
n=�2+k2. Note that n is
a composite label, standing for �� ,k ,m�. Construction �13�
then gives the Green’s function

G�r,r�� =
1

2�2 �
m=1

� �
0

�

dk�
−�

�

d�
k

�2 + k2ei��z−z��


 Jm/2�k��Jm/2�k���sin
m�

2
sin

m��

2
.

This result is in agreement with the limiting case of the
Green’s function for the electrostatic potential at a perfectly
reflecting wedge �18� if the wedge is to be taken to subtend
a zero angle and extend to an infinite radius.

As the energy shift �10� depends only on the homoge-
neous part GH�r ,r�� of the solution, we need, according to
Eq. �4�, to subtract the free-space Green’s function, which we
have already written down in Eq. �14�. Noting that the free-
space Green’s function is of course symmetric under the ex-
change of � and ��, we can write it in the form

1

4��r − r��
=

1

2�2 �
m=0

�

��
−�

�

d��
0

�

dk
k

k2 + �2ei��z−z��


cos m�� − ���Jm�k��Jm�k��� .

Applying Eq. �4�, taking the difference between G�r ,r��
above and this expression and carrying out the integration

over � by closing the contour in the complex plane and de-
termining the residue, we obtain

GH�r,r�� = −
1

4�
�

0

�

dke−k�z−z����
m=0

�

�Jm�k��Jm�k���


�cos m�� − ��� + cos m�� + ����

+ �
m=0

�

Jm+1/2�k��Jm+1/2�k����cos�m +
1

2
��� + ���

− cos�m +
1

2
��� − ����� . �23�

As before, primes on sums over m indicate that the m=0
term is weighted by an additional factor 1 /2.

The sum in Eq. �23� over the product of Bessel functions
with integer indices can be carried out by applying standard
formulas ��17�, formula 9.1.79�,

�
m=0

�

�Jm�k��Jm�k���cos m�� ± ���

=
1

2
J0„k��2 + ��2 − 2��� cos�� ± ���… .

Then the k integration can also be carried out in these terms
by applying well-known formulas ��17�, formula 11.4.39�.
Thus we obtain for the terms involving integer indices of the
Bessel functions

�
0

�

dke−k�z−z���
m=0

�

�Jm�k��Jm�k���cos m�� ± ���

=
1

2

1
��z − z��2 + �2 + ��2 − 2��� cos�� ± ���

.

The terms in Eq. �23� with Bessel functions of half-
integer indices are considerably more difficult to deal with.
The only relevant formula we could find anywhere is ��19�,
formula 5.7.17.�11.��

�
m=0

�

Jm+1/2�k��Jm+1/2�k���cos�m +
1

2
��

=
1

�
�

t1

t2

dt
sin t

�t2 − k2�2 − k2��2 + 2k2��� cos �
, �24�

with the integration limits

t1 = �k2�2 + k2��2 − 2k2��� cos �, t2 = k�� + ��� .

Reference �19� does not give any references, so that the ori-
gin of this formula cannot be traced. Although the ranges of
applicability are usually given for formulas in �19�, they are
absent in this particular case. However, inspection reveals
that the formula cannot be valid for the whole range 0��
�2� but must be restricted to the range 0����: the right-
hand side has a periodicity of 2�, i.e., it is the same for �
=0 and �=2�, but the left-hand side differs in sign for these
two values of �, as cos 0=1 but cos�2m+1��=−1. Thus for

φ
ρ

FIG. 5. An illustration of the geometry of a dipole near a semi-
infinite half plane. The distance of the dipole from the edge is �,
and from the surface of the plane it is � sin �.
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the range 0� ��±����� we apply Eq. �24� with �=�±��, and for the range �� ��±����2� we set �=2�− ��±���. If we
scale the integration variable from t to s= t /k then the subsequent k integration is elementary,

�
0

�

dke−k�z−z�� sin ks =
s

s2 + �z − z��2 . �25�

The remaining integration over s can be carried out by changing variables from s to v=s2−s1
2, so that ��14�, formula 2.211�

�
s1

s2

ds
s

s2 − �z − z��2

1

�s2 − s1
2

=
1

�s1
2 + �z − z��2

arctan� s2
2 − s1

2

s1
2 + �z − z��2 .

Along these lines and distinguishing carefully between the cases 0� ��±����� and �� ��±����2�, we obtain the follow-
ing exact expression for the homogeneous part of the Green’s function:

GH�r,r�� = −
1

4�
� 1

2��z − z��2 + �2 + ��2 − 2��� cos�� − ���
+

1

2��z − z��2 + �2 + ��2 − 2��� cos�� + ���

+
sgn�sin�� + ����

���z − z��2 + �2 + ��2 − 2��� cos�� + ���
arctan� 2����1 + cos�� + ����

�z − z��2 + �2 + ��2 − 2��� cos�� + ���

−
sgn�sin�� − ����

���z − z��2 + �2 + ��2 − 2��� cos�� − ���
arctan� 2����1 + cos�� − ����

�z − z��2 + �2 + ��2 − 2��� cos�� − ���� . �26�

Calculating the energy shift is now straightforward. We
apply Eq. �10� and find the exact energy shift of an atom
located at �� ,� ,z�,

�E = −
1

4��0
���
��

2� + ��
��
2 � + �z
�z

2�� , �27�

with the abbreviations

�� =
5

48��3 +
cos �

16��3 sin2 �
+

�� − ���1 + sin2 ��
16��3 sin3 �

,

�� = −
1

48��3 +
cos �

8��3 sin2 �
+

�� − ���1 + cos2 ��
16��3 sin3 �

�z =
1

24��3 +
cos �

16��3 sin2 �
+

� − �

16��3 sin3 �
.

Here the applicable range of � is 0����. Geometries with
� in the range ����2� are obviously just mirror-images
of those with 0����, so that one could simply replace �
by 2�−�.

An important cross check is the limit �→0. Very close to
the surface the edge of the half plane should not affect the
energy shift, as the distance of the atom to the edge is � but
the distance to the surface is d
����. Thus the energy
shift should be the same as that in front of a plane. Indeed,
the leading terms in the limit �→0 are

�� 

1

16�3�3 , �� 

1

8�3�3 , �z 

1

16�3�3 , �28�

which, if inserted into Eq. �27�, give the energy shift of an
atom in front of an infinitely extended reflective plane a dis-

tance �� away. Note that in contrast to Eq. �21� for an atom
very close to a cylindrical surface, the component of the
dipole that is normal to the surface is now ��.

V. SUMMARY

We have calculated the nonretarded Casimir-Polder force
on a neutral atom that is either a distance d away from a
cylindrical wire of radius R, or somewhere close to a semi-
infinite half plane. In both cases we have, for simplicity,
restricted ourselves to calculating the force for the atom in-
teracting with a perfectly reflecting surface. We have worked
in cylindrical coordinates �� ,� ,z� and chosen the z axis
along the center of the wire and along the edge of the half
plane, respectively. The energy shifts in a neutral atom due to
the presence of the reflecting surface nearby depend on the
mean-square expectation values of the dipole moments of the
atom along the three orthogonal directions. For an atom
close to a reflecting wire the shift is given by Eq. �19�, and
for an atom near a semi-infinite half plane by Eq. �27�. The
problem of the atom and the wire is governed by two inde-
pendent parameters of dimension length, the radius of the
wire and the distance of the atom from the wire, and accord-
ingly the shift varies with the ratio between them. We have
provided analytical and numerical approximations for both
small and large values of this ratio in Sec. III. By contrast, in
the problem of an atom close to a semi-infinite half plane
there is only one parameter, �, that has the dimension of a
length. Thus on dimensional grounds alone the energy shift
must vary with �−3 and can otherwise depend only on the
angle �. However, this dependence on � could in principle
be an arbitrarily complicated function, so that it is after all
surprising that we have been able to find the exact expres-
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sion, Eq. �27�, for the energy shift in terms of elementary
functions and that it is so simple. Both model situations can
be useful for estimating the energy shift of an atom close to
microstructures that consist of a ledge and possibly an elec-
troplated top layer.
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