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We have used the hyperspherical adiabatic representation to describe the system of three identical bosons in
a spin stretched state interacting through an attractive 1/r potential. A proposal has been forwarded to enable
the experimental realization of such a system in cold trapped atoms using extremely off-resonant laser fields
�Phys. Rev. Lett., 84, 5687 �2000��. We have obtained the effective potentials, channel functions, and nona-
diabatic couplings for this gravitylike interaction, allowing us to calculate the ground-state energy with accu-
racy that substantially improves upon previous results. We have similarly calculated the energies for the first
four 0+ excited states. These results show that the simple adiabatic hyperspherical approximation offers an
accurate description for such a system. Further, since the effective potentials have a long-range 1/R attraction,
the properties of the excited states follow from the well-known results for Rydberg states. We have also
analyzed the possible geometries and vibrational modes for this system.
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I. INTRODUCTION

Recently, a scheme for inducing gravitationlike inter-
atomic potentials has been proposed �1�, opening up the pos-
sibility to create self-bound Bose-Einstein condensates
�BECs� �2–6�. In such a scheme, the gravitationlike inter-
atomic potential can be achieved by irradiating the atoms
with intense, extremely off-resonant electromagnetic fields.
The usual strong anisotropy due to dipole-dipole interactions
can, in fact, be averaged out �7� by the proper combination of
laser beams, leaving a −u /r potential, where u is the strength
of the potential �the analog of GMm, where G is the New-
ton’s constant and M and m are the masses� and r is the
interparticle distance. The strength u of the potential can be
adjusted by changing the laser intensity �1�.

In ultracold atomic gases, two interesting regimes for self-
bound BECs have been predicted, assuming that the short-
range interatomic interactions can be independently tuned by,
say, applying a magnetic field near a Feshbach resonance �8�.
In one regime, the attractive 1/r interactions are balanced by
the repulsive mean-field interaction assuming a positive two-
body scattering length and negligible kinetic energy. In the
other regime, the balancing factor is kinetic energy, assuming
negligible mean-field interactions. In both regimes, the re-
sulting BEC is self-bound. From a broader point of view, the
induced gravitationlike interaction might make possible ex-
perimental emulation of boson stars �a system of self-
gravitating bosons� in the regime where the kinetic energy
balances the −u /r potential �9,10�. Moreover, purely attrac-
tive 1/r potentials constitute an interesting contrast to the
attractive and repulsive Coulomb potentials atomic physi-
cists are used to.

The existence of a lower bound for the ground-state en-
ergy in many-body systems interacting through attractive 1/r
potentials is of fundamental importance in order to prove the
existence of the thermodynamical limit and the stability of
normal matter �11�. It was shown in Ref. �12� that for a
system of N identical, spinless �or spin stretched� bosons of
mass m interacting gravitationally, the lower and upper
bounds for the ground-state energy are, respectively,

− 1
16N2�N−1�G2m5 /�2 and −0.0542N�N−1�2G2m5 /�2, where

the upper bound was obtained variationally. For small N,
however, the discrepancy between the lower and upper
bounds becomes large. For N=3, using a more refined trial
function, they obtained −0.954 92G2m5 /�2 for the upper
bound, representing a difference of about 15% between the
upper and lower, �− 9

8G2m5 /�2�, bounds and a ground-state
energy equal to E0�−1.067G2m5 /�2.

In this paper, we have used the adiabatic hyperspherical
representation for this system to obtain effective three-body
potentials, the corresponding channel functions, and the
nonadiabatic couplings. Using these, we calculate the ground
state and low-lying 0+ excited state energies converged to
seven digits. We have also used the adiabatic hyperspherical
representation to obtain lower and upper bounds that differ
by about 0.1%, indicating that a simple single-channel de-
scription offers a quite accurate description of such systems.
Additionally, we have determined from the asymptotic be-
havior of the effective three-body potentials that the 0+

bound states for three-body systems with attractive 1/r inter-
actions are Rydberg states. All of the knowledge we have
gained for Rydberg states in atomic systems can thus be di-
rectly transferred to this three-body system. We have also
used the channel functions to analyze the geometry and vi-
brational modes for both bound and resonant states. We have
found that all 0+ bound states are breathing modes, while the
0+ resonant states have contributions from both bending and
breathing modes. The breathing-mode component dominates,
however, for the low-lying resonances we examined.

II. THE ADIABATIC HYPERSPHERICAL
REPRESENTATION

We have solved the Schrödinger equation in hyperspheri-
cal coordinates. After separation of the center-of-mass mo-
tion, the system is described by the hyperradius R which
gives the overall size; three Euler angles �, �, and �, speci-
fying the orientation of the plane containing the three par-
ticles relative to the space-fixed frame; and two other hyper-
angles � and �, describing the internal relative motion

PHYSICAL REVIEW A 75, 032503 �2007�

1050-2947/2007/75�3�/032503�7� ©2007 The American Physical Society032503-1

http://dx.doi.org/10.1103/PhysRevA.75.032503


between the particles. The angles � and � are modified
Smith-Whitten coordinates, sometimes called “democratic”
coordinates, and are discussed in detail in Refs. �13–15�. The
key to the adiabatic hyperspherical representation is that the
dynamics of the three-body system, described by the hyper-
angles, is reduced to collective motion under the influence of
one-dimensional effective potentials in R, which is governed
by a system of ordinary differential equations similar to the
usual radial Schrödinger equation for two-body systems.

The hyperspherical coordinates are introduced through the
mass-scaled Jacobi coordinates ��1 and ��2 �see Fig. 1� defined
as

��1 = �r�2 − r�1�/d ,

��2 = d�r�3 −
m1r�1 + m2r�2

m1 + m2
� . �1�

In the above equations r�i is the position of the particle i �of
mass mi� relative to a space-fixed frame. For three identical
particles of mass m, we define a three-body reduced mass as
	=m /�3, which gives d=21/2 /31/4 �14,15�. It is important to
note that the hyperradius,

R2 = �1
2 + �2

2, R � �0, 
 � , �2�

is an invariant quantity, i.e., it does not depend on the par-
ticular choice of the hyperangles or permutations of the par-
ticles. In fact, it turns out that permutation symmetry affects
only �, which greatly simplifies symmetrizing the wave
function. This angle, along with �, describe the internal mo-
tion of the system at a fixed R. In particular, the geometry of
the system enters through these two angles with � largely
responsible for the shape of the three-body triangle.

The Schrödinger equation can be more conveniently writ-
ten in terms of the rescaled wave function �=R5/2�, as

	−
�2

2	

�2

�R2 + Had�R,�
��R,� = E��R,� , �3�

where E is the total energy and Had is the adiabatic Hamil-
tonian given by

Had�R,� =
�2

2	R2	�2�� +
15

4

 + V�R,�,�� . �4�

The adiabatic Hamiltonian Had contains all hyperangular de-
pendence, represented collectively by ��� ,� ,� ,� ,�, and
includes the hyperangular kinetic energy in the grand angular
momentum operator �2 as well as all interparticle interac-
tions V. An explicit definition for Had in terms of the hyper-

angles �, �, �, �, and � can be found in Refs. �14,15�.
In the adiabatic hyperspherical representation, the total

wave function is expanded in terms of the channel functions
���R ;�,

�n�R,� = �
�

Fn��R����R;� , �5�

where Fn��R� are the hyperradial wave functions, n labels the
different energy eigenstates for a given �, and � represents
all remaining quantum numbers necessary to specify each
channel. The channel functions ���R ;� form a complete
set of orthonormal functions at each value of R and are
eigenfunctions of the adiabatic Hamiltonian:

Had�R,����R;� = U��R����R;� . �6�

The eigenvalues U��R� help define effective three-body po-
tentials for the hyperradial motion.

Substituting Eq. �5� into the Schrödinger equation �3� and
projecting out ���, we obtain the hyperradial Schrödinger
equation

	−
�2

2	

d2

dR2 + U��R�
F��R�

−
�2

2	
�
��
	2P����R�

d

dR
+ Q����R�
F���R� = EF��R� ,

�7�

which describes the motion of the three-body system under
the influence of the effective potentials U��R�−Q���R� /2	.
In Eq. �7�, the nonadiabatic coupling terms P����R� and
Q����R� drive inelastic processes and are defined as

P����R� = ����� d

dR
������ �8�

and

Q����R� = ����� d2

dR2������ , �9�

where the double brackets denote integration over the angu-
lar coordinates  only. As it stands, Eq. �7� is exact. In
practice, of course, the sum over channels must be truncated.
In fact, the accuracy of the solutions can be monitored with
successively larger truncations since the bound state energies
obtained at each stage are an upper bound by the variational
principle. Neglecting all off-diagonal coupling in Eq. �7� de-
couples the equations and is called the adiabatic hyperspheri-
cal approximation. Discrete states in the lowest resulting ef-
fective potential become bound states of the system. Any
discrete states in higher potentials that lie above the
asymptotic threshold of the lowest potential become reso-
nances of the system upon inclusion of the nonadiabatic cou-
pling. In the analog atomic system—the helium atom—these
resonances are the doubly excited states.

In this paper, we explore the solutions of the system of
differential equations �7� for three particles with attractive
1/r interactions. We determine the effective potentials and
couplings by solving Eq. �6� for the J�=0+ symmetry, where

1d

m1

m2

m3

/d
2

FIG. 1. �Color online� The mass-scaled Jacobi coordinates for
systems with three particles.
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J is the total orbital angular momentum and � is the total
parity. The bound state energies are then determined by solv-
ing Eq. �7�. We characterize the resulting states from the
asymptotic behavior �R→ 
 � of the effective potentials
U��R�−Q���R� /2	 and from the channel functions
���R ;�, allowing us to determine, for instance, their geom-
etry and vibrational motion.

In order to solve the adiabatic equation �6�, we in general
expand the channel functions ���R ;� in terms of the
Wigner D functions �14,16,17�,

��
JM��R;� = �

K

�K��R;�,��DKM
J ��,�,�� , �10�

where K and M are the projection of J� onto the body-fixed
and space-fixed z axes, respectively. After projecting out the
D functions, the resulting coupled system of partial differen-
tial equations for �K��R ;� ,�� is solved �for each value of R�
by expanding �K��R ;� ,�� on a direct product of fifth-order
basis splines �18� in the hyperangles � and �. For J�=0+, of
course, the sum involves only one term, requiring the solu-
tion of a single two-dimensional partial differential equation.

The potential V in Eq. �4� is given by a pairwise sum of
attractive 1/r potentials,

V�R,�,�� = −
u

r12
−

u

r23
−

u

r31
, �11�

where u is the gravitationlike coupling. The interparticle dis-
tances rij are given in terms of the hyperspherical coordi-
nates by

r12 = 3−1/4R�1 + sin � sin�� − �/6��1/2,

r23 = 3−1/4R�1 + sin � sin�� − 5�/6��1/2,

r31 = 3−1/4R�1 + sin � sin�� + �/2��1/2. �12�

For the present calculations, however, we base our units on
u, thus producing a unitless equation. Our length units are
2�2 /mu, and our energy units are mu2 /2�2. These yield, in
analogy to atomic units, a two-body energy spectrum
En=−1/2n2.

Figure 2 shows the potential V�R ,� ,�� as a function of �
and � at R=100. The singular points at �=� /2 and

�=� /3, � and 5� /3 are the points where r23=0, r31=0, and
r12=0, respectively. The figure clearly shows the primary
reason for our using Smith-Whitten coordinates: the potential
is periodic in � for identical particles. As a consequence,
symmetrizing the channel function ��R ;� ,�� for 0+ can be
accomplished with the boundary conditions in �. �Recall that
permutations affect only �, so all permutational symmetry is
in the channel function.� Therefore, for three identical
bosons, the two-dimensional 0+ equation �Eq. �6�� needs to
be solved—ideally—only from �=0 to � /3, with the re-
quirement that the derivative of ��R ;� ,�� with respect to �
is zero at each boundary. For the present system, however,
we have to allow for the cusp in the channel function due to
the 1/r23 divergence as r23→0, which does not allow us to
impose the zero derivative condition at �=� /3 where
r23=0. Instead, we solve Eq. �6� from �=0 to 2� /3 requiring
the � derivative to be zero at each boundary. A simple
postsymmetrization procedure that extracts the functions that
are even about �=� /3 yields the completely symmetric so-
lutions. Further, to accurately represent the cusp, we chose
our spline functions such that they had a discontinuous first
derivative in � at �=� /3 �18�.

For the system suggested in Ref. �1�, the coupling u �Eq.
�11�� is given by �in Système International �SI� units�

u =
11

4�

Iq2�p
2

c�0
2 ,

where I is the laser intensity, q the photon wave number, and
�p the atomic dynamic polarizability. So, under the condi-
tions discussed in Ref. �1�, the strength of the interaction is
controllable via the laser’s parameters.

III. RESULTS AND DISCUSSION

Figure 3 shows the three-body potentials, calculated by
solving Eq. �6�, in the form �−2U��R��−1/2 such that for large
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FIG. 2. �Color online� The potential V�R ,� ,�� at R=100. Due
to the symmetry properties of the three identical particles, the adia-
batic equation �Eq. �6�� is solved only for �=0 to � /2 and �=0 to
2� /3. 0
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FIG. 3. �Color online� The hyperspherical potentials for three
identical bosons with attractive 1/r interactions. For large values of
R, �−2U��R��−1/2 converges to the principal quantum number n2b

for the hydrogenlike subsystems.
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values of R they converge to the principal quantum number
n2b associated with the two-body hydrogenlike subsystems
�for R→
 one particle is far from the others�. The lowest
potential in Fig. 3, converging to n2b=1, supports the 0+

bound states �or Se, in analogy with atomic spectroscopic
notation�. In particular, it contains both the ground state and
the Se series of singly excited states, using the language of
atomic structure. The higher potentials �converging to
n2b�1� support series of doubly excited states that are
coupled to and can decay to the continuum of the lowest
potential and are thus metastable. These comments draw on
the similarity of these potentials to those for three-body sys-
tems like He and H− �19�. There are minor differences, of
course, due to the different permutational symmetries of the
two systems and to the absence of the Coulomb repulsion for
the present case.

As mentioned above, analysis of the asymptotic behavior
of the effective potentials U��R�−Q���R� /2	, calculated
from the potentials shown in Fig. 3, makes it possible to
determine the properties of the energy eigenstates of the sys-
tem. In the present case, the effective potentials are asymp-
totically �R→ 
 � proportional to 1/R. As a consequence, the
main characteristics of the series of 0+ bound states follow
directly by identifying such states as Rydberg states. They
are thus infinite in number, have binding energies that scale
as 1 /n2, and have sizes proportional to n2. In this section, we
will explicitly demonstrate the 1/n2 scaling for the binding
energies. The presence of a Rydberg series in this system of
neutral particles underscores its peculiar nature.

Since the J�=0+ channel functions �10� depend only on
the hyperangles � and � they can be plotted in their entirety
for each value of R. Figures 5 and 6 show the channel func-
tions for the two lowest channels at R=0.69 and 100 for
�=1, and R=5.75 and 100 for �=2. The first R value lies
near the respective potential minima; and the second, in the
asymptotic region. For small R, we plot �� in the range
0���2� /3 from which the function in the whole range
0���2� can be obtained by symmetry �translation of the
plotted portion by 2� /3 and 4� /3�. For large R, however,
we plot the solution only in the range � /6���� /2 to
show sufficient detail to see the two-body character of the
solution.

The hyperangular distributions reveal both the geometry
and vibrational motion of the system. For instance, the prob-
able geometrical configuration for a channel function that
displays a large probability in the �-� plane near �=0 is an

equilateral triangle. This can be easily seen from the defini-
tions of the interatomic distances in Eq. �12�, where for
�=0 we have r12=r23=r31. On the other hand, if the channel
function peaks at �=� /2, the collinear configuration is most
probable. In fact, from Eq. �12�, for �=� /2 and �=� /3, �
and 5� /3, corresponding to the two-body coalescence points
r23=0, r31=0, and r12=0, the geometry corresponds to a lin-
ear configuration with two of the particles closer to each
other than to the third particle, representing strong two-body
correlations. For �=0, 2� /3,4� /3, and 2�, though, the lin-
ear configuration has one of the atoms at the center of mass
of the other two �see Eq. �12��.

The possible geometries as a function of � and � are
summarized in Fig. 4. The equilateral configurations along
�=0 in Fig. 4 are breathing modes whose size is determined
by R. Motion along � at �=� /2 takes the system through
two possible collinear geometries representing antisymmetric
vibration. As above, R scales every geometry, so symmetric
vibration takes place in the R direction at fixed � and �.
Motion in the � direction at fixed � �see Fig. 4� represents
bending modes. Actual motion in any of these modes re-
quires, of course, excitation. Otherwise, the state’s behavior
is governed by the hyperradial breathing motion.

In practice, of course, the channel functions are distrib-
uted over the whole �-� plane with some probability for each
geometry. We can thus discuss only the most probable geom-
etry �taking into account the sin 2� volume element�. In Fig.

FIG. 4. �Color online� Three-body geometries as a function of
the hyperangles � and �. �=0 corresponds to equilateral triangle
configurations �irrespective to ��, while �=� /2 corresponds to col-
linear configurations.
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FIG. 5. �Color online� The lowest J�=0+ channel function
��=1� as a function of � and � at �a� R=0.69 and �b� R=100.
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5�a� we show the channel function associated with the lowest
potential ��=1� near its minimum �see Fig. 3�. The channel
function spreads out over the entire hyperangular plane with
an increased amplitude near the two-body coalescence point
�r31=0 in the figure, and the others by symmetry� at
�=� /2 and �=� /3, corresponding to a linear configuration
with two of the particles closer to each other than to the third
particle �Fig. 4�. Since this solution is nodeless, this state has
primarily breathing-mode character in the radial direction.
Therefore, all energy eigenstates associated with this channel
should be breathing modes. As R increases �Fig. 5�b��, the
channel function “collapses” to the region around the coales-
cence points, displaying the two-body character it must have
for R→
—in this case the 1s state.

Figures 6�a� and 6�b� show the �=2 channel function,
which have much the same behavior as �=1 except for the
necessary addition of a node. This node introduces motion in
the hyperangles that is a combination of asymmetric vibra-
tion along �=� /2 and bending in the � direction. There is a
strong preference for equilateral triangles �due to the finite
probability near �=0�. Therefore, this channel—whose en-
ergy eigenstates are resonances in the continuum of the
�=1 channel—describes rather complicated motion at
smaller R, with the hyperradial motion contributing breath-
ing �or symmetric stretching� in addition. As R increases,
Fig. 6�b� shows that �=2 converges to the 2s state of the

two-body subsystem in the collinear geometry for �=� /2
and �=� /3. The motion in this limit is that of two particles
orbiting each other far from the third which must lie near the
collinear geometry. Note that for identical, spinless �or spin-
stretched� bosons, 2p two-body states are not allowed by
symmetry, so there is only a single potential correlating to
n2b=2 as R→
.

Based on these observations, we conclude that the 0+

bound states are primarily breathing modes, while the �=1
resonant states have bending-, stretching-, and breathing-
mode contributions. Thus, bending modes can only contrib-
ute to the bound states through the nonadiabatic coupling,
Eqs. �8� and �9�, with higher channels. In our case, though,
the channels are well separated in energy �see Fig. 3�, and
the coupling between them is expected to be small. This
expectation will be confirmed below by calculating the
eigenenergies and demonstrating that the contributions from
higher channels are substantially smaller than from the
ground channel.

In Ref. �20�, the possible geometries and vibrational
modes for three identical bosons with a repulsive core in
their interaction were analyzed in detail. A rich geometrical
structure was found along with a number of different modes.
Thinking about the hyperangular probability distribution, a
repulsive core would push the amplitude of the channel func-

0

2

4

Φν(R;Ω)
(a)

2π/3

π/3

0

ϕ π/2

π/4

0

θ

0

2

4

Φν(R;Ω)

0

150

300
Φν(R;Ω)

(b)

π/2
π/3

π/6

ϕ π/2

π/4

θ

0

150

300
Φν(R;Ω)

FIG. 6. �Color online� The first excited J�=0+ channel function
��=2� as a function of � and � at �a� R=5.75 and �b� R=100.
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FIG. 7. �Color online� Nonadiabatic coupling P��� between the
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-0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8

F
nν

(R
)

R(a.u.)

n=1,ν=1

n=1,ν=2

n=1,ν=3

(F1,2× 50)

(F1,3×102)

FIG. 8. �Color online� First three components of the ground-
state hyperradial wave function Fn� �n=1� associated with the first
three channels �=1, 2, and 3.
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tions in Figs. 5 and 6 away from the coalescence points,
forcing the system to explore more of the shape space. A
more complex geometrical and vibrational mode structure
can thus be expected. In the same vein, the lack of a repul-
sive core in the present case likely leads to the simple geom-
etry we have identified for all of the 0+ bound states in the
�=1 channel.

In Fig. 7 we show the nonadiabatic couplings P����R�
between the lowest channel and the next three channels
�P��=0 and P���=−P���� calculated from Eq. �9�. The fact
that the coupling P12 in Fig. 7 is substantially larger than the
couplings with higher channels implies rapid convergence
for the bound-state energies as a function of the number of
channels. Further, P12 peaks around R=6, which correlates
roughly with the location of a weak avoided crossing be-
tween the corresponding potential curves as expected �see
Fig. 3�.

We have solved Eq. �7� and determined the bound-state
energies and hyperradial wave functions Fn��R�, including
up to 15 channels. For example, Fig. 8 shows the ground-
state wave function for a three channel calculation. The
�=1 component is associated with the lowest adiabatic chan-
nel, while the �=2 and �=3 are related to the next two
adiabatic channels and are present due to the coupling be-
tween the channels. Note that the probability given by
Pn�=�0


 �Fn��R��2dR due to the first term dominates the other
contributions. In Table I we show Pn�=1 for the ground state
�n=1� and the four lowest excited states for a 15 channel
calculation. The �=1 adiabatic channel represents roughly
99% or more of the probability for each state, showing that
the adiabatic expansion is, in fact, quite good.

In Table II we show the ground-state energy as a function

of the number of channels, further demonstrating the ex-
pected rapid convergence of the adiabatic expansion. The
ground-state energy for this system has been calculated be-
fore. In Ref. �12�, for instance, a ground-state energy of
E0�−1.067G2m5 /�2=−2.134mu2 /�2 �in our units� was ob-
tained. Comparison with Table II shows that since both cal-
culations are variational, our single channel calculation al-
ready gives a more precise result. We speculate that the large
differences in the potential energies shown in Fig. 3 are the
main reason that a single channel already gives such a good
result. In fact, this channel separation is closely related to the
small magnitude of the coupling terms shown in Fig. 7. Table
II also shows that our six channel approximation for the
ground state gives a result converged to seven digits.

Is well known �21� that the hyperspherical energy ob-
tained disregarding all couplings and the energy obtained
considering only the diagonal coupling in Eq. �7� are lower
and upper bounds to the exact ground-state energy, respec-
tively. In these approximations, we obtain a lower bound
corresponding to −2.138 650 mu2 /�2 and an upper bound of
−2.136 033mu2 /�2. The difference between them is about
0.1%, while the bounds obtained in Ref. �12� give a differ-
ence of about 10%. By comparison, for a system such as the
He atom �22�, where the electronic repulsion plays an impor-
tant role, the relative difference between the lower and upper
bounds estimated from hyperspherical potential curves is
about 1%.

TABLE I. The probability Pn� associated with the �=1 term of
the expansion �5� for the ground state �n=1� and the next four
excited states.

n Pn1=�0

 �Fn1�2dR

1 99.98%

2 99.80%

3 99.15%

4 98.90%

5 99.21%

TABLE II. Convergence of the ground-state energy as a func-
tion of the number of channels included in Eq. �7�.

Number of channels Ground-state energy �mu2 /�2�

1 −2.136 033

2 −2.136 481

3 −2.136 523

4 −2.136 525

5 −2.136 526

6 −2.136 527

15 −2.136 527

TABLE III. Ground-state and excited-states energies En,�

��=1� calculated using 15 coupled channels.

n En,� �mu2 /�2�

1 −2.136 527

2 −1.145 881

3 −0.786 454

4 −0.661 162

5 −0.603 740
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FIG. 9. �Color online� Binding energies for the ground state and
the lowest 11 excited states of the 0+ symmetry as a function of the
principal quantum number n �dotted line�. These results can be fit
using the quantum defect formula 5.242 94/ �2�n−��2�, with
�=0.026 104 9 �dashed line�.
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In Table III we give our converged results for the ground
and first four excited states �calculated with 15 channels�,
and in Fig. 9, we plot the binding energies for this series of
states on a log-log scale, making evident the 1/n2 behavior
typical of Rydberg states, as discussed above. The binding
energies for n�2 can be fit using the quantum defect for-
mula 5.242 94/ �2�n−��2�, with �=0.026 104 9.

IV. SUMMARY

We have used the adiabatic hyperspherical representation
to describe system of three identical bosons with attractive
1/r potentials. Such a system might eventually be created
experimentally by irradiating ultracold atoms with intense,
extremely off-resonant lasers. We calculated the ground-state
and excited-state energies converged to seven digits which
represents a substantial improvement over previous results.
From our results for the effective potentials and binding en-
ergies, we have demonstrated that the bound states of the 0+

symmetry form a Rydberg states and have given the corre-
sponding quantum defect formula to calculate their energies.
Our method is essentially exact, with the only approximation
being the truncation of the number of channels used in the
expansion of the total wave function. Although other
methods—such as Hylleraas variational techniques—might
provide even better bound states energies, as we have shown
here the adiabatic hyperspherical representation naturally of-
fers qualitative information along with quantitative results.
For instance, we have used the adiabatic channel functions to
determine the geometries of the 0+ states. As a result, we
have concluded that the 0+ bound states are primarily breath-
ing modes, while the lowest 0+ resonant states have both
bending and breathing mode contributions.
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