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We demonstrate that spin chains are experimentally feasible using electrons confined in micro-Penning traps,
supplemented with local magnetic field gradients. The resulting Heisenberg-like system is characterized by
coupling strengths showing a dipolar decay. These spin chains can be used as a channel for short-distance
quantum communication. Our scheme offers high accuracy in reproducing an effective spin chain with rela-
tively large transmission rate.
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I. INTRODUCTION

Recently much theoretical research work has been fo-
cused on the possibility to use systems of spins, coupled by
ferromagnetic Heisenberg interactions and arranged along
chain structures, for transferring quantum information. The
remarkable property of these systems is the capability of
transmitting the qubit state along the chain with fidelity ex-
ceeding the classical threshold and by means only of their
free dynamical evolution. After the seminal paper by Bose
�1�, in which the potentialities of the so-called spin chains
have been shown, several strategies were proposed to in-
crease the transmission fidelity �2� and even to achieve, un-
der appropriate conditions, perfect state transfer �3–6�. All
these proposals refer to ideal spin chains in which only
nearest-neighbor couplings are present. However, also the
more realistic case of long-range couplings, in particular
magnetic-dipole-like couplings, has been studied �7,8�. In �7�
it has been shown that perfect state transfer or, at least, high
transmission fidelity can be obtained by appropriately choos-
ing the system parameters, such as local magnetic fields and
interspin distances. Moreover, even when no site-specific lo-
cally tunable fields are allowed, spin chains with dipolar cou-
plings often perform better, in terms of transmission fidelity,
than their nearest-neighbor coupled counterpart �8�. Hence,
from these theoretical predictions, we expect that spin
chains, also in the case of long-range interactions, may rep-
resent a very promising system to achieve high-fidelity
quantum-information transfer without requiring experimen-
tally demanding gating operations.

In this paper we demonstrate that a linear array of elec-
trons, confined in micro-Penning traps, can implement an
effective spin chain with magnetic-dipole-like spin coupling.
The same system consisting of trapped electrons in vacuum
has been already proposed as a valid and competitive candi-
date for universal quantum-information processing �9–11�. In
this respect, the possibility of reliably transmitting the qubit
state between different quantum registers, without applying
gate operations, is highly desirable. In fact, the use of a quan-
tum channel to transfer a qubit state in a quantum processor
can be a valuable alternative to the repeated application of
swapping gates.

We have already proved in �11� that the addition of a
magnetic field gradient, together with the Coulomb interac-
tion between the particles, allows one to obtain an effective

nuclear-magnetic-resonance- �NMR-� like coupling between
the spins of the confined electrons. Here we generalize this
approach to encompass a variety of trap setups, also in con-
nection with novel geometries of Penning traps �12,13�. In-
deed, by further investigating the interaction between the in-
ternal �spin� and external �motional� degrees of freedom of
each particle, introduced by the applied local magnetic field
gradient, we can mimic more general systems, with Heisen-
berg ferromagnetic or antiferromagnetic Hamiltonian. This
fact opens up the possibility to simulate quantum spin sys-
tems with tunable interactions, thanks to experimental con-
trol over the different trap parameters. The ultimate goal may
be the observation of quantum phase transitions, as proposed
with trapped ions controlled by laser beams �14�.

In our proposal, we consider a linear array of electrons
with interparticle distance ranging from a few micrometers
to 50 �m. We provide an analytical expression for the spin-
spin coupling strength, which shows a dipolar decay law. We
estimate the value of the spin-spin coupling, for different
ranges of the system characteristic frequencies as well as of
the intensity of the magnetic gradient, with the aim of opti-
mizing the transfer time of our quantum channel. Further-
more, we evaluate the fidelity of our system in reproducing
an effective spin chain according to the Heisenberg model. In
particular, we calculate the probability to obtain a perfect
spin state transfer in a chain consisting of just two electrons.
This probability, equal to 1 in an ideal spin chain �1�, in our
system is less than 1 owing to the effects resulting from the
interplay between the internal and the external degrees of
freedom of the trapped particles. However, by an appropriate
choice of the system parameters, especially the frequency
and the amplitude of the spatial motions, we can obtain high
fidelities and, at the same time, sufficiently large values of
the spin-spin coupling. The electron trapping arrangement
offers also the possibility to apply arbitrary site-specific
changes in the system parameters in order to maximize, as
outlined in �7,8�, the efficiency of the quantum channel. Our
theoretical predictions suggest that a linear array of electrons
is suitable to implement a spin chain with the present tech-
nology.

The paper is organized as follows. In Sec. II we describe
the system and how the local magnetic field gradient couples
the electron spin to the motional degrees of freedom. This
coupling, mediated by the Coulomb interaction between
charged particles, results in an effective Heisenberg-like
Hamiltonian �Sec. III�. In Sec. IV we estimate the fidelity
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and the efficiency of our system as a channel for quantum-
information transmission. Finally, the results of our analysis
are summarized and discussed in Sec. V. The more technical
details, concerning the derivation of the fidelity, are pre-
sented in the Appendix.

II. LINEAR ARRAY OF TRAPPED ELECTRONS

We consider a linear array of N electrons in micro-
Penning traps �15�. According to the different geometry of
the electrode arrangement, the microtrap array can be either
parallel to the direction of the confining magnetic field—i.e.,
along the z axis as shown in Fig. 1�a�—or orthogonal to this
field—for example, along the x axis as shown in Fig. 1�b�. To
confine electrons in an array along the z direction we can use
a closed cylindrical electrode structure �9,10� or an open wire
arrangement �12�. This latter structure can also accommodate
the electrons in an array aligned along the x axis. An orderly

set of microtraps, orthogonal to the trapping magnetic field,
can be likewise realized by means of a planar electrode sys-
tem �13�. As we will see, the different orientation of the
linear array of particle affects the form of the resulting inter-
action Hamiltonian. Hence, we first derive the expression of
the effective Hamiltonian in the case of microtraps aligned
along the z axis. Then we will show how this expression
modifies in the case of an array directed along the x axis.

The Hamiltonian of a system of N electrons confined in an
array of Penning traps can be written as

H = �
i=1

N

Hi
NC + �

i�j

Hi,j
C , �1�

where

Hi
NC =

�pi − eAi�2

2me
+ eVi −

ge�

4me
�i · Bi �2�

represents the single-electron dynamics inside each trap and

Hi,j
C =

e2

4��0�ri − rj�
�3�

describes the Coulomb interaction between electrons i and j.
In Eqs. �2� and �3� me, e, g, and �i are, respectively, the
electron mass, charge, gyromagnetic factor, and Pauli spin
operators. As shown in Fig. 1�a�, we assume that the mi-
crotraps are aligned along the z axis and that zi,0 is the posi-
tion of the center of the ith trap. The electrostatic potential

Vi�xi,yi,zi� � V0
�zi − zi,0�2 − �xi

2 + yi
2�/2

�2 �4�

is the usual quadrupole potential of a Penning trap, where V0
is the applied potential difference between the trap electrodes
and � is a characteristic trap length. The magnetic field

Bi � −
b

2
�xii + yij� + �B0 + b�zi − zi,0��k �5�

is the sum of the uniform magnetic field B0k, providing the
radial confinement, with a local linear magnetic gradient
around the ith trap. The associated vector potential

Ai �
1

2
�B0 + b�zi − zi,0���− yii + xij� �6�

preserves the cylindrical symmetry of the unperturbed trap-
ping field.

Following an approach similar to the one described in
Ref. �11�, the spatial part of Hi

NC can be recast in the form

Hi
�ext� � − ��mam,i

† am,i + ��cac,i
† ac,i + ��zaz,i

† az,i

+ ��z��az,i + az,i
† �	�m

�c
am,i

† am,i + ac,i
† ac,i
 , �7�

where the annihilation operators am,i, ac,i, and az,i �11,16�
refer, respectively, to the magnetron, cyclotron, and axial os-
cillators of the ith electron. The frequencies of these oscilla-
tors,

FIG. 1. Schematic drawing illustrating two different geometries
for a linear array of micro-Penning traps. The traps are represented
by sketching the electrostatic potential along the z axis. �a� The
electrons are aligned along the z axis, parallel to the confining mag-
netic field; �b� the electrons are aligned along the x axis, orthogonal
to the confining magnetic field.
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�m �
�z

2

2�c
, �8�

�c �
�e�B0

me
, �9�

�z =�2eV0

me�
2 , �10�

depend on the applied external fields and on the trap size.
They build up a well- defined hierarchy with �m	�z	�c.
Indeed, we exploit this fact together with the assumption of a
weak magnetic gradient, such that b�zi−zi,0� /B0	1, to derive
the Hamiltonian �7�. The dimensionless parameter

� �
�e�b

me�z
� �

2me�z
=

�e�b
z

me�z
, �11�

with 
z being the ground-state amplitude of the axial oscil-
lator, represents the coupling, due to the magnetic gradient,
between the axial motion and the radial degrees of freedom.
In a similar way the magnetic gradient introduces also an
interaction between the spatial and the spin motion. This
coupling becomes evident by considering the spin part of the
Hamiltonian �2�:

Hi
�spin� � −

ge�

4me
�i · Bi =

g�

4
�c�i

z +
g��e�b
4me

�i
z�zi − zi,0�

−
g��e�b
8me

��i
xxi + �i

yyi� , �12�

which, in terms of the ladder operators, becomes �11�

Hi
�spin� �

�

2
�s�i

z +
g

4
���z�i

z�az,i + az,i
† � −

g

4
���z��z

�̃c

���i
�+��ac,i + am,i

† � + �i
�−��ac,i

† + am,i�� , �13�

where �̃c���c
2−2�z

2 is essentially a modified cyclotron
frequency due to the insertion of the quadrupole potential.
In deriving Eq. �13� we defined the operators �i

�±�

���i
x± i�i

y� /2 and the spin precession frequency �s

��g /2��c.
Hence, the Hamiltonian �2� of a single electron can be

written as

Hi
NC � − ��mam,i

† am,i + ��cac,i
† ac,i + ��zaz,i

† az,i +
�

2
�s�i

z

+ ��z��az,i + az,i
† �	ac,i

† ac,i +
�m

�c
am,i

† am,i +
g

4
�i

z

−

g

4
���z��z

�̃c

��i
�+��ac,i + am,i

† � + �i
�−��ac,i

† + am,i�� .

�14�

We now assume that, for each particle of the array, the cy-
clotron oscillator is in the ground state and the magnetron
oscillator is in a thermal state with an average excitation

number l̄	�c /�m. We recall that the ground-state cooling of

the cyclotron motion for electrons �17� and the reduction of
the magnetron motion excitation number for electrons �16�
and ions �18� have been experimentally obtained. Under
these conditions, we can neglect in Eq. �14� the coupling
between the axial oscillator and the radial motion. We can
further simplify Eq. �14� by means of the rotating-wave ap-
proximation �RWA�. Indeed, terms like �i

�+�am,i
† are rotating

at a frequency �s−�m much larger than the anomaly fre-
quency �a��s−�c typical of terms like �i

�+�ac,i and, there-
fore, are negligible in the RWA. Hence, the Hamiltonian �14�
becomes

Hi
NC � − ��mam,i

† am,i + ��cac,i
† ac,i + ��zaz,i

† az,i +
�

2
�s�i

z

+
g

4
���z�az,i + az,i

† ��i
z −

g

4
���z��z

�̃c

��i
�+�ac,i

+ �i
�−�ac,i

† � . �15�

We see that the applied magnetic field gradient couples the
different electron spin components to the axial and to the
cyclotron oscillators.

Let us consider the part of the Hamiltonian �3� describing
the Coulomb interaction between two electrons trapped
at the sites i and j. If the oscillation amplitude of the two
electrons is much smaller than the intertrap distance di,j
��zi,0−zj,0�, we can expand the interaction Hamiltonian in a
power series and retain terms up to the second order:

Hi,j
C � −

e2

4��0di,j
2 �z̃i − z̃ j� +

e2

8��0di,j
3 �2�z̃i − z̃ j�2 − �xi − xj�2

− �yi − yj�2� , �16�

where z̃i�zi−zi,0. The Coulomb interaction produces three
effects on the electron dynamics: �i� a displacement of the
equilibrium position along the z axis, �ii� a shift of the axial
resonance frequency, and �iii� a coupling between the mo-
tional degrees of freedom of different particles. The first two
effects are rather small and can be taken into account by
redefining the trap center position and the corresponding
axial frequency. Therefore, in the remainder of this section
we focus on the coupled dynamics of the two electrons:

Hi,j
C � −

e2

4��0di,j
3 �2z̃iz̃ j − xixj − yiyj�

= − 2�
i,j�az,i + az,i
† ��az,j + az,j

† � + �
i,j
�z

�̃c

�ac,i + ac,i
† + am,i

+ am,i
† ��ac,j + ac,j

† + am,j + am,j
† � − �
i,j

�z

�̃c

�ac,i − ac,i
†

− am,i + am,i
† ��ac,j − ac,j

† − am,j + am,j
† � , �17�

where the coupling strength


i,j �
e2

8��0me�zdi,j
3 =

1

�

e2

4��0di,j
	
z

di,j

2

�18�
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amounts to the Coulomb energy times the square of the ratio
between the axial ground-state amplitude and the interpar-
ticle distance. We have observed that each oscillator, axial,
cyclotron, and magnetron, is characterized by a typical reso-
nance frequency. As a consequence, the coupling introduced
by the Coulomb interaction between the degrees of freedom
of different electrons is effective only for almost resonant
oscillators. Therefore, in Eq. �17� the terms that couple the
cyclotron and magnetron motion of the two particles give
negligible effects. Furthermore, we are not interested in the
coupling between the magnetron motion of different elec-
trons, since this mode is essentially decoupled from the other
degrees of freedom. Hence, disregarding the magnetron mo-
tion, the part of the system Hamiltonian describing the Cou-
lomb repulsion between electrons i and j reduces to

Hi,j
C � − 2�
i,j�az,i + az,i

† ��az,j + az,j
† � + 2�
i,j

�z

�̃c

�ac,iac,j
†

+ ac,i
† ac,j� . �19�

In the case of a linear array of electrons, trapped in a direc-
tion orthogonal to the magnetic field—i.e., along the x axis
as shown in Fig. 1�b�—we can derive a similar expression
for the Coulomb coupling:

Hi,j
C � �
i,j�az,i + az,i

† ��az,j + az,j
† � − �
i,j

�z

�̃c

�ac,iac,j
† + ac,i

† ac,j

+ 3�ac,iac,j + ac,i
† ac,j

† �� . �20�

We emphasize that in the case of Eq. �19�, referring to the
vertical array of traps, the coupling between the cyclotron
oscillators of different electrons represents a swapping of
excitations, which basically conserves energy. The only
terms that survive involve the creation of a quantum of ex-
citation at the site j at the expense of the destruction of a
quantum of excitation at the site i and vice versa. In the case
of an horizontal arrangement of traps, Eq. �20�, this is, in
general, no longer true. Indeed, even though the leading
terms are preserving the energy of the two coupled cyclotron
oscillators, we also note the presence of rapidly rotating
terms which involve the simultaneous creation and annihila-
tion of two excitations. However if 
i,j��z / �̃c�	�c, the ef-
fects of these rapidly rotating terms are negligible �RWA�
and the Hamiltonian �20� becomes

Hi,j
C � �
i,j�az,i + az,i

† ��az,j + az,j
† � − �
i,j

�z

�̃c

�ac,iac,j
† + ac,i

† ac,j� .

�21�

We also note that Eqs. �19� and �21� exhibit alternating signs
in front of the coupling terms. As we will see in the next
section, this results in a different kind, ferromagnetic or an-
tiferromagnetic, of the effective spin-spin interaction.

III. EFFECTIVE SPIN-SPIN COUPLING

In the previous section we have seen that the magnetic
gradient induces, for each particle of the array, a coupling
between the spatial and spin motions. This interaction, me-

diated by the Coulomb repulsion between the electrons,
gives rise to an effective spin-spin coupling between differ-
ent particles �11�. This effect can be brought to light by mak-
ing an appropriate unitary transformation on the Hamiltonian
of the system �19�. We seek a transformation that formally
removes, in the single-particle Hamiltonian, the coupling be-
tween the internal and the external degrees of freedom of
each electron. Hence, we transform the Hamiltonian �1� as
H�=eSHe−S with

S =
g

4
��

i=1

N ��i
z�az,i

† − az,i� +
�z

�a
��z

�̃c

��i
�−�ac,i

† − �i
�+�ac,i�
 ,

�22�

where �a��s−�c is the anomaly frequency. The unitary
transformation changes the operators, to the first order in � in
the following way:

az,i → az,i −
g

4
��i

z, �23�

ac,i → ac,i −
g

4
�

�z

�a
��z

�̃c

�i
�−�, �24�

�i
z → �i

z +
g

2
�

�z

�a
��z

�̃c

��i
�+�ac,i + �i

�−�ac,i
† � , �25�

�i
�+� → �i

�+� +
g

2
��i

�+��az,i
† − az,i� −

g

4
�

�z

�a
��z

�̃c

�i
zac,i

† .

�26�

To derive the expressions above we made use of the expan-
sion

e�ABe−�A = B + ��A,B� +
�2

2!
†A,�A,B�‡ +

�3

3!
�A,†A,�A,B�‡�

+ ¯ , �27�

where A and B are two noncommuting operators and � is a
parameter.

The single-electron part, Eq. �15�, of the system Hamil-
tonian can be written, after applying the unitary transforma-
tion, as

Hi�
NC � − ��mam,i

† am,i + ��cac,i
† ac,i + ��zaz,i

† az,i +
�

2
�s�i

z,

�28�

where we have neglected second- and higher-order terms in
�, which in the cases relevant to the present analysis is of the
order of 10−2. Nevertheless, these extra terms are derived in
the Appendix and their influence on the performances of the
system is discussed in Sec. IV.

Let us now turn to the Coulomb part of the system Hamil-
tonian. The first term in Eq. �19� becomes
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− 2�
i,j	az,i + az,i
† −

g

2
��i

z
	az,j + az,j
† −

g

2
�� j

z
 . �29�

Expression �29� contains a term which represents an effec-
tive spin-spin coupling between different electrons in the ar-
ray. This effect was already pointed out in Ref. �11�. More-
over, we note that the unitary transformation enforces a
coupling between the axial motion of the jth electron and the
spin of the ith electron. This effect is smaller by a factor of

i,j /�z	1 than the corresponding coupling �see Eq. �15��
between internal �spin� and external �axial motion� degrees
of freedom of the same particle. The error introduced by
neglecting these terms is estimated in the Appendix.

The remaining term in the Hamiltonian �19� transforms
into

2�
i,j
�z

�̃c
	ac,i −

g

4
�

�z

�a
��z

�̃c

�i
�−�
	ac,j

† −
g

4
�

�z

�a
��z

�̃c

� j
�+�


+ 2�
i,j
�z

�̃c
	ac,i

† −
g

4
�

�z

�a
��z

�̃c

�i
�+�


�	ac,j −
g

4
�

�z

�a
��z

�̃c

� j
�−�
 . �30�

From Eq. �30� we see that the unitary transformation pro-
duces the term

�
i,j�
2g2

8

�z
4

�a
2�̃c

2 ��i
�−�� j

�+� + �i
�+�� j

�−��

= �
i,j�
2 g2

16

�z
4

�a
2�̃c

2 ��i
x� j

x + �i
y� j

y� , �31�

which represents a direct coupling between the spin motion
of different particles. Also in this case, there are additional
terms in expression �30� that couple the spin of an electron to
the cyclotron motion of the other electrons in the chain. In
comparison with the spin-cyclotron interaction for the same
particle �see Eq. �15��, this coupling is reduced by a factor of

i,j�z / �̃c�a, which, in the range of the parameters considered
here, is typically much less than 1. For an estimate of the
errors introduced by these terms we refer to the Appendix.

Hence, summarizing the results of our derivation, we have
an effective spin-spin coupling between the electrons with
the spatial dynamics substantially decoupled from the spin
dynamics. Consequently the spin part of the system Hamil-
tonian can be written, in the case of a linear array of elec-
trons along the z axis, as

Hs� � �
i=1

N
�

2
�s�i

z − ��
i�j

N

�2Ji,j
z �i

z� j
z − Ji,j

xy�i
x� j

x − Ji,j
xy�i

y� j
y� ,

�32�

where

Ji,j
z = 	g

2

2


i,j�
2 = 	g

2

2 �e4b2

16��0me
4�z

4di,j
3 , �33�

Ji,j
xy = 	g

4

2


i,j�
2 �z

4

�a
2�̃c

2 � 106	g

4

2 �e4b2

16��0me
4�c

4di,j
3 . �34�

In Eq. �34� we used the relations �a�10−3�c and �̃c��c.
We obtain a spin-spin interaction that is antiferromagnetic
�ferromagnetic� if it is transmitted by the cyclotron �axial�
motion.

The situation is completely different when the linear array
of electrons is aligned along the x axis:

Hs� � �
i=1

N
�

2
�s�i

z +
�

2 �
i�j

N

�2Ji,j
z �i

z� j
z − Ji,j

xy�i
x� j

x − Ji,j
xy�i

y� j
y� .

�35�

In this case, the sign of the Heisenberg-like coupling is re-
versed. The ferromagnetic �antiferromagnetic� interaction is
associated with the cyclotron �axial� motion. Similar results
were also found in the case of ions, in a Paul trap, driven by
six counterpropagating laser beams �14�.

IV. CHANNEL FOR QUANTUM COMMUNICATION

The Hamiltonians �32� and �35� describe a system of N
spins coupled through Heisenberg-like interactions. These
Hamiltonians can transmit an unknown spin state from the
electron placed at one end of the linear array to the electron
placed at the other end of the array. The remarkable fact is
that this quantum-information transfer is realized only by
means of the free dynamical evolution of the system, without
requiring any external action by the experimenter during the
transfer.

Therefore, let us analyze the potentialities of our system
as a quantum communication channel. In our scheme, the
dependence of the spin-spin coupling strength on the system
parameters is shown in Eqs. �33� and �34�. In particular, Ji,j

z

and Ji,j
xy are proportional to 1/di,j

3 ; that is, they decrease with
the distance between the particles i and j according to the
dipolar decay law. They also depend on the applied magnetic
field gradient and on the characteristic frequencies of the
electron motion. More specifically, the value of Ji,j

xy �Ji,j
z � de-

pends on the cyclotron �axial� frequency �c ��z�. As a con-
sequence of this fact we can neglect Ji,j

xy with respect to Ji,j
z

when the value of the ratio �c /�z is sufficiently large, as in
the case considered in �11�. Differently, in this paper, we
choose smaller values for the ratio �c /�z �generally about 20
or less�, so that Ji,j

xy is of the same order of magnitude of Ji,j
z

or even larger. Indeed, one can easily check, from Eqs. �33�
and �34�, that when �c /�z�18.8 it is possible to obtain an
isotropic Heisenberg-like interaction with 2 Ji,j

z =Ji,j
xy.

Generally the time required to transfer a qubit, encoded in
the spin state, along a Heisenberg chain depends on the val-
ues of Ji,j

xy, so that the larger the value of Ji,j
xy, the faster the

transfer. Indeed, the state transfer time tex in a Heisenberg
chain, consisting of just two spins, is equal to

tex �
�

4Jxy . �36�
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We assume that the particles in our linear array are equally
spaced with d�di,i+1 and Jxy �Ji,i+1

xy . From Eq. �34� we see
that Jxy �b2 / ��c

4d3�. Hence, to speed up the transfer process
we have to miniaturize the system to increase the strength of
the magnetic field gradient and to reduce the cyclotron fre-
quency. However, the value of the cyclotron frequency �c,
depending on the confining magnetic field, cannot be de-
creased at will, since it should be sufficiently large to cool
the cyclotron motion to its ground state. For example, at the
trap temperature of 80 mK �17� it is sufficient a cyclotron
frequency of the order of 10 GHz. The interparticle distance
d depends on the level of miniaturization of the trap. We
consider d varying from a few micrometers to 50 �m. Fi-
nally stronger local magnetic gradients are, in general,
achievable by reducing the microtrap size.

Essentially, the effective Heisenberg-like Hamiltonians
�32� and �35� have been obtained by taking two steps: we
applied an appropriate unitary transformation and then disre-
garded the residual coupling between the different degrees of
freedom. Both these steps, in general, introduce errors which
reduce the accuracy of our system in reproducing an array of
particles interacting according to the Heisenberg model. In
particular, we neglected terms representing a residual cou-
pling between the spin and motional degrees of freedom, as
well as between the different spatial oscillators. In the Ap-
pendix, we analyze in detail the role of each of these terms.
Here, we only present the most relevant part of this interac-
tion,

Hr � �2�
i=1

N

��z� �z
2

4�c�a
−

�z
2

4�c
2am,i

† am,i

+ 	 �z
2

4�c�a
− 1
ac,i

† ac,i
�i
z, �37�

which affects the spin frequency, introducing a dependence
on the cyclotron and magnetron motion. As a consequence
each particle acquires a different spin frequency with a finite
linewidth due to the thermal state of the motional degrees of
freedom.

In order to know how precisely our model can simulate an
ideal Heisenberg system we introduce the system fidelity

F � �� f�Trext���t���� f� , �38�

where

�� f� � e�−i/��Hst��0� , �39�

with ��0� being the initial state of the spin chain and Hs is the
Heisenberg Hamiltonian �32�. The operator ��t� in Eq. �38�
represents the density operator of the electron chain, includ-
ing the motional degrees of freedom, evolved at the time t
according to the full Hamiltonian of the system, Eq. �1�. We
also assume that initially the axial, cyclotron, and magnetron
motions are prepared in thermal mixtures with, respectively,

an average excitation number k̄, n̄, and l̄. The reduced den-
sity operator, describing the spin state, is then obtained by
tracing over the spatial modes of the electrons.

The system fidelity can be analytically calculated. The
details are provided in the Appendix. In general, the fidelity
can be written as

F = 1 − Er − �2ES, �40�

where Er and ES represent, respectively, the errors due to the
residual coupling, Eq. �37�, and to the canonical transforma-
tion. In the simplest case of just two electrons, we find

Er = 1 − �
n1,l1

�
n2,l2

Pn̄�n1�Pl̄�l1�Pn̄�n2�Pl̄�l2�

��Fd	�s�n1,l1,n2,l2�
4Jxy 

 , �41�

with Pm̄�m�, Eq. �A7�, being the occupation probability for
the mth Fock state,

Fd��� =
1

3
�1 +

cos	 ��

2

sin	�

2
�1 + �2


�1 + �2
+

sin2	�

2
�1 + �2


1 + �2 � ,

�42�

and

�s � �2�z�	 �z
2

2�c�a
− 2
�n2 − n1� −

�z
2

2�c
2 �l2 − l1�
 �43�

being the detuning between the two spin frequencies. The
fidelity decreases because of this finite detuning, which is
determined by the thermal state of the cyclotron and magne-
tron oscillators. Indeed, the error, Eq. �41�, vanishes in the
ideal case of zero detuning �s=0.

Also the error due to the canonical transformation,

ES =
1

3
�2k̄ + 1� +

�z
3

6�a
2�c

�5n̄ + 1� +
�z

3

6��s − �m�2�c
�5l̄ + 4� ,

�44�

becomes larger when the electron motion is relatively hot.
From Eq. �44�, we see that this error is proportional to the

average excitation numbers k̄, n̄, and l̄. Therefore, to increase
the system fidelity it is essential to cool, possibly to the
ground state, the electron motion. This comes automatically
for the cyclotron oscillator, when the trap is at a temperature
below 1 K, whereas the cooling of the axial and magnetron
oscillators requires appropriate techniques �16,18�.

We present a number of cases in Table I, when the fidelity
approaches the value 1. We see that, for F=0.99 �F
=0.999� and the interparticle distance d ranging from 50 �m
�10 �m� to a few micrometers, we have a coupling constant
Jxy in the range 10 Hz – 1.3 MHz �2.5 – 100 kHz�. For ex-
ample, in the case of d=10 �m we obtain Jxy =35 kHz by
taking a cyclotron frequency �c /2�=8 GHz, an axial fre-
quency �z /2�=490 MHz, and a magnetic gradient b
=1800 T/m.
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We also recall that the decoherence time of the spin state
as well as the heating time of the spatial motions, estimated
according to the model described in �10,20,21�, is much
longer than the transfer time tex. This remains true also for
moderate values of the coupling strength Jxy, thus allowing
the transmission of the qubit state across the chain within the
decoherence time of the system.

Finally we note that our system offers the possibility, in
principle, to apply arbitrary site-specific changes to its pa-
rameters, such as the interparticle distance, the magnetic gra-
dient strength, and the magnetic field magnitude. Hence, as
suggested in �7,8�, by means of these local modifications one
can optimize the transmission rate and the fidelity of the
chain.

V. CONCLUSIONS

In this paper we presented a scheme for implementing a
spin chain with long-range interactions by means of a linear
array of electrons confined in micro-Penning traps. Both an-
tiferromagnetic and ferromagnetic Heisenberg-like systems
can be realized using a local magnetic field gradient, medi-
ated by the electrostatic interaction between the trapped par-
ticles. In particular, we derived an analytical formula for the
strength of the spin-spin coupling, which determines the
transmission rate of the channel, as a function of the relevant
system parameters like the interparticle distance, the cyclo-
tron frequency, and the value of the applied magnetic gradi-
ent. In our analysis we also estimated the fidelity of the sys-
tem in reproducing an effective Heisenberg chain by taking
into account the effects produced by the coupling between
the different degrees of freedom of the particles. We found
that the fidelity depends on the frequency and the amplitude
of the spatial motion of the particles. In general, higher val-
ues of the fidelity are obtained for smaller values of the spa-
tial motion amplitudes and for larger values of the detuning
between the characteristic trapping frequencies. The numeri-
cal estimates, calculated for an interparticle distance d vary-
ing from 50 �m to few micrometers, give a spin-spin cou-
pling strength Jxy in the range 10 Hz – 1.3 MHz with a
fidelity of 99%. Even in the case of a relatively weak cou-
pling constant, the transmission of the qubit state from one
end to the other of the chain takes place well within the
decoherence time of the system. Moreover, the geometry of
the system offers the possibility to apply arbitrary site-

specific changes of its parameters in order to optimize the
transmission rate and the fidelity of the quantum channel.

In conclusion, an array of electrons confined in micro-
Penning traps lends itself to implement, within the reach of
current technology, quantum channels with high accuracy
and sufficiently large transmission rates. Furthermore, the
versatility of our scheme allows one to simulate also more
general spin systems, in one and two dimensions, thus pav-
ing the way towards the observation of quantum phase tran-
sitions.
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APPENDIX: FIDELITY

In this appendix we provide a brief description of the
approach adopted to estimate the fidelity, as defined in Eq.
�38�. Our starting point is the complete single-electron
Hamiltonian �14�. In order to remove from this Hamiltonian,
to the first order in �, the coupling between the different
particle motions, we should apply a unitary transformation
which takes into account also the magnetron oscillator:

S = ��
i=1

N �	g

4
�i

z + ac,i
† ac,i +

�m

�c
am,i

† am,i
�az,i
† − az,i�

+
g

4

�z

�a
��z

�̃c

��i
�−�ac,i

† − �i
�+�ac,i�

+
g

4

�z

�s − �m
��z

�̃c

��i
�−�am,i − �i

�+�am,i
† �
 . �A1�

This unitary transformation represents a generalization of the
transformation, Eq. �22�, since it encompasses all the degrees
of freedom of the particles.

TABLE I. Values of the axial frequency �z /2�, the magnetic gradient b, the average magnetron excitation

number l̄, and the coupling strength Jxy for different choices of the nearest-neighbor distance d. In case A �B�
we have F=0.99 �F=0.999� and �c /2�=8 GHz ��c /2�=11 GHz�. We suppose that the axial and cyclotron
motions are thermalized with the trap environment at the temperature of 80 mK.

A B

d ��m� 50 30 10 3 10 3

�z /2� �MHz� 490 490 490 1200 730 4500

b �T/m� 350 600 1800 1800 1100 1100

l̄ 0.01 0.1 2 50 0.15 1

Jxy �kHz� 0.01 0.14 35 1300 2.5 100
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From the definition of the fidelity, Eq. �38�, we can write
�14�

F = �� f�Trext�e−Se�−i/��H�teS��0�e−Se�i/��H�teS��� f� , �A2�

where

H� � Hext + Hs + Hr, �A3�

with

Hext = �
i=1

N

�− ��mam,i
† am,i + ��cac,i

† ac,i + ��zaz,i
† az,i�

�A4�

being the Hamiltonian describing the uncoupled external dy-
namics of the particles. The spin Hamiltonian Hs is given in
Eq. �32�, whereas Hr includes the residual coupling between
the spin and the spatial degrees of freedom:

Hr � �2�
i=1

N

��z�� �z
2

4�c�a
−

�z
2

4�c
2am,i

† am,i + 	 �z
2

4�c�a
− 1
ac,i

† ac,i
�i
z −

1

2
��z

�c
�az,i

† − az,i���i
�+�ac,i − �i

�−�ac,i
†

+
3

2
��i

�+�am,i
† − �i

�−�am,i�
 +
�z

2

8�c�a
�ac,iam,i + ac,i

† am,i
† ��i

z� + ��
i�j

N

�
i,j�g�az,i + az,i
† �� j

z −
g

2
	�z

�̃c

3/2 �z

�a
�ac,i� j

�+� + ac,i
† � j

�−��
 .

�A5�

We assume that initially the cyclotron, axial, and magnetron
oscillators are in a thermal mixture, each one represented by
the usual density operator

�th = �
m=0

+�

Pm̄�m��m��m� , �A6�

with �22�

Pm̄�m� � 	 1

1 + m̄

	 m̄

1 + m̄

m

�A7�

being the occupation probability of the mth Fock state of a
harmonic oscillator with average excitation number m̄. The
initial spin state of the chain is

��0� � 	cos
�

2
�↓�1 + ei� sin

�

2
�↑�1
�↓�2 ¯ �↓�N. �A8�

The information is stored in the state of the first qubit and
should be transmitted to the opposite end of the chain to the
Nth spin. Therefore, the density operator of the system at
time t=0 is

��0� � ��spin�
� ��ext�. �A9�

The ideal final state of the spin chain is represented by the
state vector

�� f� = exp	−
i

�
Hst
��0� , �A10�

which is obtained from the initial spin state, Eq. �A8�, when
the system is described by the Heisenberg Hamiltonian Hs,
Eq. �32�.

Now to calculate the value of the fidelity, we make an
expansion of Eq. �A2� in powers of S and consider terms up
to the second order in �:

F � �A�A−1� +
1

2
�A�A−1S2 + A�S2A−1 + AS2�A−1 + S2A�A−1�

− �A�SA−1S − AS�A−1S + AS�SA−1 + SA�A−1S

− SA�SA−1 + SAS�A−1� , �A11�

where we defined A�exp�−�i /��H�t�, ����0�, and �¯�
��� f �Trext�¯� �� f�. The first-order terms in S have been
omitted since their contribution, after tracing over the spatial
degrees of freedom, is zero.

In the absence of the residual couplings, contained in the
Hamiltonian Hr, the spin chain evolution is unaffected by the
thermal state of the motional degrees of freedom, because
�Hext ,Hs�=0. This leads to �A�A−1�=1. The corrections to
the fidelity come both from the presence of Hr and from the
canonical transformation, represented by the remaining ten
terms of Eq. �A11�. In order to separate the two effects, we
first evaluate the impact of the unitary transformation when
H��Hext+Hs. This greatly simplifies the procedure and al-
lows us to achieve an analytical expression for the fidelity:

F � �A�A−1� − �2ES, �A12�

where
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ES � �
i=1

N ��	g

4

2

�2 − ���i
z�0�2 − ���i

z� f�2� +
g

2
���i

z�0 − ��i
z� f�

�	n̄ +
�m

�c
l̄

�2k̄ + 1� + 	g

4

2 �z

�̃c
��z

2

�a
2 �2n̄ + 1 + ��i

z�0�

+
�z

2

��s − �m�2 �2l̄ + 1 − ��i
z�0� − 	�z

2

�a
2 �2n̄ + 1�

+
�z

2

��s − �m�2 �2l̄ + 1�
���i
�−��0��i

�+��0 + ��i
�−�� f��i

�+�� f�
� .

�A13�

The expectation values �¯�0 and �¯� f are calculated, re-
spectively, over the initial and final states of the spin chain.
At the swapping time, when the state of the first spin has
moved to the other end of the chain,

�
i=1

N

��i
z�0 = �

i=1

N

��i
z� f = − �N − 1� − cos � , �A14�

�
i=1

N

���i
z�0�2 = �

i=1

N

���i
z� f�2 = N − 1 + cos2 � , �A15�

�
i=1

N

��i
�−��0 = �

i=1

N

��i
�−�� f =

ei�

2
sin � , �A16�

�
i=1

N

��i
�+��0 = �

i=1

N

��i
�+�� f =

e−i�

2
sin � . �A17�

Moreover, after averaging over all the initial
states in the Bloch sphere—i.e., evaluating
�1/4���0

��0
2�ES sin �d�d�—we obtain

ES �
1

3
�2k̄ + 1� +

1

6

�z

�c
��z

2

�a
2 �2n̄ + 1 + 3�N − 1�n̄�

+
�z

2

��s − �m�2 �2l̄ + 1 + 3�N − 1��l̄ + 1��� , �A18�

where k̄, n̄, and l̄ denote, respectively, the average axial,
cyclotron, and magnetron excitation numbers. Expression
�A18� gives the error due to the unitary transformation.

Let us consider now the effects of the Hamiltonian Hr,
contained in the term �A�A−1� of Eq. �A12�. The residual
couplings produce mainly two effects: they induce transi-
tions between the motional states of the electron and make
the electron spin frequency depend on the state of the exter-
nal degrees of freedom. Both these effects, as we will see,
reduce the system fidelity.

The probability to observe transitions between the states
of the electron motion can be easily estimated using a
perturbative approach. Indeed, the probability for the
transition ��m�→ ��n� is not larger than roughly
4���n�
H��m��2 / ���nm�2, where 
H is the perturbation, �nm

the transition frequency, and ��i� the ith eigenstate of the
unperturbed Hamiltonian. In our case, the Hamiltonian Hr

plays the role of 
H and the terms, responsible for the tran-
sitions between electronic states, are in the last three lines of
Eq. �A5�. For example, the terms proportional to az,i�i

�+�ac,i
induce transitions between the eigenstates �n ,k , l , ↓ � and
�n−1,k−1, l , ↑ � of the single-electron Hamiltonian

H0 = − ��mam
† am + ��cac

†ac + ��zaz
†az +

�

2
�s�

z,

�A19�

with probability of the order of �4��z
3 /�c��z−�a�2�kn. A

similar perturbative approach allows us to estimate also the
transition probability due to the other terms of Eq. �A5�.
These probabilities, for the terms involving couplings be-
tween different motions of the same particle, are proportional
to �4 / �
��2 where 
� denotes the detuning between the
electron oscillation frequencies. Hence, the error, in this
case, is always negligible because is a correction of the
fourth order in � and, moreover, the characteristic frequen-
cies of the electron motion are quite different from each
other. Very small errors are also produced by the terms in Eq.
�A5� involving the dynamics of different particles. In this
case the transition probabilities are of the order of
�2�
i,j /�z�2 and �2�
i,j /�z�2��z /�c�3��z /�a�4. Indeed, these
values, for our choices of the system parameters, are negli-
gible.

In addition to the state transitions, the residual couplings
enforce a dependence of the spin frequency on the state of
the particle motion. The correction 
�s to the spin fre-
quency,


�s�n,l� � �2�z� �z
2

2�c�a
+ 	 �z

2

2�c�a
− 2
n −

�z
2

2�c
2 l
 ,

�A20�

depends on the cyclotron and magnetron excitations. Indeed,
the constant shift proportional to �z

2 /2�c�a equally affects
all the spins in the chain and, therefore, does not introduce
any detuning between the spin frequencies. This term can be
taken into account by redefining the spin precession fre-
quency �s. On the contrary, the last two terms of Eq. �A20�
introduce a detuning between the spin frequencies along the
chain, since the cyclotron and magnetron oscillators are in a
thermal mixture with fluctuating excitation numbers n and l.
As a consequence each spin in the chain acquires a different
frequency depending on the thermal state of the electron mo-
tion. This leads, as we will show, to a reduction of the system
fidelity.

For the sake of simplicity, we restrict our analysis to the
case of just two electrons in the chain. The corresponding
Hamiltonian reads

Hsd =
�

2
�1�1

z +
�

2
�2�2

z + 2�Jxy��1
�+��2

�−� + �1
�−��2

�+��

− 2�Jz�1
z�2

z , �A21�

with �i=�s+
��ni , li�. The unitary evolution of the system
gives at the swapping time tex=� /4Jxy

�↓�1�↓�2 → e2iJztexe�i/2���1+�2�tex�↓�1�↓�2, �A22�
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�↑�1�↓�2 → e−2iJztex�−
i

�1 + �2
sin	�

2
�1 + �2
�↓�1�↑�2

+ �cos	�

2
�1 + �2
 +

i�
�1 + �2

sin	�

2
�1 + �2



��↑�1�↓�2� , �A23�

where ���s / �4Jxy� with

�s�n1,l1,n2,l2� � �2 − �1 = �2�z�	 �z
2

2�c�a
− 2
�n2 − n1�

−
�z

2

2�c
2 �l2 − l1�
 . �A24�

Hence, by using relations �A22� and �A23�, we obtain the
system fidelity

Fd��� =
1

3
�1 +

cos	 ��

2

sin	�

2
�1 + �2


�1 + �2
+

sin2	�

2
�1 + �2


1 + �2 � ,

�A25�

when the cyclotron and magnetron oscillators are in the
states �ni , li�, with i=1,2. Consequently, in the case of a ther-
mal mixture, the expression for the fidelity becomes

F � �
n1,l1

�
n2,l2

Pn̄�n1�Pl̄�l1�Pn̄�n2�Pl̄�l2��Fd	�s�n1,l1,n2,l2�
4Jxy 

 .

�A26�

We use this formula together with Eq. �A18� to numerically
evaluate the fidelity of our system.
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