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Relaxation of rotational angular momentum of polar diatomic molecules in simple liquids
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The relaxation processes of rotational angular momentum of polar diatomic molecules diluted in simple
liquids are analyzed by applying a non-Markovian relaxation theory to the study of the binary time autocor-
relation function of the angular momentum. This non-Markovian theory was previously applied to the study of
the infrared and Raman spectroscopy, and also to the analysis of the rotational energy relaxation processes. We
have obtained non-Markovian evolution equations for the two-time j-level angular momentum correlation
components involved in the angular momentum correlation function. In these equations, the time-dependent
angular momentum transfer rates and the pure orientational angular transfer rates are given in terms of the
binary time autocorrelation function of the diatomic-solvent anisotropic interaction. The non-Markovian evo-
lution equations converge to Markovian ones in the long time limit, reaching the angular momentum transfer
rates in the usual time-independent form. Alternative time scales for the angular relaxation processes, relative
to the individual rotational processes as well as to the global decay correlations, are introduced and analyzed.
The theory is applied to the study of the angular momentum relaxation processes of HCI diluted in liquid SF,
a system for which rotational energy relaxation and infrared and Raman spectroscopy was previously analyzed

in the scope of the same theory.

DOI: 10.1103/PhysRevA.75.032501

I. INTRODUCTION

The study of the angular momentum relaxation processes
and the analysis of the orientational correlation functions has
contributed significantly to the understanding of the molecu-
lar dynamics in condensed phases [1-5]. However, while for
the molecular orientational processes we can obtain direct
experimental data from the infrared and Raman spectra, for
the angular momentum relaxation we must appeal to indirect
procedures which often only give a partial representation of
these processes.

The angular momentum correlation time and the orienta-
tional correlation time are connected by the so-called Hub-
bard relation [1,5], so when the orientational times can be
estimated from the infrared and Raman data, the Hubbard
relation gives an indirect measure of the angular correlation
time. Furthermore, when the spin-rotation coupling is the
dominant nuclear-spin relaxation channel, the angular corre-
lation time can be indirectly estimated from the experimental
NMR data [4-6]. The connection between the short time
behavior of the angular momentum correlation function and
the absorption shape in the far wings provides interesting
information about the angular momentum relaxation pro-
cesses [2,3]. Moreover, the femtosecond pump-probe LIF
measurements give valuable information about the progres-
sive effect of the solvent friction on the rotational motion of
solute molecules in liquid solvents, a molecular process
closely related to the time fluctuations of the angular mo-
mentum [7].

Though all the above experimental methods are certainly
very useful, they present some limitations in order to provide
a complete description of the angular momentum relaxation
processes, particularly for light diatomic molecules in liquid
phase [8]. In this work we present a quantum non-Markovian
theory for the autocorrelation function of the angular mo-
mentum of a heteronuclear diatomic molecule immersed in a
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nonpolar liquid. This theory has been deduced from a more
general framework for the diatomic vibrorotational relax-
ation that was previously applied to the study of the infrared
and Raman spectra [9], and also to the energy relaxation
processes [12], providing, in this way, a consistent connec-
tion with the experimental spectral data [10,11].

In this theory the binary time autocorrelation function of
the angular momentum has been written in terms of the two-
time j-level angular momentum correlation components,
functions which give a measure of the individual angular
correlation of each j level at present time with the initially
assumed j-level of the diatomic. We have deduced non-
Markovian master equations for the two-time j-level angular
components in which the angular momentum transfer rates
are given, in terms of the binary time autocorrelation func-
tion of the diatomic-solvent anisotropic interaction. This
non-Markovian evolution equation converges for long times
(LTL) toward the Markovian limit, where the angular trans-
fer rates reach the usual time-independent form. We have
introduced different time scales for the angular momentum
relaxation processes which have been discussed and com-
paratively analyzed.

The structure of this paper is as follows. In Sec. II we
summarized the theoretical relations of the general theory. In
Sec. III we introduce the binary time autocorrelation function
of the angular momentum in terms of the two-time j-level
angular correlation components. In Sec. IV we deduce the
non-Markovian evolution equations for the two-time j-level
angular correlation components. In Sec. V we study the
properties of the angular momentum transfer rates. In Sec.
VI we analyze the LTL and the exponential decay represen-
tation for its angular momentum correlation function. In Sec.
VII we apply the theory to the study of the angular momen-
tum processes of HCI diluted in liquid SFg. Finally, in Sec.
VIII we present a brief summary and some conclusions.
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II. THEORETICAL BACKGROUND

In the scope of the analysis of diluted solutions of di-
atomic polar molecules in a dense nonpolar fluid a theoreti-
cal approach [9] has been recently developed to calculate the
autocorrelation function,

K
Cx(0) =(DX() - DXy = X (- NUDF (DR ),

q=—K
(1)

for an irreducible tensor D& of rank K, such as the perma-
nent dipole moment or the polarizability of the solute mol-
ecule. According to the noninitial correlation hypothesis [9]
and assuming that the diatomic is in its vibrational ground
state, the correlation function Cg(7) can be written as
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where |jm) are the usual rotor eigenstates, Try is the partial
trace over the bath coordinates (those of the solvent and the
solute molecules, except the solute vibration-rotation), pg is
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the equilibrium density operator of the bath, and L is the
Liouville superoperator of the total system. The time evolu-
tion of the RES can be deduced by using the Kubo cumulant
expansion method [9,12,13] with a partial time-ordering cu-
mulant prescription (PTOC) leading to the following master
equation for the K-rank matrix elements of the RES [12],
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where w;;, are the rotational transition frequencies and

[G(K)(t)]%k’ are the K-rank irreducible matrix elements of the
PTOC relaxation superoperator. The Markovian limit, which
holds when the temporal scales of the vibrorotational pro-
cesses are large compared with those associated to the fluc-
tuations of the solute-solvent interaction, is characterized by

the Markovian relaxation superoperator R [9], whose K-rank
irreducible matrix elements are given by
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which are the long time limit of the PTOC matrix elements.

The particular form of the relaxation matrix depends upon
the model adopted for the vibrorotation bath interaction. As
usual [9,12,14,15] here we assume that the anisotropic inter-
action Hamiltonian is a sum of effective binary potentials,
each one expanded in Legendre polynomial P;. With this
assumption the PTOC relaxation matrix can be written as
additive L contribution in the following form [see Egs. (8)-
(12) of Ref. [12]]:

[mmWrEUﬂwLWn (7)
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where the anisotropic components (L>0) are given by
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In these equations )\ accounts for the strength of the inter-
action and qﬁ(L)(t) is a normalized time autocorrelation func-
tion [¢“)(0)=1], which collects all the temporal dependence
of the L-anisotropic interaction component. Both )\2 and
@D (1) can be calculated by appropriate liquid models by
molecular dynamics simulations, or by fitting between theo-
retical and experimental spectral results.

III. ANGULAR MOMENTUM CORRELATION FUNCTION

The relaxation processes of the angular momentum will
be described by means of the binary time autocorrelation
function

C(1) = (IO 4T @) - J(0))), (12)

where J is the intrinsic angular momentum of the diatomic.
The angular momentum is a tensor of rank K=1 whose
spherical components J, are given in the irreducible tensor
basis (3) by [16]
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where (jllJIj) are the reduced matrix elements
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being Aj=0 its j-selection rule. Therefore, from Eq. (2) we
obtain that the correlation function (12) can be approximated
by the expression

Co) = (OP) " Z 2 o) GGl O e, 00

Ji
(15)

where

(WO =Tr{ 0% = 3 o)j( + DA (16)

is the equilibrium average of the square angular momentum.
We introduce the correlation time associate to C,(r) [Eq.
(15)] in the usual form

TJ:JOCdtCJ(Z), (17)
0

which gives a measure of the global time scale for the relax-
ation processes of the angular momentum.

We define the two-time j-level angular momentum corre-
lation components in terms of the irreducible matrix ele-
ments of the RES

C(t,jil0.ji) = (UM (2, 0))7 (18)
which give a measure of the angular momentum correlation
between the single j, level at time 1>0 and the assumed
initial (#=0) j; level of the diatomic. Due to the initial con-
ditions of the RES (5), the two-time j-level angular momen-
tum components satisfy the property

CJ(O’Jk

so the autocorrelation function C(r, j,-|0, Ji) gives informa-
tion about the lifetime of the angular momentum in the
single j; level, while the cross-correlation functions
Cy(,ji|0,j;) (i #j;) give information about the angular mo-
mentum transfer processes between different j levels.

In terms of the two-time j-level angular momentum com-
ponents (18) the time correlation function of the angular mo-
mentum (15) can be written as

C(0) = (O X Gl Coltie

Ji Jk

0.7,
(20)

where C,(1) results of the average effect produced by all the
Jj-level pairs of the angular momentum connected by the two-
time j-level components. Associated to each j level we de-
fine an angular momentum relaxation time as
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0

which gives a selective measure of the relaxation time scale
for the angular momentum in each j level. Then, focusing
our attention in the binary time autocorrelation function
C,(1), the detailed description of the angular momentum re-
laxation processes has been regarded to the knowledge of the
two-time j-level angular momentum components (18).

IV. NON-MARKOVIAN TIME EVOLUTION EQUATIONS

The time evolution equations for the two-time j-level an-
gular momentum correlation components C,(z,j,|0.,j;) [Eq.
(18)] can be obtained from the non-Markovian equations (4)
by selecting the K=1 rank and the j-selection rule Aj=0.
Thus, taking into account that the Aj=0 transition has even
parity, that the remainder allowed K=1 transitions Aj==+1
have odd parity, and that the reduced matrix elements of the
PTOC superoperators (7) and (8) do not mix j transitions of
different parity, we obtain the evolution equations

ic,(wk 0.j) ==[T,(0];, 'C)(t,j:]0.j;)

+ 2 PROCL

Ji(#j)

0.j), (22

where ij)k(t) are the time-dependent angular momentum
transfer rate

[G l)(t)]fm

7 (1) = i (23)

while [7)(#)]; is the time-dependent angular momentum re-
laxation time of the j, level

=[GW () Pk
[Tj(t)]jk [ (t)]ijk

which gives a measure of the transient time scales associated
to the angular momentum relaxation in each j level.

(24)

V. ANGULAR MOMENTUM TRANSFER RATES

From Egs. (7), (8), and (23) it is deduced that the angular
momentum transfer rates can be written as the additive con-
tributions due to the L-anisotropic components of the inter-
action

PY) (1) = LE Py (131, (25)
where each L component is given by
P (L) = =[GV (LT, (26)
which from Egs. (8)—(11) can be written as
PO (1:0) = 0D 01wy ). 27)

and where ®§1J/:) is the L-static coupling factor,
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is the L-dynamic time-dependent coupling function.
In a similar way, from Egs. (24), (7), and (8) we obtain for
the time-dependent relaxation time

- 1
(J L) -
[TJ(t)],k g{f%w Il #oo i }+[T§M)(t)]jk’

(30)
2
where ®;:j:‘) is the L-static coupling factor
ﬁ—Z)\Z
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defined in Ref. [12] for the L component of the time-
dependent transition rates

(1:0) =0V (1w, ;). (32)

J W Jidn

while [T(JM) (t)]jk, which is given by

W = L22 0" g1 (1;0), (33)

N 2 Je Jr 1 )
2 1
=|Ci1] oL+ ([zk] {Jk i L} (34)

is the time-dependent M-relaxation time, which is associated
to the pure reorientational [zero-frequency component of the
dynamics function (29)] relaxation processes of the angular
momentum. From the selection rules for the 3 symbols ap-
pearing in Eq. (34) it follows that only the even L compo-
nents of the anisotropic interaction contribute to the pure
orientational relaxation of the angular momentum.

By introducing the definition of the time-dependent rota-
tional lifetime [7'(1)] j, given in Ref. [12],

and

.(M L) _

[Tl(f)],k_jngjk) zpjkjn(IZL) , (35)

we can write [see Egs. (31) and (32)] the time-dependent
angular momentum relaxation time (30) as

1 1 1
(2,01, (101, 101,

an expression in which we can identify the elastic and the
inelastic contributions [15] to the angular momentum relax-
ation processes, that is, the contribution due to pure reorien-
tational relaxation and the contribution due to population re-
laxation or T processes, respectively.

(36)
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From the properties of the 3j and 6 symbols appearing in
@ﬁljjkL) [Eq. (28)], it is easy to show that the L-static coupling
factor satisfies the symmetry relation

(.L) _ @W.L)
0, =05;", (37)

while from Egs. (28) and (31) we have

(L) _ oL @UiL
®szk J[Jk®]1]k ’ (38)
where
Jiogi 1
=—Dz]{ }, (39)
jl]k Ji Jk L

which satisfies the symmetry relation
oW ()
0, Lid=1i10;;.
Then, by taking into account Egs. (27) and (32) we obtain
the relation

() (L)
Plllk(t L) ®/1/kplllk

(t;L), (40)

which shows the close connection between the transition
rates of the T, processes (32) and the angular momentum
transfer rate (22).

The rotational j levels coupled by the L-static factors (28)
are selected by the 3j and 6j symbols appearing in @EIJ]kL) For
the first two terms of the anisotropic interaction L=1,2 we
have the j-selection rules: j,=j;=L, while the corresponding
static factors are

Qv =_ﬁ_2)\% | ali+2) @1)
Tt 3V (2j+DQ2j;+3)]

QU = AN -3 \/jl(fz +1)(j;+2)(j; +3)
W5 2(2),+3) (2j;+ 1)(2j,+5)

(42)

the remaining L-static factors can be obtained from the sym-
metry relation (37). On the other hand, the j dependence of
the L=1,2 components of the time-dependent relaxation
time (30) can be obtained from both the explicit form of the

coupling factors ®“+L given in Ref. [12] [Egs. (32)-(34)],
and the L=2 factor (34)
A2\ 3

oW = : 43
& 5 (2j+3)(2),-1) (439

which determines the first L-anisotropic contribution to the
pure orientational angular momentum processes.

As in previous works [10,12], we have considered an ex-
ponential decay function

(1) = exp(=tltcy), (44)

for the real part of the L-correlation function ¢(L)(t) where
tc is the correlation tlme for the L-anisotropic interaction.
The imaginary part qS /(1) was determined by following the
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method proposed in Ref. [17], where the relation between the
Fourier transforms of the real d) (t) and the imaginary
d)(L () parts of an equilibrium correlation function

A (w)=—i tanh(%)@%) (45)
is used to calculate the imaginary part gbgL)(t), that is,
@ L{ (_ ﬂ)
¢ (1= u(t)z { 7-Q P\ e
—exp( (2”+1)7T| |)” (46)

with u(r)=1,
=phic;.

if t>0, u(r)=-1 if <0, u(0)=0, and 7y

VI. MARKOVIAN LIMIT
A. Long time limit

When the Fourier transforms ¢”(w)=1im ¢'Y(1— %; w)
of the L-anisotropic components correlation function ¢“) ()
are well defined [Eq. (29)], the time-dependent transfer rates
(25) and (27) and the time-dependent relaxation times (30)
and (33) converge in the long time limit towards their usual
time-independent form,

PY) = lim P(J) ()= E PY) (L) = 2 0" (o Jllk)

W 4 =ik i
(47)
1 ee]
=lim =>1> @ViL O, )
(T‘/)jk t—x [TJ( )]jk I=1 {j" #jk) Jiln ¢ Jidn

Alternatively, by combining Eq. (6) and Egs. (23) and (24),
the above equations can be deduced from the more general
relations,

(J) PO\ — _ 13 A(1) ;s
Fiie== W == il RO @)
=(R (1))Jk/k = hm[G(l)(t)]j’“/k (50)

@), W

On the other hand, by taking the limit process in Eqgs.
(32)-(36) we obtain

| | 5
(1), (T)), ﬂM))
where (T(JM)) j, i given by
5 O 1), (52)

T(M)) L=2

while (Tl).ik is given by Egs. (40) and (43) of Ref. [12].
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From Egs. (45) and (47) it can be deduced that the L
component of the angular transfer rate is given by

Bho, ;
() (J,L) 4(L) Jik
,,J,k( )= G)szk ¢L( J[J){1+tanh<—2 )} (53)

then, due to the symmetry of both the L-static coupling factor
(37) and the function ¢£L)(w)=¢(rL)(—w) (qb(rL)(t) is an even
function of 7) we obtain

PY) (L) = P(J) (L)exp(Bhie

Jik

;) (54)
which is the detailed balance condition for the angular trans-
fer rates.

By combining Egs. (49) and (50) and (23) and (24), it
follows that the long time limit of the master equations (22)
are

’]1) + 2 P(J) CJ(t .]l
Ji(#ji)

d
d_tCJ(tsjkOsji) -(Ty);, CJ(f]k 0.:),
(55)

which are the Markovian evolution equations for the two-
time j-level angular momentum correlation components (18).

B. Exponential representation

In the Markovian limit, the binary time autocorrelation
function of the angular momentum (20) can be written in an
alternative form. By introducing the set of functions

0’ji)<.ji||']||ji>0'(‘)i’

C;, (1) = OV X Cyle.ji (56)
Ji

which are the components of the column vector C(z), by

collecting J to the elements {j,||/||j,), we can write the binary

time autocorrelation function (20) as
C)(t)=J-C(r). (57)
From Egs. (55) and (56) it follows that C(r) satisfies the
time evolution equation

aC(t)

-RY'C(:
p (1),

(58)

are given by REZJ)k

where the elements of the matrix RV

=(T,)7! and RY) = P(J) while the initial conditions are [see
o Jii

Egs. (19) and (56)] C (0) (J(0)») Gy,

As the eigenvectors Y, of the matrix R R R(J)Ya
=v,Y, form a basis of the vector space generated by the
solutions of Eq. (58), the time dependence of C(f) can be
written as

C(1) =2 Coexpl= Vo) Yo, (59)

where C,, are the coefficients of C(0) in the Y, basis.
By substituting Eq. (59) into Eq. (57) it follows that the
angular momentum correlation function can be written as
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FIG. 1. The time correlation function of angular momentum
(solid line) and the first seven two-time j-level correlation compo-
nents Cy(¢,7|0,7) of HCI in liquid SFg.

CJ(t) = 2 Wuz eXP(_ ’YOJ)’ (60)

where the real part of vy, defines the exponential decay times
T = Re{y}) ™, (61)
while

We= CaJ : Ya (62)

gives the weight of each exponential term. From the normal-
ization of C,(r) [C,(0)=1] it follows J-C(0)=1, and there-
fore

> W,=1. (63)
Finally, from the definition for the correlation time (17)
we have

J
7= E WaT‘(g)’ (64)
a
so the Markovian correlation time 7; results from averaging

the exponential decay times (61) over the exponential ampli-
tudes (62).

VIL. ANGULAR MOMENTUM RELAXATION OF HCI IN
LIQUID SF,

We apply the present theory to the study of the angular
momentum relaxation processes of HCI diluted in liquid SFg
at T=293 K, a system for which the infrared and Raman
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spectra were calculated and compared with the available ex-
perimental data [10,11], and for which the rotational energy
relaxation processes, or T, processes, were also studied [12].
We have performed all the calculation of this application
taking the value of the rotational constant By=10.44 cm™!
and using the statistical parameters of the anisotropic inter-
action for L=1,2: \{=73.95, \3=38.58, 1¢.,=0.091 ps, #¢.,
=0.097 ps, which were obtained by using a microscopic cell
model for the liquid [10].

In Fig. 1 we have represented the angular momentum cor-
relation function C,(z) together with the first seven two-time
j-level angular momentum correlation components
C,(t,7]0,j) (j=1-7) of HCI in SF,. Both C,(z,/|0,/) and
C,(r) were obtained by solving numerically the non-
Markovian differential equations (22) with the j-quantum
numbers truncated at j,,=20. As it can be appreciated, the
time correlation function C,(¢) presents a simple decay be-
havior with a correlation time (17) of 7,=0.512 ps, which is
shorter than the rotational energy correlation time [12] 75
=2.85 ps, being the angular momentum relaxation of HCI in
SFg is clearly more rapid than the rotational energy relax-
ation (compare Fig. 1 of this paper with Fig. 1 of Ref. [12]).
The first two-time j-level components C,(z,j|0,j) also
present a simple decay behavior; however, for high j values
the two-time components show a region of inflection at ¢
~0.1-0.2 ps, the same effect was observed in the condi-
tional probabilities of the energy relaxation processes [12].
In Fig. 1 it is shown as the two-time functions C,(z,;|0,)
decay more slowly as the j-quantum number increases its
value, this behavior being confirmed by the values of the
angular momentum relaxation times 7; (21) collected in
Table T (j=1-8) and plotted in Fig. 2, which are in the
subpicosecond time scale, and they are shown to increase
systematically with the j-quantum number.

In Table I we have also collected the Markovian values of
the relaxation times 7?" (21), which are not very different
from the non-Markovian ones, indicating this fact that the
memory effects must be small in the angular momentum re-
laxation. In fact, the effective area of the difference between
the Markovian and the non-Markovian functions C,(¢) only
represents 3% of the correlation time 7; [the area of C,()].
These effects are more pronounced in the first stage of the
relaxation, where as it is shown in Fig. 3 the inverse of the
time-dependent relaxation time [7)(¢)]; [Eq. (30)] presents a
transient oscillating behavior that converges to the stationary
regime approximately at ~ 0.4 ps. The same behavior can
be observed in the L components of the angular momentum

transfer rates PEJ) (t;1) and Pg.ﬁz(tﬂ). Thus, those compo-

Jixl

TABLE I. Relaxation times (in ps) for HCI in liquid SFg.

jla 1 2 3 4 5 6 7 8
7 0.093 0.114 0.140 0.180 0.234 0.307 0.397 0.501
s 0.064 0.100 0.145 0.202 0.272 0.355 0.451 0.560
(1)), 0.061 0.091 0.129 0.179 0.242 0.318 0.405 0.506
(™M), 0.289 1213 2.600 4.448 6.759 9.532 12.768 16.465
7 0.058 0.089 0.131 0.185 0.250 0.329 0.420 0.524

032501-6



RELAXATION OF ROTATIONAL ANGULAR MOMENTUM OF ...

0.6

0.5 [
0.4 [

0.3 ]

7, (ps)

0.2+

0.1+

0.0 T
0 1 2 3 4 5 6 7 8 9

J

FIG. 2. Relaxation times of HCl in SF¢: 7; (squares) and (7)),
(circles).

nents C,(z,j|0,j) of the correlation function C,(z), which
relaxes more rapidly, will be more affected by the non-
Markovian effects than the slower ones. In fact, while the
effective area of the difference between the Markovian and
the non-Markovian functions C,(z, 1 |O, 1) represents 43% of
7, [the area of C,(¢,1]0,1)], the effective area of the differ-
ence for C,(¢,8|0,8) only represents 11% of .

In Table I and in Fig. 2 it can be appreciated as the angu-
lar momentum relaxation times 7; [Eq. (21)] and (7)); [Eq.
(50)] take similar values for the first j-quantum numbers, a
fact that contrasts with the results obtained for the analogous
times of the energy relaxation processes [see Egs. (21) and
(25), and Fig. 2 of Ref. [12]]. On the other hand, in Table I it
can be also observed the main contributions to the relaxation
times (7,); come from the rotational energy relaxation con-
tributions [the first term of Eq. (51)]. In this table we can
observe the values of the M-relaxation times (TﬁM)) ;» which
are generated by the L=2 anisotropic interaction term, are
much larger than the corresponding energy relaxation times
(), reaching values of several picoseconds with increasing
J-

In Fig. 4 we have represented the first angular momentum
relaxation times 7; [Eq. (21)], together with the energy relax-
ation times 7E [Eq (21) of Ref. [12]], the dephasing times
associated to the rotational absorptlon R-branch T(l) 2 j» to the
rotational Q-dispersion branch 7). Q ; and to the rotational

20

(1), (ps)

0.0 0.5 1:0 1.5 2.0
t(ps)

FIG. 3. Inverse of the time-dependent relaxation times [7,(1)];
(in ps7!) of HCl in liquid SFg.
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FIG. 4. Relaxation times 7; (squares), rotational energy hfenmes
7f (circles), and rotational dephasmg tlmes of HCl in SF: 7'1 R . (up
triangles), 72 Q J (down triangles), 72 s . (rhombus).

S-dispersion branch 7'2 S y [10]. As it can be appreciated, the
angular momentum times 7; present values comparable to the
energy relaxation times 7?1 and to the rotational dephasing
times, being T the smaller ones unless for the j=1,2 values
of Tg;g;l and Tg;g;z. A similar situation can be observed in
Fig. 5, where the plotted values of 7; are comparable and
smaller (again unless for j=1,2) to the vibrorotational
dephasing times of both the anisotropic S-dispersion branch
7'22 and the anisotropic Q-branch 7). Q . Also the relaxation
tlmes of the angular momentum 7; remain comparable to the
dephasing times of the isotropic Q-branch T(l);g; » however,
the values of the last ones are clearly greater for the first
values of the j-quantum numbers number. In this way, the
angular momentum relaxation of the first j levels proceeds
more rapidly than their energy relaxation, or the dephasing
processes involved in the infrared and Raman spectra.

As the time correlation function C,(z) is essentially Mar-
kovian, we can describe the angular momentum relaxation
by means of the exponential decay times Tfy]) [Eq. (61)] and
their respective weights W, [Eq. (62)]. With such a purpose
we have calculated the eigenvalues and the eigenvectors of
the RY) matrix [see the equations following Eq. (58)], taking

for its representation the maximum of the j-quantum number

0.7

0.6

0.5

0.4

7, (ps)
<
>

0.3+ . .

>e
L

0.2 .

014 8 2

0.0 T T
1 2 3 4 5 6 7

J

FIG. 5. Relaxation times T (squares) and vibrorotational
dephasmg times of HCI in SF: 7). s (circles), 7, Q (up triangles),
T 0.0, (down triangles).
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FIG. 6. Exponential decay times T(J) (squares) and relaxation
times (7,); (circles) of HCI in SF4 together with the exponentlal
weights W, (up triangles) and the thermal populations []]U (down
triangles). Time values in ps.

Jmax=30. The first values of the exponential times Tu
shown in Table I, where it can be noted as T< present simi-
lar values to the first relaxation times 7; [Eq. (21)] and (7)),
[Eq. (30)]. In Fig. 6 we can observe the similitude between
the exponential times T(aj) and the relaxation times (7,); over
a longer range of «/j. However, as it was previously ob-
served for the energy relaxation processes [12], it is conve-
nient to take into account that there exists a clear discrepancy
between the weights W, and the thermal populations [j]o-?.
Figure 6 shows the displacement of the weights W, from the
thermal populat1ons []]0' toward high j/a values. While the
maximum of D]a’ is located at j=3, with a representatwe
relaxation time of (T;)3=0.129 ps, the maximum of W,
located at @=7, increasing the representative times to values
close to ng) =0.420 ps, which is in accord with a global cor-
relation time of 7,=0.512 ps [see Eq. (64)].

VIII. SUMMARY AND CONCLUSIONS

We have developed a non-Markovian theory for the angu-
lar momentum relaxation of a heteronuclear diatomic mol-
ecule immersed in a nonpolar fluid. This theory has been
deduced from a more general non-Markovian formalism for
the diatomic vibrorotational relaxation, which was previ-
ously applied to the study of the infrared and Raman spectra,
and also to the analysis of the rotational energy relaxation.
With this procedure, we have settled an interesting connec-
tion between the angular momentum processes and both the
infrared and Raman spectroscopy, and the 7'} processes.

The theory has been focused on the binary time correla-
tion function of the diatomic angular momentum, which was
expressed in terms of the so-called two-time j-level angular
momentum correlation components (18), giving these com-
ponents a measure of the angular momentum correlation be-
tween two particular j-levels at two different times. We have
deduced non-Markovian time evolution equations for the
two-time j-level correlation components, whose coefficients
define the time-dependent angular momentum transfer rates
and the time-dependent angular momentum relaxation times,
both expressed as the additive contributions determined by

PHYSICAL REVIEW A 75, 032501 (2007)

the two-time correlation functions of the different orders of
the anisotropic interaction. We have analyzed the Markovian
long time limit, obtaining a detailed balance condition for the
angular transfer rates when the time correlation functions of
the anisotropic interaction are appropriate quantum func-
tions.

Three new alternative time scales for the angular momen-
tum relaxation have been introduced in this work: (i) The
angular momentum relaxation times 7;, which give a mea-
sure of the decay scale of the two-time j-level correlation
components C,(z,7|0, ). (ii) The relaxation times (7)), given
by the long time limit of the time-dependent angular momen-
tum relaxation times, obtained from the coefficients of the
Markovian evolution equations. (iii) The exponential decay
times T(aj), which allows one to write the Markovian correla-
tion function C,(z) as a weighted superposition of exponen-
tial decay terms.

The theory has been applied to the study of the angular
momentum relaxation of HCI diluted in liquid SFg at T
=293 K. We have calculated and analyzed both the non-
Markovian and the Markovian two-time j-level correlation
components and the corresponding angular momentum cor-
relation functions. We found that the angular momentum re-
laxation proceeds on the whole in the subpicosecond time
scale (7;=0.512 ps), being clearly more rapid than the en-
ergy relaxation processes (7;=2.85 ps). Additionally, the an-
gular momentum relaxation takes place more slowly when
the j-quantum number is increased, a behavior also observed
in the energy relaxation processes and in the infrared and
Raman dephasing processes. The non-Markovian effects
were observed non-negligible only at very short times,
mainly affecting the lower j levels, those with the shorter
relaxation times.

The relaxation times 7; of the angular momentum of HCl
present comparable values to those dephasing times associ-
ated to both pure rotational and vibrorotational Raman and
infrared spectroscopy. Only the isotropic Raman dephasing
times and the rotational energy relaxation times TJE are
clearly greater than the angular momentum relaxation times.
Also, we have compared the values of the three types of
j-level relaxation times introduced in this work. We have
found that for the HCl in SF, 7, (T);, and Tg) also present
comparable values (when they are ordered in the same in-
creasing order). However, like in the previous work on en-
ergy relaxation [12], the exponential weights W, differ
clearly from the thermal populations D’]o-?, being the maxi-
mum of the distribution W, shifted to higher decay times
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