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Usually, variational calculations for the second-order reduced density matrix are performed subject to the
constraint that the “P” and “Q” matrices are positive semidefinite, which only constrains the lowest eigenvalue
of these matrices. We characterize the highest eigenvalue of these matrices and discuss how the associated
constraint �which is related to the ground-state energy of the Hamiltonians H=−P and H=−Q� can be imple-
mented in practical calculations. This necessary condition for N-representability should help ensure that the
second-order reduced density matrix is not “overcorrelated.”
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I. BACKGROUND

Recently, there has been a rekindling of interest in ap-
proaches to the electronic structure problem based on varia-
tional optimization of the second-order reduced density ma-
trix �1–9�, which is variously expressed as a position-
dependent integral kernel,
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or as an operator on a two-electron Hilbert space,
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Here, zi= �ri ,�i� denotes both the space and the spin of elec-
tron i, aj and aj

† are the operators for annihilating and creat-
ing the spin orbital � j�z�, and 
� j�k� is a normalized two-
electron Slater determinant. We adopt the usual conventions
of quantum chemistry and restrict ourselves to real orbitals.
The weights, wi, are nonnegative and must sum to unity, so

that �̂N=�iwi
�i�	�i
 represents an ensemble average of
N-electron systems.

Any second-order reduced density that can be written in
the form of Eqs. �1�–�3� is said to be N-representable
�10–13�. It then follows from the fundamental variational
principle for the energy,

Eg.s.�ĤN� = min
�N

Tr�ĤN�̂N� , �4�

that the ground-state energy can be rewritten as a variational
procedure with respect to �2 whenever the N-body Hamil-
tonian contains at most two-body terms. First one introduces
the effective �or “reduced”� two-electron Hamiltonian opera-
tor,

Ĥ2
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Then one minimizes the energy with respect to the constraint
that �2 must be N-representable, i.e.,

Eg.s.�ĤN� = min
N−rep·�2

Tr�Ĥ2
�N��̂2� . �7�

In Eqs. �4� and �7�, the “Trace” notation is implemented in
the operator representation by adding up all the expectation

values of the product operator, ĤN�̂N or Ĥ2
�N��̂2, in any ap-

propriate complete basis. Equivalently, one can regard the
density matrices and Hamiltonian operators as matrices, with
the antisymmetry of the two-electron states reflected in the
matrix trace,

Tr�H2
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In the coordinate-space representation �Eq. �1��, the equiva-
lent operation is: apply the Hamiltonian operator, set all the
primed and unprimed variables equal, and integrate over the
remaining coordinates. For simplicity, in what follows, we
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will adopt the orbital-based, rather than the coordinate-space,
representations.

Were it not for the N-representability constraint in Eq. �7�,
the N-electron problem would be comparable in difficulty to
the two-electron problem. The exact N-representability con-

ditions are known �12�. �̂2 is N-representable if and only if,

for every N-body Hamiltonian, ĤN,

Eg.s.�ĤN� � Tr�Ĥ2
�N��̂2� . �9�

Clearly if Eq. �9� does not hold, then �̂2 violates the varia-
tional principle, and so cannot be N-representable. The con-

verse is also true, and merely indicates that if �̂2 is not
N-representable, then there will exist at least one Hamil-
tonian that is capable of “diagnosing” this malady. This is
ordinarily proved with the polar cone theorem �12�, but a
three-line proof of the result is included as the Appendix.

Because it is impractical to ensure that Eq. �9� holds for
all Hamiltonians, one typically requires this only for a subset
of Hamiltonians. The three most common constraints are em-
bodied by the P, Q, and G conditions �10,12�, which are
based on the positive semidefiniteness of

ĤN = B̂†B̂ � 0, �10�

where B̂† denotes the conjugate transpose of B̂. Specifically,
for the P condition, one chooses

B̂��pjk�� = �
j,k=1

K

pjkakaj , �11�

with pjk=−pkj. For the Q condition, one chooses

B̂��qjk�� = �
j,k=1

K

qjkak
†aj

†, �12�

with qjk=−qkj. For the G condition, one chooses

B̂��gjk�� = �
j,k=1

K

gjkak
†aj . �13�

In Eqs. �11�–�13�, K is the number of spin orbitals in the
basis set. We assume that K is even, which is true whenever
all of the 	-spin and 
-spin orbitals associated with a given
spatial basis are included. For convenience, we will also as-
sume that the one-electron basis set is large enough to be
interesting, so that the electron number is below half-filling
�i.e., N�K /2�. “Proof-of-principle” density-matrix calcula-
tions typically use small basis sets where this is not true. To
apply our results to these cases, particle-hole symmetry is
used to convert the N-electron problem to an
�M =K−N�-hole problem. The number of holes is now below
half-filling, so all of our results still hold, except that the P
condition for the electrons becomes the Q condition for the
holes, and vice versa.

Hamiltonians with the form of Eq. �10� are not very real-
istic models for atoms and molecules. In atoms and mol-
ecules, the ground-state energy is negative and, if the ground
state is degenerate, the degree of degeneracy is typically
small. By contrast, the ground state of the Hamiltonians as-

sociated with the P condition is usually highly degenerate
and has a ground-state energy of zero. This is most easily

seen by transforming the single-particle basis so that B̂ has
its canonical “pairing” form �14–16�, with the transformed
orbitals linked together in a pairwise manner. If we order the
orbitals so that each odd orbital is paired with the even or-
bital directly after it, then Eq. �11� can be rewritten as

B̂�pj� = �
j=1

K/2

pja2j−1a2j , �14�

where the pairing strength parameters, pj, are real. Clearly

B̂†B̂
��=0 whenever � is a Slater determinant that includes

orbitals but not their pairs. For example, B̂†B̂
�2�4¯�2N�
=0 because all the orbitals that are paired with the orbitals in
this Slater determinant are missing.

The Hamiltonian −B̂†B̂ seems more realistic. The ground-
state energy would now be negative, and typically nondegen-
erate. We expect, then, that bounds of the form,

Eg.s.�− B̂†B̂� � Tr�− B̂†B̂�2� �15�

would provide meaningful N-representability constraints.
These constraints can be compactly rewritten as upper
bounds on the eigenvalues of the P, Q, and G matrices; this
gives the constraint that

0 � Tr�B̂†B̂�2� � − Eg.s.�− B̂†B̂� �16�

for all N-representable �2.
The aim of the present paper is to derive

N-representability constraints of precisely this form. We are

fortunate in that, for the forms of B̂ associated with the P and

Q conditions, we can find the eigenvalues of B̂†B̂ analyti-
cally. This then provides an “upper bound” to the usual P
and Q matrices. In the next two sections of this paper, we
will develop improved bounds using exact solutions for the
Hamiltonians associated with the P and Q conditions.

II. UPPER BOUNDS TO P̂Æ „�j�=1
K/2 pj�a2j�

† a2j�−1
†

…„�j=1
K/2pja2j−1a2j…

In order to provide upper bounds to the matrix associated
with the P condition, we again rewrite Eq. �11� in the form
of Eq. �14�. In addition, it is convenient to set the energy
scale for the Hamiltonian so that

1 = �
j=1

K/2

pj
2. �17�

We are interested in the largest eigenvalue, 
max��pj�� of the

Hamiltonian P̂� B̂��pj��†B̂��pj��, since this gives a constraint
with the form of Eq. �16�,

0 � Tr�P̂��pj���2� � 
max��pj�� . �18�

P̂ belongs to a class of exactly solvable quantum many-
body Hamiltonians known as the Richardson-Gaudin
�17–19� pairing models. �See Refs. �20–22� for recent re-
views.� We state without proof that the relevant eigenvalues

of P̂ are given by
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E = 1 − �
�=1

N/2−1
2

y�

, �19�

where the �y�� are determined by solving a set of N
2 −1

coupled nonlinear equations,

��
j=1

K/2
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2

1 − y�pj
2 + 2� 1
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+ �
���
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y� − y�
� = 0�

�=1

N/2−1

. �20�

We refer to Refs. �22–24� for more details on the specific

context of Hamiltonians of P̂ type and for the lengthy deri-
vation of its eigenvalue spectrum and the corresponding
eigenstates. Note that the eigenvalues depend only on the
strength parameters, pj, of the pairing vector in the Hamil-
tonian �cf. Eq. �14��, and not on the choice of single-particle
orbitals.

Equations �19� and �20� hold for an even number of elec-
trons, N �extension to an odd electron number poses no spe-

cial difficulties� and for the “fully paired” eigenspace of P̂.
The term fully paired—also called “zero seniority” �25� in
this context—indicates that in the wave functions 
�� under
consideration, no orbital is present without its paired orbital.
�Thus, if 
�� is expanded in Slater determinants, the orbitals
�2j−1�z� and �2j�z� are simultaneously occupied or unoccu-
pied in each Slater determinant contributing to 
��.� Since
the fully paired eigenspace contains the extremal eigenvalues
that are of interest for the present investigation, Eqs. �19� and
�20� are all that is required.

The upper bound in Eq. �18� is distinguished from the
usual N-representability constraints because it asserts more
than the mere positive semidefiniteness of a matrix. This has
advantages �e.g., we have argued that the upper bound is
associated with a more realistic Hamiltonian than the lower
bound� but also has disadvantages: one must solve a system
of nonlinear equations in order to determine 
max��pj��. Effi-
cient methods for solving these equations exist �26�, espe-
cially when only the largest eigenvalue is needed. However,
it is still impractical to solve these equations for the infinite
number of possible choices of parameters in the Hamil-
tonian.

We propose to circumvent this problem in a straightfor-
ward manner: at every stage in the density-matrix minimiza-
tion algorithm, choose the free parameters in the Hamil-
tonian so that the constraint is as tight as possible. Suppose,
for example, that at the ith iteration of the variational proce-
dure, the �approximate� density matrix is �2

�i�. Then we will
seek the choice of parameters in the Hamiltonian that maxi-
mizes

F„�2
�i�;�pj�… = Tr�B̂†B̂�̂2

�i�� − 
max��pj�� . �21�

Note that since �2
�i� is generally not N-representable, the

maximum value will commonly be positive. This procedure
will produce a Hamiltonian, which can be used to constrain
the density matrix in the next iteration.

Because 
max��pj�� depends only on the interaction
strengths, there is an inherent arbitrariness in the choice of
spin orbitals and the pairing between them. This is captured
by introducing new creation-annihilation operators, linked to

the old ones by a real-orthogonal transformation of the
single-particle basis,

ak = �
j=1

K

Ukjaj . �22�

We can then write the Hamiltonian of interest as �cf. Eq.
�14��,

B̂†B̂ = �
k,k�=1

K/2

pk�pka2k�
†

a2k�−1
†
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aj1�

† aj2�
† aj2

aj1
� . �23�

Referring back to the definition of the density matrix in the
second quantization, Eq. �2�, we need to determine the
choices of p’s and U’s that maximize

F��pk�,�Ukj�� � �
k,k�=1

K/2

pk�pk �
j1,j2,j1�,j2�=1

K

�U2k�,j1�
U2k�−1,j2�

�U2k,j1
U2k−1,j2

�2;j1j2,j1�j2�
� − 
max��pj�� .

�24�

This can be solved by an optimization procedure, with the
gradients given by

�F

�Ulm
= �

k,k�=1

K/2

pk�pk �
j1,j2,j1�,j2�=1

K
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+ U2k�,j1�
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+ U2k�,j1�
U2k�−1,j2�

�2k,l� j1,mU2k−1,j2

+ U2k�,j1�
U2k�−1,j2�

U2k,j1
�2k−1,l� j2,m��2;j1j2,j1�j2�

, �25�

or, equivalently,

�F

�U2k−�,m
= �

k�=1

K/2

�
n1n2n3=1

K

�2pkpk�U2k�−1+�,n1

�U2k�−�,n2
U2k−1+�,n3

�2;n1n2,n3m� , �26�

with k=1,2 , . . . ,K /2 and �=0,1.
The derivatives with respect to the pairing strengths are

given by

�F

�pr
= 2�

k=1

K/2

pk �
j1,j2,j1�,j2�=1

K

U2r,j1�
U2r−1,j2�

U2k,j1
U2k−1,j2

�2;j1j2,j1�j2�

−
�
max��pj��

�pr
, �27�

where

NECESSARY CONDITIONS FOR THE N-… PHYSICAL REVIEW A 75, 032502 �2007�

032502-3



�
max

�pr
= 2 �

�=1

N/2−1 � �y�

�pr
� 1

�y��2 . �28�

and the derivatives,
�y�

�pk
, are obtained by solving the linear

equations,

�0 =
�y�

�pk
��

j=1

K/2
pj

4

�1 − y�pj
2�2 −

2

y�
2 − �

���
� 2

�y� − y��2�

+ �

���

�y�

�pk
� 2

�y� − y��2� +
2pk

�1 − y�pk
2�2�

�=1

N/2−1

. �29�

The normalization constraint, Eq. �17�, and the orthogonality
conditions on the orbital transformations,

�
k

UkjUkl = � jl �30�

are readily enforced using Lagrange multipliers. Note that
the nonlinear equations must be solved at each iteration of
the procedure, as the solutions of the nonlinear equations are
required to determine

�y�

�pk
.

III. BOUNDS TO Q̂Æ „�j�=1
K/2 qj�a2j�a2j�−1…„�j=1

K/2qja2j−1
† a2j

†
…

When we choose B̂ to have the appropriate form for the Q
condition, Eq. �12�, relevant bounds for the Hamiltonian,

ĤN= B̂†B̂ can be found using methods similar to those in the
previous section. Just as before, the first step is to transform

to the one-electron basis set so that B̂ is expressed in terms of
orbital pairs,

B̂��qj�� = �
j=1

K/2

qja2j−1
† a2j

† , �31�

with real pairing strengths, qj, and the energy scale chosen so
that

1 = �
j=1

K/2

qj
2. �32�

From this stage, we can solve the Schrödinger equation for

ĤN= Q̂, again reducing the problem to a set of nonlinear
equations.

Determining the largest eigenvalue is particularly simple.
First, note that if 
 is a nonzero eigenvalue in the eigenvalue

equation B̂†B̂
�N�=

�N� for Q̂= B̂†B̂, then B̂
�N� is not
zero and it is an eigenvector of the equation,

B̂B̂†B̂
�N� = 
B̂
�N� . �33�

However, we can view this as a Schrödinger equation in the

N+2-electron space, where the Hamiltonian is P̂= B̂B̂†. Con-
versely, if 
 is a nonzero eigenvalue of the N+2-electron

eigenproblem, B̂B̂†
�N+2�=

�N+2�, then B̂†
�N+2��0 is an

N-electron eigenvector of Q̂= B̂†B̂ since

B̂†B̂�B̂†
�N+2�� = 
�B̂†
�N+2�� . �34�

We conclude that the N-electron Hamiltonian Q̂ and the

N+2-electron Hamiltonian P̂ have the same set of nonzero
eigenvalues.

It follows that 
max��qj��, the largest N-electron

eigenvalue of Q̂=� j,k=1
K/2 qjqka2ka2k−1a2j−1

† a2j
† coincides

with the largest N+2-electron eigenvalues of

P̂=� j,k=1
K/2 qjqka2j−1

† a2j
† a2ka2k−1. However, since P̂ is a Hamil-

tonian with the same form, we considered in Sec. II, its larg-
est eigenvalue can be determined using the generalization of
Eqs. �19� and �20� to N+2 electrons. In addition, the same
methods can be used to find the choice of pairing strengths,
�qj�, and the orbital transformation that makes the upper
bound in Eq. �16� as effective as possible.

When B̂ has the appropriate form for the P condition, Eq.

�11�, the lowest eigenvalue of P̂= B̂†B̂ is zero for any one-
electron basis set that is large enough to be interesting. This
is not true when we choose the Hamiltonian to have the
appropriate form for the Q condition, Eq. �12�. In that case,
the lowest eigenvalue is zero if and only if nq�N, where nq
is the number of nonzero strength parameters in Eq. �31�.
This is highly unlikely to occur in practice. Since the lowest

eigenvalue of Q̂ is usually greater than zero, it gives an ad-
ditional relevant constraint. Thus, we can say that

0 � 
min��qj�� � Tr�B̂†B̂�̂2� � 
max��qj�� , �35�

where 
min��qj�� and 
max��qj�� are the smallest and largest

eigenvalues of the Hamiltonian Q̂��qj��= B̂†B̂, where B̂ is
given by Eq. �12�. This fact—that, except for trivial cases,

the lowest eigenvalue of Q̂ is not zero—implies, among
other things, that the Q condition as commonly applied is not

a tight constraint, since it only requires that Q̂ be positive
semidefinite.

In principle, the lower-bound condition associated with a
nonzero 
min��qj�� can be implemented in the same way as
the upper bound by using the lowest nonzero solution of Eqs.
�19� and �20� for N+2 electrons. However, the lower-bound
constraint may be less important than the upper-bound con-
straint, since it is restricted to the interval 0�
min��qj���1.
As a consequence, 
min��qj�� /N approaches zero as the num-
ber of electrons increases, in contrast to 
max��qj��, which
can scale with N. In the following, we therefore assume that
only the usual Q condition of positive semidefiniteness is
imposed.

IV. PROPOSED ALGORITHM

The results of this procedure should not be hard to imple-
ment in any existing density-matrix optimization program
�1,3,5,6,9�. At each iteration, i, in the density-matrix optimi-
zation procedure, one performs the following steps �in addi-
tion to the usual steps in one’s optimization procedure�:

1. Using the current approximation with the density ma-
trix, �2

�i�, find the choice of coefficients, �pj
�i�� and �qj

�i��, and
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real-orthogonal transformations, Ujk
�P,i� and Ujk

�Q,i�, that cause
the upper bounds on the P and Q conditions to be as tight as
possible. The orbital transformations can be obtained using
the gradient-based maximization procedure sketched at the
end of Sec. II. Specifically, one maximizes F��pk� , �Ujk

�−,i���
�cf. Eq. �24�� using the gradients given in Eqs. �26�–�29�.

2. After determining the optimal form of the P and Q
Hamiltonians, one has the new constraints, which can be
compactly specified using the objective function for the
maximization in step 1. For every N-representable density
matrix, it must be true that

F��pj
�i��,�Ujk

�P,i��� � 0,

F��qj
�i��,�Ujk

�Q,i��� � 0. �36�

These are simple linear inequality constraints on the density
matrix.

3. The linear constraints �36� are imposed when the next
step in the density-matrix optimization algorithm is per-
formed. In practice, it might be more useful to impose not
only the constraints from the present iteration, but also the
constraints associated with a few of the previous iterates.
That is, one might impose the series of linear constraints:

�F��pj
�h��,�Ujk

�P,h��� � 0

F��qj
�h��,�Ujk

�Q,h��� � 0
�

h=i−ni+1

i

�37�

based on the constraints from the previous ni iterates.

This algorithm would seem to be particularly amenable to
using Mazziotti’s first-order nonlinear algorithm �5,6�, since
these simple linear constraints of this form are readily cast in
augmented Lagrangian form using slack variables �27�.

V. DISCUSSION

When one seeks to minimize the energy with respect to
the second-order reduced density matrix, �2, one must im-
pose some N-representability constraints. �Otherwise the en-
ergies are far below the correct answer.� Most commonly,

one merely utilizes the positive semidefiniteness of the P̂, Q̂,

and Ĝ Hamiltonians. That is, one merely uses the fact that

Tr�B̂†B̂�̂2� � 0, �38�

when B̂ has the form given by Eqs. �11�–�13�. One discovery
from this paper is that the lower bound associated with the Q
condition is not tight. This is probably not very important in
practice, but it is interesting that most Hamiltonians with the
form of the “Q” condition are actually positive definite.

This paper supplements the lower bounds in Eq. �38� with

upper bounds on the P̂ and Q̂ Hamiltonians:

0 � Tr�P̂��pj;Ujk
�P����̂2� � 
max��pj�� , �39�

0 � Tr�Q̂��qj;Ujk
�Q����̂2� � 
max��qj�� . �40�

The best choices for the parameters in the Hamiltonian can
be determined using the procedure sketched in Sec. IV. We

do not yet have an upper-bound constraint for the Ĝ Hamil-
tonian; that is an interesting topic for future study.

The lower bounds force the reduced density matrices for
the particles �Eq. �39�� and the holes �Eq. �40�� to be positive
semidefinite. This fundamental requirement reflects the fact
that the probability a given orbital is occupied is never nega-
tive �P condition�. The probability that a given orbital is
unoccupied is never negative either �Q condition�.

The interpretation of the upper-bound constraints is less
straightforward. When the strength parameters in the pair
vectors are all chosen equal �i.e., pj =� 2

K in Eq. �14� or qj

=� 2
K in Eq. �31�� then these constraints reduce to the well-

known constraints on the maximum occupation numbers in
the particle and hole reduced density matrices �28�, i.e.,


max�P̂�=
max��2�= N
2

�1− N−2
K

� and 
max�Q̂�= N+2
2

�1− N
K

�.
Coleman has focused extensively on cases where these upper
bounds are nearly achieved, arguing that density matrices
with eigenvalues that approach these upper bounds are asso-
ciated with strong long-range electron correlations �11,29�.
This establishes, among other things, a link to superconduc-
tivity, which is one of the main areas of physics where
Hamiltonians with this form are considered.

In the limit of large basis sets, the extremal eigenvalues
corresponding to the equal-strength pairing vector become


min�P̂�=0; 
max�P̂�= N
2 and 
min�Q̂�=1; 
max�Q̂�= N

2 +1.
Note that these are identical to the extremal eigenvalues of

P̂= b̂†b̂ and P̂= b̂b̂† in a system of N
2 bosons, where b̂† creates

a single boson in an arbitrary single-particle state.
By choosing nonequal strength parameters pj and qj in all

possible ways, one can generate the most general electron
pair state, ranging from equal-strength pairs to the other ex-
treme, a two-electron Slater determinant �where only one of
the strength parameters is nonzero�. Obviously the upper-
bound �as well as the lower-bound� constraints discussed in
this paper can then be viewed as constraints on the occupa-
tion and nonoccupation of such quasibosons �electron pairs�
in an N-electron state. �The electron pairs cannot be perfect
bosons because of the Pauli principle.� The upper bounds in
Eqs. �39� and �40� reflect this fact, encapsulating the highly
nonlinear way in which the structure of the Hamiltonian re-
lates to the strength of electron correlations.

Imposing the upper bounds in Eqs. �39� and �40� helps to
ensure that the electrons �Eq. �39�� and holes �Eq. �40�� are
not “overcorrelated.” It is well known, for example, that the
N-electron ground-state energy expression in Eq. �7� can be
rewritten as

Tr�Ĥ2
�N��̂2� = �

n

�n Tr�B̂n
†B̂n�̂2� , �41�

where the �n are eigenenergies of the reduced Hamiltonian in

the two-electron space and B̂n
† creates the corresponding nor-

malized two-electron eigenstate. By exceeding the maximal

occupation of the B̂n pairs corresponding to the lowest �n,
overcorrelated density matrices tend to give energies that are
significantly smaller than they should be. Imposing the
upper-bound constraints in this paper should reduce the
overbinding of electrons and improve the quality of the en-
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ergy, and other properties, computed using direct optimiza-
tion algorithms for the reduced density matrix.
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APPENDIX

�2 is N-representable if and only if,

Eg.s.�ĤN� � Tr�Ĥ2
�N��2�

for every N-electron Hamiltonian. The “only if” part of this
statement is a trivial consequence of the variational principle.
To prove the “if” part, suppose that �2

� is not

N-representable. Since the set of N-representable 2-matrices
is a closed, convex set, the geometric Hahn-Banach theorem
indicates that any density matrix that is not in this set can be
separated from it by a hyperplane �30,31�. This implies that

there exists a Hamiltonian for which Tr�Ĥ2
�N��2��k for all

N-representable �2 but for which Tr�Ĥ2
�N��2

���k. Using the
variational principle for the density matrix, Eq. �7�, we have
that for any non-N-representable 2-matrix, �2

�, there exists a
Hamiltonian such that

Tr�Ĥ2
�N��2

�� � k � Eg.s.�ĤN� � Tr�Ĥ2
�N��2� . �42�

That is, every non-N-representable 2-matrix gives too low an
energy for some Hamiltonian. Thus �2 is N-representable if

Eg.s.�ĤN��Tr�Ĥ2
�N��2� for every N-electron Hamiltonian.
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