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The relaxation processes of rotational angular momentum of polar diatomic molecules diluted in simple
liquids are analyzed by applying a non-Markovian relaxation theory to the study of the binary time autocor-
relation function of the angular momentum. This non-Markovian theory was previously applied to the study of
the infrared and Raman spectroscopy, and also to the analysis of the rotational energy relaxation processes. We
have obtained non-Markovian evolution equations for the two-time j-level angular momentum correlation
components involved in the angular momentum correlation function. In these equations, the time-dependent
angular momentum transfer rates and the pure orientational angular transfer rates are given in terms of the
binary time autocorrelation function of the diatomic-solvent anisotropic interaction. The non-Markovian evo-
lution equations converge to Markovian ones in the long time limit, reaching the angular momentum transfer
rates in the usual time-independent form. Alternative time scales for the angular relaxation processes, relative
to the individual rotational processes as well as to the global decay correlations, are introduced and analyzed.
The theory is applied to the study of the angular momentum relaxation processes of HCl diluted in liquid SF6,
a system for which rotational energy relaxation and infrared and Raman spectroscopy was previously analyzed
in the scope of the same theory.
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I. INTRODUCTION

The study of the angular momentum relaxation processes
and the analysis of the orientational correlation functions has
contributed significantly to the understanding of the molecu-
lar dynamics in condensed phases �1–5�. However, while for
the molecular orientational processes we can obtain direct
experimental data from the infrared and Raman spectra, for
the angular momentum relaxation we must appeal to indirect
procedures which often only give a partial representation of
these processes.

The angular momentum correlation time and the orienta-
tional correlation time are connected by the so-called Hub-
bard relation �1,5�, so when the orientational times can be
estimated from the infrared and Raman data, the Hubbard
relation gives an indirect measure of the angular correlation
time. Furthermore, when the spin-rotation coupling is the
dominant nuclear-spin relaxation channel, the angular corre-
lation time can be indirectly estimated from the experimental
NMR data �4–6�. The connection between the short time
behavior of the angular momentum correlation function and
the absorption shape in the far wings provides interesting
information about the angular momentum relaxation pro-
cesses �2,3�. Moreover, the femtosecond pump-probe LIF
measurements give valuable information about the progres-
sive effect of the solvent friction on the rotational motion of
solute molecules in liquid solvents, a molecular process
closely related to the time fluctuations of the angular mo-
mentum �7�.

Though all the above experimental methods are certainly
very useful, they present some limitations in order to provide
a complete description of the angular momentum relaxation
processes, particularly for light diatomic molecules in liquid
phase �8�. In this work we present a quantum non-Markovian
theory for the autocorrelation function of the angular mo-
mentum of a heteronuclear diatomic molecule immersed in a

nonpolar liquid. This theory has been deduced from a more
general framework for the diatomic vibrorotational relax-
ation that was previously applied to the study of the infrared
and Raman spectra �9�, and also to the energy relaxation
processes �12�, providing, in this way, a consistent connec-
tion with the experimental spectral data �10,11�.

In this theory the binary time autocorrelation function of
the angular momentum has been written in terms of the two-
time j-level angular momentum correlation components,
functions which give a measure of the individual angular
correlation of each j level at present time with the initially
assumed j-level of the diatomic. We have deduced non-
Markovian master equations for the two-time j-level angular
components in which the angular momentum transfer rates
are given, in terms of the binary time autocorrelation func-
tion of the diatomic-solvent anisotropic interaction. This
non-Markovian evolution equation converges for long times
�LTL� toward the Markovian limit, where the angular trans-
fer rates reach the usual time-independent form. We have
introduced different time scales for the angular momentum
relaxation processes which have been discussed and com-
paratively analyzed.

The structure of this paper is as follows. In Sec. II we
summarized the theoretical relations of the general theory. In
Sec. III we introduce the binary time autocorrelation function
of the angular momentum in terms of the two-time j-level
angular correlation components. In Sec. IV we deduce the
non-Markovian evolution equations for the two-time j-level
angular correlation components. In Sec. V we study the
properties of the angular momentum transfer rates. In Sec.
VI we analyze the LTL and the exponential decay represen-
tation for its angular momentum correlation function. In Sec.
VII we apply the theory to the study of the angular momen-
tum processes of HCl diluted in liquid SF6. Finally, in Sec.
VIII we present a brief summary and some conclusions.
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II. THEORETICAL BACKGROUND

In the scope of the analysis of diluted solutions of di-
atomic polar molecules in a dense nonpolar fluid a theoreti-
cal approach �9� has been recently developed to calculate the
autocorrelation function,

CK�t� = ��D�K��t� · D�K��0��� = �
q=−K

K

�− 1�q��Dq
�K��t�D−q

�K��0��� ,

�1�

for an irreducible tensor D�K� of rank K, such as the perma-
nent dipole moment or the polarizability of the solute mol-
ecule. According to the noninitial correlation hypothesis �9�
and assuming that the diatomic is in its vibrational ground
state, the correlation function CK�t� can be written as

CK�t� = �
j f ji

�
jljk

� ji
0Djf ji

�K�Djljk
�K��Û�K��t,0�� jljk

jf ji , �2�

where � ji
0 is the equilibrium population of the rotational ji

level, Djajb

�K� are the reduced matrix elements of the D�K� tensor
in the sense of the Wigner Eckart theorem, and

�Û�K��t ,0�� jljk
jf ji are the K-rank irreducible matrix elements of

the reduced evolution superoperator �RES� �Û�t ,0��
=TrB�exp�iL̂t��B

0� in the tensor basis �of the Liouville space�

�ji, j f ;KQ� = �
mi

�
mf

�− 1� ji−mi	2K + 1
 ji j f K

mi mf − Q
��jimi�

��j fmf� , �3�

where �jm� are the usual rotor eigenstates, TrB is the partial
trace over the bath coordinates �those of the solvent and the
solute molecules, except the solute vibration-rotation�, �B

0 is

the equilibrium density operator of the bath, and L̂ is the
Liouville superoperator of the total system. The time evolu-
tion of the RES can be deduced by using the Kubo cumulant
expansion method �9,12,13� with a partial time-ordering cu-
mulant prescription �PTOC� leading to the following master
equation for the K-rank matrix elements of the RES �12�,

d

dt
�Û�K��t,0�� jljk

jf ji = − i� jljk
�Û�K��t,0�� jljk

jf ji

− �
jpjr

�Ĝ�K��t�� jljk

jpjr�Û�K��t,0�� jpjr

jf ji , �4�

with the initial condition

�Û�K��t = 0,0�� jljk

jf ji = � j f jl
� jijk

, �5�

where � jljk
are the rotational transition frequencies and

�Ĝ�K��t�� jljk
jpjr are the K-rank irreducible matrix elements of the

PTOC relaxation superoperator. The Markovian limit, which
holds when the temporal scales of the vibrorotational pro-
cesses are large compared with those associated to the fluc-
tuations of the solute-solvent interaction, is characterized by

the Markovian relaxation superoperator R̂ �9�, whose K-rank
irreducible matrix elements are given by

�R̂�K�� jljk

jpjr = lim
t→�

�Ĝ�K��t�� jljk

jpjr, �6�

which are the long time limit of the PTOC matrix elements.
The particular form of the relaxation matrix depends upon

the model adopted for the vibrorotation bath interaction. As
usual �9,12,14,15� here we assume that the anisotropic inter-
action Hamiltonian is a sum of effective binary potentials,
each one expanded in Legendre polynomial PL. With this
assumption the PTOC relaxation matrix can be written as
additive L contribution in the following form �see Eqs. �8�–
�12� of Ref. �12��:

�Ĝ�K��t�� jljk

jpjr = �
L=1

�

�Ĝ�K��t;L�� jljk

jpjr, �7�

where the anisotropic components �L�0� are given by

�Ĝ�K��t;L�� jljk

jpjr = � j f jl
� jijk�

jn

�−2	�L��t,� jkjn
��ji�−1C̄jijn

�L� C̄jnjk
�L�

+ � j f jl
� jijk�

jn

�−2	�L��t,� jljn
�*�j f�−1C̄jf jn

�L� C̄jnjl
�L�

− C̄jlj f

�L�C̄jijk
�L� �− 1�K�−2� j f jk K

ji j f L


��	�L��t,� jkji
� + 	�L��t,� jlj f

�*� , �8�

with �j�=2j+1 and

C̄jf ji
�L� = 	�j f��ji�
 j f L ji

0 0 0
� , �9�

	�L��t,�� = �
−t

t

d
 exp�i�
�	�L��
� , �10�

	�L��t� =
�L

2

2L + 1
��L��t� . �11�

In these equations �L
2 accounts for the strength of the inter-

action and ��L��t� is a normalized time autocorrelation func-
tion ���L��0�=1�, which collects all the temporal dependence
of the L-anisotropic interaction component. Both �L

2 and
��L��t� can be calculated by appropriate liquid models, by
molecular dynamics simulations, or by fitting between theo-
retical and experimental spectral results.

III. ANGULAR MOMENTUM CORRELATION FUNCTION

The relaxation processes of the angular momentum will
be described by means of the binary time autocorrelation
function

CJ�t� = ��J��0�2��−1��J��t� · J��0��� , �12�

where J� is the intrinsic angular momentum of the diatomic.
The angular momentum is a tensor of rank K=1 whose
spherical components Jq are given in the irreducible tensor
basis �3� by �16�
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�Jq� = �
j

�j�J�j�	3�j, j ;1,q� , �13�

where �j �J � j� are the reduced matrix elements

�j�J�j� = 	�j�j�j + 1� , �14�

being j=0 its j-selection rule. Therefore, from Eq. �2� we
obtain that the correlation function �12� can be approximated
by the expression

CJ�t� = ��J��0�2��−1�
ji

�
jk

� ji
0�ji�J�ji��jk�J�jk��Û�1��t,0�� jkjk

jiji ,

�15�

where

��J��0�2�� = Tr�J�2�0� = �
j

� j
0j�j + 1��2 �16�

is the equilibrium average of the square angular momentum.
We introduce the correlation time associate to CJ�t� �Eq.

�15�� in the usual form


J = �
0

�

dtCJ�t� , �17�

which gives a measure of the global time scale for the relax-
ation processes of the angular momentum.

We define the two-time j-level angular momentum corre-
lation components in terms of the irreducible matrix ele-
ments of the RES

CJ�t, jk�0, ji� = �Û�1��t,0�� jkjk

jiji , �18�

which give a measure of the angular momentum correlation
between the single jk level at time t�0 and the assumed
initial �t=0� ji level of the diatomic. Due to the initial con-
ditions of the RES �5�, the two-time j-level angular momen-
tum components satisfy the property

CJ�0, jk�0, ji� = � jkji
, �19�

so the autocorrelation function CJ�t , ji �0, ji� gives informa-
tion about the lifetime of the angular momentum in the
single ji level, while the cross-correlation functions
CJ�t , jk �0, ji� �jk� ji� give information about the angular mo-
mentum transfer processes between different j levels.

In terms of the two-time j-level angular momentum com-
ponents �18� the time correlation function of the angular mo-
mentum �15� can be written as

CJ�t� = ��J��0�2��−1�
ji

�
jk

�jk�J�jk�CJ�t, jk�0, ji��ji�J�ji�� ji
0 ,

�20�

where CJ�t� results of the average effect produced by all the
j-level pairs of the angular momentum connected by the two-
time j-level components. Associated to each j level we de-
fine an angular momentum relaxation time as


 j = �
0

�

dtCJ�t, j�0, j� , �21�

which gives a selective measure of the relaxation time scale
for the angular momentum in each j level. Then, focusing
our attention in the binary time autocorrelation function
CJ�t�, the detailed description of the angular momentum re-
laxation processes has been regarded to the knowledge of the
two-time j-level angular momentum components �18�.

IV. NON-MARKOVIAN TIME EVOLUTION EQUATIONS

The time evolution equations for the two-time j-level an-
gular momentum correlation components CJ�t , jk �0, ji� �Eq.
�18�� can be obtained from the non-Markovian equations �4�
by selecting the K=1 rank and the j-selection rule j=0.
Thus, taking into account that the j=0 transition has even
parity, that the remainder allowed K=1 transitions j= ±1
have odd parity, and that the reduced matrix elements of the
PTOC superoperators �7� and �8� do not mix j transitions of
different parity, we obtain the evolution equations

d

dt
CJ�t, jk�0, ji� = − �TJ�t�� jk

−1CJ�t, jk�0, ji�

+ �
jl��jk�

Pjljk
�J� �t�CJ�t, jl�0, ji� , �22�

where Pjljk

�J� �t� are the time-dependent angular momentum
transfer rate

Pjljk
�J� �t� = − �Ĝ�1��t�� jkjk

jljl , �23�

while �TJ�t�� jk
is the time-dependent angular momentum re-

laxation time of the jk level

1

�TJ�t�� jk

= �Ĝ�1��t�� jkjk

jkjk, �24�

which gives a measure of the transient time scales associated
to the angular momentum relaxation in each j level.

V. ANGULAR MOMENTUM TRANSFER RATES

From Eqs. �7�, �8�, and �23� it is deduced that the angular
momentum transfer rates can be written as the additive con-
tributions due to the L-anisotropic components of the inter-
action

Pjljk
�J� �t� = �

L=1

�

Pjljk
�J� �t;L� , �25�

where each L component is given by

Pjljk
�J� �t;L� = − �Ĝ�1��t;L�� jkjk

jljl , �26�

which from Eqs. �8�–�11� can be written as

Pjljk
�J� �t;L� = � jljk

�J,L���L��t;� jljk
� , �27�

and where � jljk

�J,L� is the L-static coupling factor,
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� jljk
�J,L� = − � jl jl 1

jk jk L
�C̄jljk

�L� �2
�−2�L

2

�2L + 1�
, �28�

while

��L��t;�� = �
−t

t

dt exp�i�t���L��t� �29�

is the L-dynamic time-dependent coupling function.
In a similar way, from Eqs. �24�, �7�, and �8� we obtain for

the time-dependent relaxation time

1

�TJ�t�� jk

= �
L=1

� � �
jn��jk�

� jkjn
�J2,L���L��t;� jkjn

� +
1

�TJ
�M��t�� jk

,

�30�

where � jnjk

�J2,L� is the L-static coupling factor

� jkjn
�J2,L� = �jk�−1�C̄jnjk

�L� �2
�−2�L

2

�2L + 1�
, �31�

defined in Ref. �12� for the L component of the time-
dependent transition rates

Pjkjn
�t;L� = � jkjn

�J2,L���L��t;� jkjn
� , �32�

while �TJ
�M��t�� jk

, which is given by

1

�TJ
�M��t�� jk

= �
L=2

�

� jk
�M,L���L��t;0� , �33�

and

� jk
�M,L� = �C̄jkjk

�L� �2
�−2�L

2

�2L + 1�

�jk�−1 + � jk jk 1

jk jk L
� �34�

is the time-dependent M-relaxation time, which is associated
to the pure reorientational �zero-frequency component of the
dynamics function �29�� relaxation processes of the angular
momentum. From the selection rules for the 3j symbols ap-
pearing in Eq. �34� it follows that only the even L compo-
nents of the anisotropic interaction contribute to the pure
orientational relaxation of the angular momentum.

By introducing the definition of the time-dependent rota-
tional lifetime �T1�t�� jk

given in Ref. �12�,

1

�T1�t�� jk

= �
jn��jk�

��
L=1

�

Pjkjn
�t;L� , �35�

we can write �see Eqs. �31� and �32�� the time-dependent
angular momentum relaxation time �30� as

1

�TJ�t�� jk

=
1

�T1�t�� jk

+
1

�TJ
�M��t�� jk

, �36�

an expression in which we can identify the elastic and the
inelastic contributions �15� to the angular momentum relax-
ation processes, that is, the contribution due to pure reorien-
tational relaxation and the contribution due to population re-
laxation or T1 processes, respectively.

From the properties of the 3j and 6j symbols appearing in
� jljk

�J,L� �Eq. �28��, it is easy to show that the L-static coupling
factor satisfies the symmetry relation

� jljk
�J,L� = � jkjl

�J,L�, �37�

while from Eqs. �28� and �31� we have

� jljk
�J,L� = � jljk

�L�� jljk
�J2,L�, �38�

where

� jljk
�L� = − �jl�� jl jl 1

jk jk L
 , �39�

which satisfies the symmetry relation

� jljk
�L� �jk� = �jl�� jkjl

�L� .

Then, by taking into account Eqs. �27� and �32� we obtain
the relation

Pjljk
�J� �t;L� = � jljk

�L� Pjljk
�t;L� , �40�

which shows the close connection between the transition
rates of the T1 processes �32� and the angular momentum
transfer rate �22�.

The rotational j levels coupled by the L-static factors �28�
are selected by the 3j and 6j symbols appearing in � jljk

�J,L�. For
the first two terms of the anisotropic interaction L=1,2 we
have the j-selection rules: jk= jl±L, while the corresponding
static factors are

� jljl+1
�J,1� = −

�−2�1
2

3
	 jl�jl + 2�

�2jl + 1��2jl + 3�
, �41�

� jljl+2
�J,2� =

�−2�2
2

5

− 3

2�2jl + 3�
	 jl�jl + 1��jl + 2��jl + 3�

�2jl + 1��2jl + 5�
,

�42�

the remaining L-static factors can be obtained from the sym-
metry relation �37�. On the other hand, the j dependence of
the L=1,2 components of the time-dependent relaxation
time �30� can be obtained from both the explicit form of the

coupling factors � jljl±L
�J2,L� given in Ref. �12� �Eqs. �32�–�34��,

and the L=2 factor �34�,

� jl
�M,2� =

�−2�2
2

5

3

�2jl + 3��2jl − 1�
, �43�

which determines the first L-anisotropic contribution to the
pure orientational angular momentum processes.

As in previous works �10,12�, we have considered an ex-
ponential decay function

�r
�L��t� = exp�− t/tC;L� , �44�

for the real part of the L-correlation function ��L��t�, where
tC;L is the correlation time for the L-anisotropic interaction.
The imaginary part �i

�L��t� was determined by following the
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method proposed in Ref. �17�, where the relation between the
Fourier transforms of the real �r

�L��t� and the imaginary
�i

�L��t� parts of an equilibrium correlation function

�i
�L���� = − i tanh
���

2
��r

�L���� �45�

is used to calculate the imaginary part �i
�L��t�, that is,

�i
�L��t� = u�t��

n=0

� � 4�

�2 − �2n + 1�2�2�exp
−
�t�

tC;L
�

− exp
−
�2n + 1��

��
�t��� , �46�

with u�t�=1, if t�0, u�t�=−1 if t�0, u�0�=0, and �
=��tC;L

−1 .

VI. MARKOVIAN LIMIT

A. Long time limit

When the Fourier transforms ��L����=lim ��L��t→� ;��
of the L-anisotropic components correlation function ��L��t�
are well defined �Eq. �29��, the time-dependent transfer rates
�25� and �27� and the time-dependent relaxation times �30�
and �33� converge in the long time limit towards their usual
time-independent form,

Pjljk
�J� = lim

t→�
Pjljk

�J� �t� = �
L=1

�

Pjljk
�J� �L� = �

L=1

�

� jljk
�J,L���L��� jljk

� ,

�47�

1

�TJ� jk

= lim
t→�

1

�TJ�t�� jk

= �
L=1

� � �
jn��jk�

� jkjn
�J2,L���L��� jkjn

�
+ �

L=2

�

� jk
�M,L���L��0� . �48�

Alternatively, by combining Eq. �6� and Eqs. �23� and �24�,
the above equations can be deduced from the more general
relations,

Pjljk
�J� = − �R̂�1�� jkjk

jljl = − lim
t→�

�Ĝ�1��t�� jkjk

jljl , �49�

1

�TJ� jk

= �R̂�1�� jkjk

jkjk = lim
t→�

�Ĝ�1��t�� jkjk

jkjk. �50�

On the other hand, by taking the limit process in Eqs.
�32�–�36� we obtain

1

�TJ� jk

=
1

�T1� jk

+
1

�TJ
�M�� jk

, �51�

where �TJ
�M�� jk

is given by

1

�TJ
�M�� jk

= �
L=2

�

� jk
�M,L���L��0� , �52�

while �T1� jk
is given by Eqs. �40� and �43� of Ref. �12�.

From Eqs. �45� and �47� it can be deduced that the L
component of the angular transfer rate is given by

Pjljk
�J� �L� = � jljk

�J,L��r
�L��� jljk

��1 + tanh
��� jljk

2
� , �53�

then, due to the symmetry of both the L-static coupling factor
�37� and the function �r

�L����=�r
�L��−�� ��r

�L��t� is an even
function of t� we obtain

Pjljk
�J� �L� = Pjkjl

�J� �L�exp���� jljk
� , �54�

which is the detailed balance condition for the angular trans-
fer rates.

By combining Eqs. �49� and �50� and �23� and �24�, it
follows that the long time limit of the master equations �22�
are

d

dt
CJ�t, jk�0, ji� = − �TJ� jk

−1CJ�t, jk�0, ji� + �
jl��jk�

Pjljk
�J� CJ�t, jl�0, ji� ,

�55�

which are the Markovian evolution equations for the two-
time j-level angular momentum correlation components �18�.

B. Exponential representation

In the Markovian limit, the binary time autocorrelation
function of the angular momentum �20� can be written in an
alternative form. By introducing the set of functions

Cjk
�t� = �J��0�2�−1�

ji

CJ�t, jk�0, ji��ji�J�ji�� ji
0 , �56�

which are the components of the column vector C�t�, by
collecting J to the elements �jk�J�jk�, we can write the binary
time autocorrelation function �20� as

CJ�t� = J · C�t� . �57�

From Eqs. �55� and �56� it follows that C�t� satisfies the
time evolution equation

�C�t�
�t

= − R�J�C�t� , �58�

where the elements of the matrix R�J� are given by Rjkjk

�J�

= �TJ� jk
−1 and Rjkjl

�J� =−Pjljk

�J� , while the initial conditions are �see

Eqs. �19� and �56�� Cjk
�0�= ��J��0�2��−1�jk�J�jk�� jk

0 .
As the eigenvectors Y� of the matrix R�J�, R�J�Y�

=��Y�, form a basis of the vector space generated by the
solutions of Eq. �58�, the time dependence of C�t� can be
written as

C�t� = �
�

C� exp�− ��t�Y�, �59�

where C� are the coefficients of C�0� in the Y� basis.
By substituting Eq. �59� into Eq. �57� it follows that the

angular momentum correlation function can be written as
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CJ�t� = �
�

W� exp�− ��t� , �60�

where the real part of �� defines the exponential decay times

T�
�J� = �Re�����−1, �61�

while

W� = C�J · Y� �62�

gives the weight of each exponential term. From the normal-
ization of CJ�t� �CJ�0�=1� it follows J ·C�0�=1, and there-
fore

�
�

W� = 1. �63�

Finally, from the definition for the correlation time �17�
we have


J = �
�

W�T�
�J�, �64�

so the Markovian correlation time 
J results from averaging
the exponential decay times �61� over the exponential ampli-
tudes �62�.

VII. ANGULAR MOMENTUM RELAXATION OF HCl IN
LIQUID SF6

We apply the present theory to the study of the angular
momentum relaxation processes of HCl diluted in liquid SF6
at T=293 K, a system for which the infrared and Raman

spectra were calculated and compared with the available ex-
perimental data �10,11�, and for which the rotational energy
relaxation processes, or T1 processes, were also studied �12�.
We have performed all the calculation of this application
taking the value of the rotational constant B0=10.44 cm−1

and using the statistical parameters of the anisotropic inter-
action for L=1,2: �̄1

2=73.95, �̄2
2=38.58, tC;1=0.091 ps, tC;2

=0.097 ps, which were obtained by using a microscopic cell
model for the liquid �10�.

In Fig. 1 we have represented the angular momentum cor-
relation function CJ�t� together with the first seven two-time
j-level angular momentum correlation components
CJ�t , j �0, j� �j=1–7� of HCl in SF6. Both CJ�t , j �0, j� and
CJ�t� were obtained by solving numerically the non-
Markovian differential equations �22� with the j-quantum
numbers truncated at jmax=20. As it can be appreciated, the
time correlation function CJ�t� presents a simple decay be-
havior with a correlation time �17� of 
J=0.512 ps, which is
shorter than the rotational energy correlation time �12� 
E
=2.85 ps, being the angular momentum relaxation of HCl in
SF6 is clearly more rapid than the rotational energy relax-
ation �compare Fig. 1 of this paper with Fig. 1 of Ref. �12��.
The first two-time j-level components CJ�t , j �0, j� also
present a simple decay behavior; however, for high j values
the two-time components show a region of inflection at t
�0.1–0.2 ps, the same effect was observed in the condi-
tional probabilities of the energy relaxation processes �12�.
In Fig. 1 it is shown as the two-time functions CJ�t , j �0, j�
decay more slowly as the j-quantum number increases its
value, this behavior being confirmed by the values of the
angular momentum relaxation times 
 j �21� collected in
Table I �j=1–8� and plotted in Fig. 2, which are in the
subpicosecond time scale, and they are shown to increase
systematically with the j-quantum number.

In Table I we have also collected the Markovian values of
the relaxation times 
 j

M �21�, which are not very different
from the non-Markovian ones, indicating this fact that the
memory effects must be small in the angular momentum re-
laxation. In fact, the effective area of the difference between
the Markovian and the non-Markovian functions CJ�t� only
represents 3% of the correlation time 
J �the area of CJ�t��.
These effects are more pronounced in the first stage of the
relaxation, where as it is shown in Fig. 3 the inverse of the
time-dependent relaxation time �TJ�t�� j �Eq. �30�� presents a
transient oscillating behavior that converges to the stationary
regime approximately at t�0.4 ps. The same behavior can
be observed in the L components of the angular momentum
transfer rates Pjj±1

�J� �t ;1� and Pjj±2
�J� �t ;2�. Thus, those compo-

TABLE I. Relaxation times �in ps� for HCl in liquid SF6.

j /� 1 2 3 4 5 6 7 8


 j 0.093 0.114 0.140 0.180 0.234 0.307 0.397 0.501


 j
M 0.064 0.100 0.145 0.202 0.272 0.355 0.451 0.560

�TJ� j 0.061 0.091 0.129 0.179 0.242 0.318 0.405 0.506

�TJ
�M�� j 0.289 1.213 2.600 4.448 6.759 9.532 12.768 16.465

T�
�J� 0.058 0.089 0.131 0.185 0.250 0.329 0.420 0.524

FIG. 1. The time correlation function of angular momentum
�solid line� and the first seven two-time j-level correlation compo-
nents CJ�t , j �0, j� of HCl in liquid SF6.
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nents CJ�t , j �0, j� of the correlation function CJ�t�, which
relaxes more rapidly, will be more affected by the non-
Markovian effects than the slower ones. In fact, while the
effective area of the difference between the Markovian and
the non-Markovian functions CJ�t ,1 �0,1� represents 43% of

1 �the area of CJ�t ,1 �0,1��, the effective area of the differ-
ence for CJ�t ,8 �0,8� only represents 11% of 
8.

In Table I and in Fig. 2 it can be appreciated as the angu-
lar momentum relaxation times 
 j �Eq. �21�� and �TJ� j �Eq.
�50�� take similar values for the first j-quantum numbers, a
fact that contrasts with the results obtained for the analogous
times of the energy relaxation processes �see Eqs. �21� and
�25�, and Fig. 2 of Ref. �12��. On the other hand, in Table I it
can be also observed the main contributions to the relaxation
times �TJ� j come from the rotational energy relaxation con-
tributions �the first term of Eq. �51��. In this table we can
observe the values of the M-relaxation times �TJ

�M�� j, which
are generated by the L=2 anisotropic interaction term, are
much larger than the corresponding energy relaxation times
�T1� j, reaching values of several picoseconds with increasing
j.

In Fig. 4 we have represented the first angular momentum
relaxation times 
 j �Eq. �21��, together with the energy relax-
ation times 
 j

E �Eq. �21� of Ref. �12��, the dephasing times
associated to the rotational absorption R-branch 
1;R;j

0-0 , to the
rotational Q-dispersion branch 
2;Q;j

0-0 and to the rotational

S-dispersion branch 
2;S;j
0-0 �10�. As it can be appreciated, the

angular momentum times 
 j present values comparable to the
energy relaxation times 
 j

E and to the rotational dephasing
times, being 
 j the smaller ones unless for the j=1,2 values
of 
2;Q;1

0-0 and 
2;Q;2
0-0 . A similar situation can be observed in

Fig. 5, where the plotted values of 
 j are comparable and
smaller �again unless for j=1,2� to the vibrorotational
dephasing times of both the anisotropic S-dispersion branch

2;S;j

1-0 and the anisotropic Q-branch 
2;Q;j
1-0 . Also the relaxation

times of the angular momentum 
 j remain comparable to the
dephasing times of the isotropic Q-branch 
0;Q;j

1-0 , however,
the values of the last ones are clearly greater for the first
values of the j-quantum numbers number. In this way, the
angular momentum relaxation of the first j levels proceeds
more rapidly than their energy relaxation, or the dephasing
processes involved in the infrared and Raman spectra.

As the time correlation function CJ�t� is essentially Mar-
kovian, we can describe the angular momentum relaxation
by means of the exponential decay times T�

�J� �Eq. �61�� and
their respective weights W� �Eq. �62��. With such a purpose
we have calculated the eigenvalues and the eigenvectors of
the R�J� matrix �see the equations following Eq. �58��, taking
for its representation the maximum of the j-quantum number

FIG. 2. Relaxation times of HCl in SF6: 
 j �squares� and �TJ� j

�circles�.

FIG. 3. Inverse of the time-dependent relaxation times �TJ�t�� j

�in ps−1� of HCl in liquid SF6.

FIG. 4. Relaxation times 
 j �squares�, rotational energy lifetimes

 j

E �circles�, and rotational dephasing times of HCl in SF6: 
1;R;j
0-0 �up

triangles�, 
2;Q;j
0-0 �down triangles�, 
2;S;j

0-0 �rhombus�.

FIG. 5. Relaxation times 
 j �squares� and vibrorotational
dephasing times of HCl in SF6: 
2;S;j

1-0 �circles�, 
2;Q;j
1-0 �up triangles�,


0;Q;j
1-0 �down triangles�.
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jmax=30. The first values of the exponential times T�
�J� are

shown in Table I, where it can be noted as T�
�J� present simi-

lar values to the first relaxation times 
 j �Eq. �21�� and �TJ� j

�Eq. �30��. In Fig. 6 we can observe the similitude between
the exponential times T�

�J� and the relaxation times �TJ� j over
a longer range of � / j. However, as it was previously ob-
served for the energy relaxation processes �12�, it is conve-
nient to take into account that there exists a clear discrepancy
between the weights W� and the thermal populations �j�� j

0.
Figure 6 shows the displacement of the weights W� from the
thermal populations �j�� j

0 toward high j /� values. While the
maximum of �j�� j

0 is located at j=3, with a representative
relaxation time of �TJ�3=0.129 ps, the maximum of W� is
located at �=7, increasing the representative times to values
close to T7

�J�=0.420 ps, which is in accord with a global cor-
relation time of 
J=0.512 ps �see Eq. �64��.

VIII. SUMMARY AND CONCLUSIONS

We have developed a non-Markovian theory for the angu-
lar momentum relaxation of a heteronuclear diatomic mol-
ecule immersed in a nonpolar fluid. This theory has been
deduced from a more general non-Markovian formalism for
the diatomic vibrorotational relaxation, which was previ-
ously applied to the study of the infrared and Raman spectra,
and also to the analysis of the rotational energy relaxation.
With this procedure, we have settled an interesting connec-
tion between the angular momentum processes and both the
infrared and Raman spectroscopy, and the T1 processes.

The theory has been focused on the binary time correla-
tion function of the diatomic angular momentum, which was
expressed in terms of the so-called two-time j-level angular
momentum correlation components �18�, giving these com-
ponents a measure of the angular momentum correlation be-
tween two particular j-levels at two different times. We have
deduced non-Markovian time evolution equations for the
two-time j-level correlation components, whose coefficients
define the time-dependent angular momentum transfer rates
and the time-dependent angular momentum relaxation times,
both expressed as the additive contributions determined by

the two-time correlation functions of the different orders of
the anisotropic interaction. We have analyzed the Markovian
long time limit, obtaining a detailed balance condition for the
angular transfer rates when the time correlation functions of
the anisotropic interaction are appropriate quantum func-
tions.

Three new alternative time scales for the angular momen-
tum relaxation have been introduced in this work: �i� The
angular momentum relaxation times 
 j, which give a mea-
sure of the decay scale of the two-time j-level correlation
components CJ�t , j �0, j�. �ii� The relaxation times �TJ� j given
by the long time limit of the time-dependent angular momen-
tum relaxation times, obtained from the coefficients of the
Markovian evolution equations. �iii� The exponential decay
times T�

�J�, which allows one to write the Markovian correla-
tion function CJ�t� as a weighted superposition of exponen-
tial decay terms.

The theory has been applied to the study of the angular
momentum relaxation of HCl diluted in liquid SF6 at T
=293 K. We have calculated and analyzed both the non-
Markovian and the Markovian two-time j-level correlation
components and the corresponding angular momentum cor-
relation functions. We found that the angular momentum re-
laxation proceeds on the whole in the subpicosecond time
scale �
J=0.512 ps�, being clearly more rapid than the en-
ergy relaxation processes �
E=2.85 ps�. Additionally, the an-
gular momentum relaxation takes place more slowly when
the j-quantum number is increased, a behavior also observed
in the energy relaxation processes and in the infrared and
Raman dephasing processes. The non-Markovian effects
were observed non-negligible only at very short times,
mainly affecting the lower j levels, those with the shorter
relaxation times.

The relaxation times 
 j of the angular momentum of HCl
present comparable values to those dephasing times associ-
ated to both pure rotational and vibrorotational Raman and
infrared spectroscopy. Only the isotropic Raman dephasing
times and the rotational energy relaxation times 
 j

E are
clearly greater than the angular momentum relaxation times.
Also, we have compared the values of the three types of
j-level relaxation times introduced in this work. We have
found that for the HCl in SF6, 
 j, �TJ� j, and T�

�J� also present
comparable values �when they are ordered in the same in-
creasing order�. However, like in the previous work on en-
ergy relaxation �12�, the exponential weights W� differ
clearly from the thermal populations �j�� j

0, being the maxi-
mum of the distribution W� shifted to higher decay times
T�

�J�.
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FIG. 6. Exponential decay times T�
�J� �squares� and relaxation

times �TJ� j �circles� of HCl in SF6 together with the exponential
weights W� �up triangles� and the thermal populations �j�� j

0 �down
triangles�. Time values in ps.
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