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It is widely believed that the standard model of particle physics is just an intermediate step in understanding
the properties of the elementary physics in nature and the interactions between them. Over the past twenty
years, studies of the parity nonconservation in atomic systems based on nonaccelerator methods have made
remarkable progress. An experiment to measure parity nonconservation in singly ionized barium has been
proposed as an independent test of the standard model. We have employed the relativistic coupled-cluster
theory to calculate the parity nonconserving 6s2S1/2→5d2D3/2 transition amplitude and associated properties.
We have also shown contributions from various intermediate states which play a significant role in the deter-
mination of this transition amplitude.
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I. INTRODUCTION

Our present understanding of elementary particle physics
is encapsulated in the standard model �SM�. Despite the re-
markable success of this model, it is widely considered as an
intermediate step towards a complete theory of matter �1�.
Parity nonconservation �PNC� in atomic systems which
arises primarily from the neutral weak interaction between
the electrons and the nucleus has the potential to probe new
physics beyond the SM �1,2�. By combining the results of
high precision measurements and many-body calculations of
atomic PNC observables, it is possible to extract the nuclear
weak charge �QW�, and compare with its corresponding value
in the SM �1�. A discrepancy between these two values could
reveal the possible existence of new physics. The most accu-
rate data on atomic PNC currently comes from the 6s2S1/2
→7s2S1/2 transition in cesium �Cs�, where the claimed ex-
perimental and theoretical accuracies are 0.35% �3� and 0.5%
�4�, respectively, and the deviation from the SM is about one
standard deviation �1�� �4�. It would indeed be desirable to
consider other candidates, which could yield accurate values
of QW. Fortson has proposed an experiment �5� to measure
PNC in 6s2S1/2→5d2D3/2 transition of the singly ionized
barium �137Ba+� using the techniques of laser cooling and ion
trapping. The observable that would be measured in this ex-
periment is a PNC induced light shift, which depends on the
electric dipole transition amplitude caused by the parity non-
conserving neutral weak interaction �E1PNC� and the electric
quadrupole �E2� transition amplitude for the 6s2S1/2
→5d2D3/2 transition. One can determine the value of QW by
combining the measured light shift and the values of the
E1PNC and E2 amplitudes �6�. Therefore, from a theoretical

point of view, accurate calculations of E1PNC and E2 ampli-
tudes are of special importance. Other important physical
quantities like excitation energies, E1 transition amplitudes
and hyperfine structure constants can be used to determine
the error associated with the above mentioned E1PNC ampli-
tude and therefore, are necessary to be calculated very accu-
rately. The 5d states of this system are also important for the
studies of the nuclear anapole moment �7�, optical frequency
standard �8� and astrophysics �9�. The relativistic coupled-
cluster �RCC� theory, which is an all order theory �10,11�
and based on an exponential ansatz, is known to produce
high quality results for atomic and molecular properties. It
has been successfully applied to a wide range of problems;
prominent among them are high precision calculations of
transition probabilities �12� and hyperfine interaction con-
stants �13,14� in heavy atomic systems.

In this paper, we present in detail our E1PNC calculation
for the 6s2S1/2→5d2D3/2 transition in Ba+ using the RCC
theory that has been reported recently �15�. It is the first
application of this theory to atomic PNC. Blundell had used
this theory in the linear approximation to calculate E1PNC
amplitude for the 6s2S1/2→7s2S1/2 transition in Cs by a sum-
over-states approach �16,17�. Dzuba et al. �18� and Geetha
�19� have calculated this PNC amplitude for the 6s2S1/2
→5d2D3/2 transition in Ba+. Our calculation of Ba+ PNC is
more rigorous than those two calculations and has an accu-
racy of better than 1%. If the accuracy of this result can be
matched by that of experiment on PNC in Ba+, it can provide
an independent atomic probe of physics beyond the SM.

II. THEORY OF E1PNC

PNC in atoms arises primarily due to the exchange of the
neutral Z0 boson between the nucleus and the electrons �20�.
The dominant contribution arises from the nuclear spin inde-*Email address: bijaya@mpipks-dresden.mpg.de
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pendent �NSI� neutral weak interaction �20�. The correspond-
ing interaction Hamiltonian is given by

HPNC
NSI =

GF

2�2
Qw�5�N�r� , �2.1�

where GF is the Fermi constant, �N�r� is the nuclear density
function and �5�=i�0�1�2�3� which is the product of the four
Dirac matrices. The quantity Qw is known as the nuclear
weak charge which is equal to 2�Zcp+Ncd�, with cp and cn

representing electron-proton and electron-neutron coupling
constants for atomic number Z and neutron number N of the
system, respectively. The values predicted by the SM in the
lowest order of electroweak interaction for these coupling
constants are �1�

cp =
1

2
�1 − 4 sin2�W� � 0.04, and cn = −

1

2
, �2.2�

where �W is the Weinberg angle and experimentally it’s value
is sin2�W�0.23 �21�.

The reduced matrix element of HPNC
NSI in terms of single

particle orbitals is given by

TABLE I. Ionization potential energies �cm−1� for different
states of Ba+.

Guet and
Johnson

Eliav
et al.

Dzuba
et al.

Geetha
et al. This work Expt.

6s2S1/2 81882 80871 80813 80797 80794 80686.3�1�
7s2S1/2 38333 38291 38331.13

6p2P1/2 60887 60476 60581 60505 60384 60424.74

7p2P1/2 31332 31216 31296.48

8p2P1/2 19378 19213 19354.87

6p2P3/2 59140 58769 58860 58778 58690 58733.90

7p2P3/2 30704 30597 30674.96

5d2D3/2 77194 75605 76404 75989 75481 75812.45

5d2D5/2 76263 74779 75525 75084 74346 75011.49

4f 2F5/2 32169 32427.68

4f 2F7/2 31272 32202.97

TABLE II. Excitation energies �cm−1� for different states of
Ba+.

Transition
States

This work
�cm−1�

Experiment
�cm−1�

6p2P1/2→6s2S1/2 20409.60 20261.561

7p2P1/2→6s2S1/2 49577.78 49389.822

5d2D3/2→6s2S1/2 5312.38 4873.852

5d2D5/2→6s2D1/2 6441.58 5674.807

5d2D3/2→6p2P3/2 16791.35 17078.55

5d2D3/2→7p2P3/2 44883.88 45137.49

TABLE III. Hyperfine structure constants for different states of
Ba+ in MHz.

This work Experiment

State A B A B

6s2S1/2 4078.20 4018.8708�3�a

4018.871�2�b

7s2S1/2 1196.30

6p2P1/2 740.77 743.7�3�c

741.9�1.3�d

7p2P1/2 264.92

8p2P1/2 109.93

6p2P3/2 128.27 92.87 127.2�2�c 92.5�2�c

127.1�6�e 89.7�15�e

7p2P3/2 45.77 32.91

5d2D3/2 189.92 46.23 189.7288�6�e 44.5417�16�e

189.6�4�f 44.9�6�f

5d2D5/2 −11.67 62.17 −12.028�11�g 59.533�43�g

−11.9�10�g 62.5�40�g

aReference �35�.
bReference �36�.
cReference �37�.
dReference �38�.
eReference �39�.
fReference �40�.
gReference �41�.

TABLE IV. Calculated absolute values of E1 reduced matrix
elements in a.u. for different states.

Transition
states

This work
�a.u.�

6s2S1/2→6p2P1/2 3.37

6s2S1/2→7p2P1/2 0.09

6s2S1/2→8p2P1/2 0.11

6s2S1/2→6p2P3/2 4.72

6s2S1/2→7p2P3/2 0.17

7s2S1/2→6p2P1/2 2.45

7s2S1/2→7p2P1/2 7.11

7s2S1/2→8p2P1/2 0.37

7s2S1/2→6p2P3/2 3.80

7s2S1/2→7p2P3/2 9.92

6p2P1/2→5d2D3/2 3.08

7p2P1/2→5d2D3/2 0.28

8p2P1/2→5d2D3/2 0.13

6p2P3/2→5d2D3/2 1.36

7p2P3/2→5d2D3/2 0.16

6p2P3/2→5d2D5/2 4.19

7p2P3/2→5d2D5/2 0.46

5d2D3/2→4f 2F5/2 3.73

5d2D5/2→4f 2F5/2 1.08

5d2D5/2→4f 2F7/2 4.59
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��i�HPNC
NSI �� j	 = i

GF

2�2
�2ji + 1���i,− � j�


0

	

�Pi�r�Qj�r�

− Qi�r�Pj�r���N�r�dr . �2.3�

HPNC
NSI is responsible for mixing atomic states of opposite

parities, but with the same angular momenta. Its strength is
sufficiently weak for it to be considered as a first-order per-
turbation. It is therefore possible to write a general atomic
wave function as

�
n	 = �
n
�0�	 + GF�
n

�1�	 , �2.4�

where �
n
�0�	 is an eigenstate of the atomic Hamiltonian, H�0�,

in the absence of PNC and �
n
�1�	 is the first order correction

of the above wave function due to the PNC weak interaction.
Using Eq. �2.4�, the explicit form of E1PNC is given by

E1PNC =
�
 f�D�
i	

��
 f�
 f	�
i�
i	
=

�
 f
�0��D�
i

�1�	 + �
 f
�1��D�
i

�0�	
��
 f

�0��
 f
�0�	�
i

�0��
i
�0�	

,

�2.5�

where D is the electric dipole �E1� operator. The subscripts i
and f are used for the initial and final valence electrons,
respectively. Using the explicit expression for the first order
perturbed wave function, we get

E1PNC = �
I�i

�
 f
�0��D�
I

�0�	�
I
�0��HPNC

NSI �
i
�0�	

Ei
�0� − EI

�0�

+ �
I�f

�
 f
�0��HPNC

NSI �
I
�0�	�
I

�0��D�
i
�0�	

Ef
�0� − EI

�0� , �2.6�

where I represents the intermediate states and E�0�’s are the
energy eigenvalues of H�0�.

It is obvious from the above equation that the accuracy of
the calculated E1PNC amplitude depends on the excitation
energies of the different intermediate states, the matrix ele-
ments of HPNC

NSI and D. Therefore, accurate calculations of
these quantities require accurate determination of the ground

state and the excited states atomic wave functions.
Blundell et al. have used the above equation to determine

E1PNC for the 6s2S1/2→7s2S1/2 transition in Cs by consider-
ing the most important intermediate states �16,17�. The draw-
back of this approach is that the summation can be per-
formed only over a finite set of intermediate states which
limits the accuracy of the calculation. This could be over-
come by getting the first order wave functions as the solution
of the following equation

�H�0� − E�0���
v
�1�	 = �E�1� − HPNC

NSI ��
v
�0�	 , �2.7�

where E�1� vanishes for the first order correction.

III. RCC THEORY OF SINGLE VALENCE ATOMIC
SYSTEMS

A. Without perturbation

In the RCC theory, the atomic wave function �
v
�0�	 for a

single valence �v� open-shell system is expressed as �10,22�

�
v
�0�	 = eT�0�

1 + Sv
�0����v	 , �3.1�

where we define ��v	=av
† ��0	, with ��0	 as the Dirac-Fock

�DF� state for the closed-shell system. The curly bracket in
the above expression represents normal order form.

In the single and double excitations approximation
coupled-cluster �CCSD� method, we have

T�0� = T1
�0� + T2

�0�,

Sv
�0� = S1v

�0� + S2v
�0�, �3.2�

where T1
�0� and T2

�0� are the single and double hole-particle
excitation operators for the core electrons and S1v

�0� and S2v
�0�

are the single and double excitation operators for the valence
electron, respectively. The amplitudes corresponding to these
operators can be determined by solving the relativistic
coupled-cluster singles and doubles equations as given
below:

��0
L�H�0�eT�0�̂��0	 = �L,0E0

�0�, �3.3�

��v
K�H�0�eT�0�̂

Sv
�0���v	 = − ��v

K�H�0�eT�0�̂��v	 + ��v
K�1 + Sv

�0����v	Ev
�0�=−��v

K�H�0�eT�0�̂
��v	+Ev

�0�+��v
K�Sv

�0���v	��v�H�0�eT�0�̂
1+Sv

�0����v	,

�3.4�

where L=1,2 represents single and double excitations from
the closed-shell state and K=1,2 represents single and
double excitations from a single valence state. For L=0, we
get the closed-shell energy E0

�0� and for K=0, we get the
energy Ev

�0� with the valency electron �v�. The difference
between these two energies give the ionization potential �IP�

energy of the corresponding valence electron. In the above
equation, the wide-hat notation represents contraction and

we have used the relation �e−T�0�
H�0�eT�0�

�c=H�0�eT�0�̂
, where

the subscript “c” represents only the connected terms for the
expression of the left-hand side.
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We consider the Dirac-Coulomb �DC� Hamiltonian in our
calculation given by

H�0� = �H0
�0�� + �Ves

�0�� = �
i

N

�c� · pi + � − 1�c2 + Vn�ri�

+ U�ri�� + ��
i�j

N
1

rij
− �

i

N

U�ri�� , �3.5�

where H0
�0� is the DF Hamiltonian and Ves

�0� is the Coulomb
residual term in atomic unit �au� obtained using the mean
field potential U�ri�. Here � and  are universal Dirac
matrices.

The most important triple excitations have been consid-
ered by constructing excitation operators �23,24�

Svbc
pqr�0� =

Ves
�0�T2

�0�̂ + Ves
�0�Sv2

�0�̂

�v + �b + �c − �p − �q − �r
, �3.6�

where �’s are the orbital energies. The above operators are
used to construct the single and double open-shell cluster
amplitudes by connecting further with the CCSD operators
and they are solved self-consistently.

The general expression for calculating the transition am-
plitude corresponding to any physical operator, O, using the
RCC method is given by

�O	 f←i =
�
 f

�0��O�
i
�0�	

��
 f
�0��
 f

�0�	�
i
�0��
i

�0�	
=

�� f
�0��1 + Sf

�0�†
�eT�0�†

OeT�0�
1 + Si

�0����i
�0�	

��� f
�0��1 + Sf

�0�†
�eT�0�†

eT�0�
1 + Sf

�0���� f
�0�	��i

�0��1 + Si
�0�†

�eT�0�†

eT�0�
1 + Si

�0����i	�0�
,

�3.7�

while evaluating expectation values, we consider the special
case f = i.

For computational simplicity, we compute the expression

given by Eq. �3.7� in two steps. We define O�=eT�0�†

OeT�0�
�,

which can be expanded using the Wick’s general theorem
�10� as

O = Of.c. + Oo.b. + Ot.b. + ¯ , �3.8�

where we have used the abbreviations f.c., o.b., and t.b. for
fully contracted, effective one-body, and effective two-body
terms, respectively. In this expansion of O, the effective one-
body terms are computed first keeping terms up to

Oo.b. = O + T�0�†
O + OT�0� + T�0�†

OT�0�. �3.9�

Obviously, the fully contracted terms �f.c.� will not con-
tribute in the calculation based on the linked-diagram theo-
rem �10�. The calculation procedure for these effective one-
body terms is given by Geetha et al. �12�. These terms are

finally contracted with the Sv
�0� and Sv

�0�†
operators in the

property calculation. Contributions from the effective two-
body terms of O are computed directly in the final property
calculation. The following types of RCC terms are consid-
ered for the construction of effective two-body terms:

Ot.b. = OT1
�0� + T1

�0�†
O + OT2

�0� + T2
�0�†

O . �3.10�

Other effective terms correspond to higher order in re-
sidual Coulomb interaction and are neglected for the present
calculation. A similar procedure has been followed to ac-
count for the normalization terms. Contributions from nor-
malization factors, which are given later in Table VII, are
obtained using the following relation

norm = �
 f�D�
i	� 1

��1 + Nf
�0���1 + Ni

�0��
− 1� ,

�3.11�

with Nv
�0�= Sv

�0�†
eT�0�†

eT�0�
Sv

�0�� for the valence electron v.

B. Presence of weak interaction

In the presence of the PNC weak interaction, the exact
atomic wave function can be written as

�
v	 = eT1 + Sv���v	 , �3.12�

where the cluster amplitudes are given by

T = T�0� + GFT�1�,

Sv = Sv
�0� + GFSv

�1�. �3.13�

The T�1� and Sv
�1� operators are the corrections to the cluster

operators T�0� and S�0�, respectively. Since GF is very small,
one can consider only the first order terms in Eq. �3.13�.
Therefore, Eq. �3.12� can be written as

�
v	 = �eT�0�
T�1�1 + Sv

�0�� + eT�0�
Sv

�1�����v	 , �3.14�

which can be explicitly separated as given in Eq. �2.4�.
The perturbed amplitudes for T�1� and Sv

�1� operators are
solved using the following equations:

��0
L�H�0�T�1�̂ + HPNC

NSI ��0	 = 0, �3.15�
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��v
K��H�0� − Ev

�0��Sv
�1�ˆ

+ H�0�T�1�̂ + H�0�T�1�Sv
�0�ˆ

+ HPNC
NSI

+ HPNC
NSI Sv

�0�̂��v	 = 0, �3.16�

where L ,K=1,2 and the effective Hamiltonian operators

with overline defined as H�0�= �e−T�0�
H�0�eT�0�

�c. These are
computed after determining T�0�. The wide-hat symbol as
usual represents the connected terms.

Using the above relations, the E1PNC amplitude can be
expressed as

E1PNC =
�� f�1 + Sf

�1�†
+ T�1�†

Sf
�0�†

+ T�1�†
�eT�0�†

DeT�0�
1 + T�1� + T�1�Si

�0� + Si
�1����i	

��1 + Nf
�0���1 + Ni

�0��

=
�� f�Sf

�1�†
D�0�1 + Si

�0�� + 1 + Sf
�0�†

�D�0�Si
�1� + Sf

�0�†
�T�1�†

D�0� + D�0�T�1��Si
�0� + �T�1�†

D�0� + D�0�T�1��Si
�0���i	

��1 + Nf
�0���1 + Ni

�0��
, �3.17�

where we have defined D�0�=eT�0�†

DeT�0�
and the above equa-

tion is calculated using the similar procedure followed for
Eq. �3.7�.

IV. BASIS FUNCTIONS

We have calculated hyperfine structure constants earlier in
different atoms using Gaussian type orbitals �GTOs� and
they are capable of producing accurate results �13,14�. As a
matter of fact both PNC and hyperfine interactions arise from
interactions between the atomic nucleus and electrons.
Therefore, it would be appropriate to use GTOs to calculate
E1PNC. The GTOs are expressed as �25�

Fi,k�r� = rke−�ir
2
, �4.1�

where k=0,1 , . . . for s , p , . . . type orbital symmetries, respec-
tively. For the exponents, we have used

�i = �0i−1. �4.2�

It has been found that effects of the core electrons are
important for very accurate calculations, especially, for the d
states �26,27�. Therefore, we consider all occupied �holes�
orbitals in both the DF and RCC calculations. In order to
achieve high precision in our calculations, we have consid-
ered orbitals up to g symmetries. The GTOs are defined on a
grid and the DF matrix is constructed and diagonalized. The
eigenvectors obtained from this diagonalization together
with GTOs are used to construct the occupied and unoccu-
pied orbitals on the grid. We have used �0=0.00525 and 
=2.73 in our calculations. The finite size of the nucleus has
been accounted by considering a two-parameter Fermi
nuclear charge distribution approximation given by

� =
�0

1 + e�r−c�/a . �4.3�

We use values of �0, c and a as given by Parpia and
Mohanty �28�. Contributions from the protons and neutrons
asymmetry in this system has been evaluated in a separate
work by Panda and Das in Ba+ using the relativistic mean

field �RMF� model �29�; the contribution is about 0.3% to the
present system.

V. RESULTS AND DISCUSSIONS

To justify the accuracy of the calculated wave functions,
we have carried out important physical quantities whose ex-
perimental results are known. Our calculated results in one
hand test the potential of the method used in the system to
produce accurate results and in other hand they provide sup-
port to the precision of the experimental results. We first
present the IP, magnetic dipole hyperfine constants �A�, elec-
tric quadrupole hyperfine structure constants �B�, E1 ampli-
tudes and E2 amplitudes for the low-lying states and com-
pare with other works along with the experimental results.
We deduced the excitation energies from our IP results for
various states. We give the E1PNC contributions from differ-
ent RCC terms and investigate the importance of various
low-lying states through these terms. The accuracy of E1PNC
has been estimated in a rigorous approach by considering
difference between results obtained from two approximations
at the same level of excitations.

A. Ba+ properties

We have calculated the IPs of the first eleven low-lying
states and presented them in Table I. In the same table, these
results are compared with other calculated results by Guet
and Johnson �30�, Eliav et al. �31�, Dzuba et al. �18� and
Geetha et al. �24� along with the experimental data �32,33�.
Dzuba et al. have used a variant of all order relativistic
many-body perturbation theory. Guet and Johnson had used
the second order relativistic MBPT theory to calculate their
results. Both Eliav et al. and Geetha et al. had used the RCC
method in their calculations.

We have determined the excitation energies of a few tran-
sitions, which will be used later for evaluating other quanti-
ties, by subtracting the IP results of the corresponding states.
These results are tabulated in Table II. It is obvious from this
table that this work provides very accurate results and can be
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used for ab initio calculations for PNC amplitudes and life-
times of different states.

A knowledge of the hyperfine structure constants is nec-
essary in many areas of atomic physics. For example, the
error associated with the PNC matrix elements can be deter-
mined from the accuracies of these constants �42� as their
behavior is determined by the wave functions near the

nuclear region �10� and they are also useful in determining
shift of the resonance frequency in atomic clocks �8�. We
have calculated the magnetic dipole �A� and electric quadru-
pole �B� hyperfine structure constants for few low-lying
states in 137Ba+ and presented in Table III. We have used
nuclear Lande g factor, gI, as 0.6249 �34� and nuclear quad-
rupole moment, Q, equal to 0.246b �41� �1b=10−24 cm2� in
the present calculations. There are many experimental results
available for these quantities, but we have compared our re-
sults with the best data �35–41�. Some of the A results were
published in our earlier work �42�, where orbitals with
g-symmetry were not included. It is clear from the present
work that these orbitals are important for accurate calcula-
tions of the hyperfine structure constants for p and d states.
In our earlier work, we have also discussed the trends of the
correlation effects arising from the RCC terms and also com-
pared with other works �42�.

As given in Table III, the hyperfine structure constants for
the 6s2S1/2, 6p2P1/2, 6p2P3/2, and 5d2D3/2 states are close to
the experimental results suggesting that the wave functions
used in these calculations can give us accurate HPNC

NSI matrix
elements between the above states.

Our reduced matrix elements for the E1 operator �in a.u.�
is presented in Table IV. Expression for the E1 transition
probability is given by

Ai←f
E1 =

2.02613 � 1018

�Jf��3 Si←f
E1 , �5.1�

where i and f represent the initial and final states, � is the
corresponding wavelength, �J�=2J+1 is the degeneracy of
the state, and Si←f

E1 is the square of the transition amplitude
due to E1 operator given in Table IV. We have calculated
AE1 for different transitions and presented in Table V. Here �
is derived from our calculated excitation energies given in
Tables I and II for an ab initio study.

In Table V, we also compare the Aif values from different
calculations by Guet and Johnson �30�, Dzuba et al. �18�, and
Geetha et al. �7�. There are three different set of experimen-
tal data �43–45� available for these quantities, but Kastberg
et al’s results are more accurate than others. In the first two
calculations, they had used experimental wavelengths
whereas we have used the results of our ab initio calcula-

TABLE V. Transition probabilities Aif, where i is the initial and
f is the final state, of E1 transition amplitudes from different works
in 108 s−1.

Transition
states

Guet and
Johnsona

Dzuba
et al.b

Geetha
et al.c This work Expt.

6s2S1/2

→6p2P1/2 0.918 0.923 0.937 0.978 0.95�9�d

0.955�10�e

0.95�7�f

6s2S1/2

→6p2P3/2 1.163 1.171 1.194 1.218 1.06�9�d

1.17�4�e

1.18�8�f

5d2D3/2

→6p2P1/2 0.334 0.370 0.326 0.331 0.338�19�d

0.33�8�e

0.33�4�f

5d2D3/2

→6p2P3/2 0.044 0.045 0.043 0.044 0.0469�29�d

0.048�5�e

0.048�6�f

5d2D5/2

→6p2P3/2 0.360 0.345 0.349 0.342 0.377�24�d

0.37�4�e

0.37�4�f

aReference �30�.
bReference �18�.
cReference �7�.
dReference �43�.
eReference �44�.
fReference �45�.

TABLE VI. Reduced matrix element of E2 transition of 5d2D5/2 state.

Transition
states Guet and Johnsona

Geetha
et al.b This work Expt.

5d2D3/2→6s2S1/2 13.7 12.63 12.74 12.40�74�c

5d2D5/2→6s2S1/2 16.0 16.0 15.96 16.86±1.18d

13.91±3.22e

16.25±0.77f

aReference �30�.
bReference �7�.
cReference �46�.
dReference �47�.
eReference �48�.
fReference �49�.
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tions. Geetha et al. had carried out their calculations using
the RCC method, but they had omitted many nonlinear
terms.

In Table VI, we present the E2 reduced matrix elements
of the 5d2D3/2→6s2S1/2 and 5d2D5/2→6s2S1/2 transitions.
These results are compared with Guet and Johnson �30� and
Geetha et al. �7�, which are derived from their lifetime cal-
culations. We have also compared these results with the ex-
perimental results obtained from the lifetime measurements
of the corresponding states. Using our results, we obtain the
quadrupole polarizability of 6s state due to 5d states, �2

0

=1844a0
5, which agrees with the experimental value �2

0

=1828�88�a0
5 �50�.

B. E1PNC result of the 6s 2S1/2\5d2D3/2 transition

The main goal of this work is to obtain an accurate value
of the parity nonconserving electric dipole transition ampli-
tude for the 6s2S1/2→5d2D3/2 based on RCC theory. As has
been mentioned before, it is necessary to test the excitation
energies, E1 transition amplitudes and magnetic dipole �A�
hyperfine structure constants, in order to determine an
approximate error for the PNC transition amplitude of our
interest.

The contributions from different terms in the E1PNC am-
plitude calculation for the 6s2S1/2→5d2D1/2 transition are
presented in Table VII. It is clear that the largest contribution
comes from D�0�S1

�1�, which represents the DF term and a
certain subclass of core polarization as well as pair correla-
tion effects. This is due to the relatively large �6s1/2−6p1/2�
S1

�1� cluster amplitude. Two different types of core polariza-
tion effects, D�0�T1

�1� and D�0�S2
�1� as well as its conjugate, also

make significant contributions. The former is mediated by
the neutral weak interaction and involves the 6s valence and
core electrons. Correlation effects corresponding to
S1

�0�†D�0�S1
�1� and S2

�0�†D�0�S1
�1�are non negligible, but their

signs are opposite. Contributions from the other terms are
comparatively small.

It is important to understand the role of different interme-
diate states in the calculation of the E1PNC amplitude of the
6s2S1/2→5d2D3/2 transition in Ba+. It is also possible to de-
termine the error in this quantity by identifying important
intermediate states and estimating the accuracies of the dif-
ferent properties of those states that are related to the above
PNC amplitude. As has been mentioned, our method in-
cludes implicitly all the intermediate states through the RCC
theory with the PNC interaction as a first order perturbation.
It is therefore not possible to find the individual contribution
from different intermediate states in this approach. However,
we have made a special effort to investigate their contribu-
tions by computing the first order perturbed wave functions,
which involves summing over various intermediate states. In
Tables IX to XII, we present these contributions at various
levels. In Table VIII, we present the reduced E1 matrix ele-
ments for different transitions at the DF level, which are used
to calculate the contributions from excited states from RCC
terms to the above E1PNC amplitude.

As given in Table IX, the major contributions to the DF
calculation of E1PNC come from the 6p1/2 and 7p1/2 states.
Nevertheless, contributions from the continuum orbitals,

TABLE VII. Contributions to the E1PNC calculation in
�10−11iea0�−QW /N� using RCC calculation.

Initial pert.
terms

6s2S1/2
�1�

→
5d2D3/2

�0�
Final pert.

terms

6s2S1/2
�0�

→
5d2D3/2

�1�

DHPNC
NSI 2.018 HPNC

NSI D −0.2 �10−5

D�0�T1
�1� 0.0003 T�1�†

D�0� 0.418

D�0�S1i
�1� 2.634 S1f

�1�†D�0� −0.179

D�0�S2i
�1� −0.242 S2f

�1�†D�0� −0.166

S1f
�0�†D�0�S1i

�1� 0.149 S1f
�1�†D�0�S1i

�0� 0.003

S1f
�0�†D�0�S2i

�1� 0.007 S1f
�1�†D�0�S2i

�0� 0.008

S2f
�0�†D�0�S1i

�1� −0.116 S2f
�1�†D�0�S1i

�0� −0.009

S2f
�0�†D�0�S2i

�1� −0.001 S2f
�1�†D�0�S2i

�0� 0.001

Norm −0.046 −0.001

Total 2.375 0.087

TABLE VIII. Reduced E1 matrix elements for different inter-
mediate states.

�5d3/2 � �D � �np1/2	DF �np3/2 � �D � �6s	DF

n=4 0.75 0.07

n=5 1.94 0.91

n=6 3.73 5.48

n=7 0.36 0.31

n=8 0.19 0.18

n=9 0.47 0.07

n=10 0.23 0.08

n=11 0.04 0.04

TABLE IX. Contributions to the E1PNC calculation at Dirac-
Fock level in �10−11iea0�−QW /N�.

�5p3/2 �D �np1/2	DF

� �np1/2 �HPNC
NSI �6s	DF

�5d3/2 �HPNC
NSI �np3/2	DF

� �np3/2 �D �6s	DF

n=6 1.860 −2.6�10−6

n=7 0.045 −2.9�10−8

n=8 0.013 −9.5�10−8

n=9 0.075 8.1�10−9

n=10 0.024 5.1�10−9

n=11 0.002 1.1�10−9

TABLE X. Contributions to the E1PNC calculation from core-
excitation operators in �10−11iea0�−QW /N� using RCC calculation.

�6s �T1
†�1� �np1/2	

��np1/2 �D �5d3/2	DF

�6s �D �np3/2	DF

��np3/2 �T1
�1� �5d3/2	

n=4 −0.0005 −0.00003

n=5 0.4188 0.0004
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10p1/2 and 11p1/2 orbitals, are also significant. We shall now
consider the contributions from the important intermediate
states at the RCC level.

As explained before, the D�0�T1 and its conjugate term
correspond to a part of the core-polarization effects. The
leading contributions come from these terms are DT1 and its
conjugate term. From Table X, it is clear that the 4p and 5p
occupied orbitals contribute significantly to the E1PNC
amplitude.

The most important correlation contributions to the E1PNC

amplitude are DS1i
�1� and S1f

�1�†D from D�0�S1i
�1� and S1f

�1�†D�0�,
respectively. We present contributions from different inter-
mediate states arising from these terms in Table XI. As seen
in this table the 6p, 7p, 10p and 11p states made the most
important contributions.

Core-polarization effects arising through DS2i
�1� and S2f

�1�†D
from different intermediate states are quoted in Table XII. It
can be seen from this table that the most important contribu-
tions come from the p states. We have also made special
effort to see contributions from various combinations of or-
bitals through S1f

�1�†DS1i
�0� and S1f

�0�†DS1i
�1� terms. These results

are presented in Table XII.

C. Estimation of E1PNC accuracy through the calculated
quantities

As has been shown in Table II, the agreement with the
experiment of the most important excitation energy �6p2P1/2�

for the calculation of E1PNC is better than one percent. The
accuracy of the next important state �7p2P1/2� for the initial
PNC perturbed state is just 0.5%. The excitation energy of
5d2D3/2−6p2P3/2 is around 1.6%. But this will not affect the
E1PNC result very much as the 5d2D3/2 state does not con-
tribute significantly to the PNC amplitude.

From the transition probability calculations presented in
Table V, it is obvious that our E1 transition amplitudes given
in table IV, are very accurate. This is an indication that these
amplitudes are included accurately in the E1PNC amplitude
calculation. It is also clear that most of the other calculated
results do not fall within the experimental error and are far-
ther away from the central values than ours.

There is no direct procedure to determine the accuracy of
the calculated PNC matrix elements between different states.
An alternative method has been followed to calculate the
error associate with this quantity, i.e., by calculating the
square root of the product of the corresponding states con-
necting to the PNC operator as shown in �42�. In Table XIII,
we present the values of the square root of the product of
�A6s2S1/2

A6p2P1/2
and �A6p2P3/2

A5d2D3/2
. The accuracies of

these two quantities give an indication of the accuracies of
the PNC matrix elements between 6s2S1/2 and 6p2P1/2 states
as well as the 6p2P3/2 and 5d2D3/2 states. Both of them are in
excellent agreement with experiment, suggesting that the two
leading PNC matrix elements for the E1PNC calculation are
very accurate.

D. Comparison between different works

The result of E1PNC for the 6s2S1/2→5d2D3/2 transition
from our calculation is 2.46�10−11iea0�−QW /N�. In Table
XIV, we compare it with other calculations. Our result is
larger in magnitude than those obtained by Dzuba et al. �18�
and Geetha �19�. The former work is based on a variant of all
order many-body perturbation theory, but it has some semi-
empirical features. It is carried out using two different ap-
proaches: One of them is similar to the sum-over-states �SS�
approach and the other is known as the mixed-parity �MP�
approach, where the PNC interaction explicitly mixes states
of opposite parities. However, both calculations do not in-

TABLE XI. Contributions to the E1PNC calculation from leading
DF and pair-correlation diagrams in �10−11iea0�−QW /N� using
RCC calculation.

�5d3/2 �D �np1/2	DF

��np1/2 �S1i
�1� �6s	

�5d3/2 �S1f
†�1� �np3/2	

��np3/2 �D �6s	DF

n=6 2.407 −0.181

n=7 0.066 −0.003

n=8 0.019 −0.001

n=9 0.111 0.008

n=10 0.032 4�10−4

n=11 0.003 2�10−5

TABLE XII. Contributions to the E1PNC calculation from pair-
correlation from Coulomb and PNC interactions in �10−11iea0�
−QW /N� using RCC calculation.

�5d3/2 �S1f
†�1� �mp3/2	

� �mp3/2 �D �ns	DF

��ns �S1i
�0� �6s	

�5d3/2 �S1f
†�0� �kd3/2	

� �kd3/2 �D � lp1/2	DF

��lp1/2 �S1i
�1� �6s	

For, n=7 and k=6

m=6 0.007 l=6 0.175

m=7 −0.005 l=7 −0.089

m=8 −0.0002 l=8 −0.0004

For, n=8 and k=7

m=6 0.001 l=6 0.024

m=7 0.002 l=7 0.349

m=8 −0.002 l=8 −0.041

TABLE XIII. Square root of the magnetic dipole hyperfine con-
stants �MHz� and their deviations from experimental results.

Experiment This work Deviation �%�

�A6s2S1/2
A6p2P1/2

1728.83 1738.1 0.5

�A6p2P3/2
A5d2D3/2

155.35 156.08 0.5

TABLE XIV. Comparison of E1PNC results from different cal-
culations in �10−11iea0�−QW /N�.

Dzuba et al. Geetha This work

�MP� �SS�

2.17 2.34 2.35 2.46�2�
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clude contributions from certain correlation effects; i.e.,
structural radiation, weak correlation potential and normal-
ization of states, that are included in our calculation. Their
6p2P1/2→5d2D3/2 E1 matrix element, which is important for
the above mentioned PNC transition amplitude, is not as ac-
curate as ours. Furthermore, the accuracies of their PNC ma-
trix elements are not known, as they have not performed
calculations of the hyperfine constants of the relevant states.
The reason for the discrepancy between our calculation and
Geetha’s is that our approach implicitly includes several in-
termediate states; particularly doubly excited opposite parity
states, which her sum-over-states approach omits.

The error accrued in our calculation of E1PNC can be de-
termined from the errors in the excitation energies, E1 tran-
sition amplitudes, and hyperfine constants. We have not es-
timated the errors in the calculated values of these quantities
by comparing with measurements, since the error bars in the
E1 transition amplitudes are rather large. Instead, we have
taken the differences of our RCC calculations to single,
double and leading triple excitations �CCSD�T�� and also
just to single and double excitations �CCSD� as the errors.
We have shown the variation between different results for the
important contributing intermediate states using these two
methods in Table XIV. The quadrature formula used for es-
timating error is given below. By expressing E1PNC as

X =
AB

C
, �5.2�

the error can be evaluated using the relationship

�X =�B2

C2�A2 +
A2

C2�B2 +
A2B2

C4 �C2, �5.3�

where the � values are the results of the differences between
CCSD�T� and CCSD for the quantities given in Table XV.
The error �0.018� in E1PNC has been obtained by adding the
errors for the different quantities it depends on in quadrature
given in the above formula, for the leading intermediate
states 6p2P1/2 and 6p2P3/2. We have considered slightly big-
ger value for the error associate with other states, which
contributes comparatively very small.

VI. CONCLUSION

A significant feature of our work is that it is concerned
with two different fundamental interactions �electromagnetic
and weak� and their interplay. We apply the full fledged RCC
theory which incorporates all the single, double, and leading
triple excitations to calculate atomic wave functions. Our
approach implicitly takes into account all the intermediate
states in the PNC perturbed wave functions. Our present cal-
culation of the E1PNC amplitude for the 6s2S1/2→5d2D3/2
transition in Ba+ is more accurate than the previous calcula-
tions by Dzuba et al. and Geetha et al., since it includes
larger range of physical effects. The difference between the
calculations for different properties related to E1PNC based
on the single, double and leading triple excitations and just
the single and double excitations have been computed and
added in quadrature to determine the error bars for E1PNC.
The error in our E1PNC calculation was found to be less than
one percent by this procedure.
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