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We investigate the entanglement transfer from a bipartite continuous-variable �CV� system to a pair of
localized qubits assuming that each CV mode couples to one qubit via the off-resonance Jaynes-Cummings
interaction with different interaction times for the two subsystems. First, we consider the case of the CV system
prepared in a Bell-like superposition and investigate the conditions for maximum entanglement transfer. Then
we analyze the general case of two-mode CV states that can be represented by a Schmidt decomposition in the
Fock number basis. This class includes both Gaussian and non-Gaussian CV states, as, for example, twin-beam
�TWB� and pair-coherent �TMC, also known as two-mode-coherent� states, respectively. Under resonance
conditions, equal interaction times for both qubits and different initial preparations, we find that the entangle-
ment transfer is more efficient for TMC than for TWB states. In the perspective of applications such as in
cavity QED or with superconducting qubits, we analyze in detail the effects of off-resonance interactions
�detuning� and different interaction times for the two qubits, and discuss conditions to preserve the entangle-
ment transfer.
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I. INTRODUCTION

Entanglement is the main resource of quantum informa-
tion processing �QIP�. Indeed, much attention has been de-
voted to generation and manipulation of entanglement either
in discrete or in continuous variable �CV� systems. Crucial
and rewarding steps in the development of QIP are now the
storage of entanglement in quantum memories �1,2� and the
transfer of entanglement from localized to flying registers
and vice versa. Indeed, effective protocols for the distribu-
tion of entanglement would allow one to realize quantum
cryptography over long distances �3�, as well as distributed
quantum computation �4� and distributed network for quan-
tum communication purposes.

Few schemes have been suggested either to entangle lo-
calized qubits, e.g., distant atoms or superconducting quan-
tum interference devices, using squeezed radiation �5� or to
transfer entanglement between qubits and radiation �6–8�. As
a matter of fact, efficient sources of entanglement have been
developed for CV systems, especially by quantum-optical
implementations �9�. Indeed, multiphoton states might be op-
timal when considering long-distance communication, where
they may travel through free space or optical fibers, in view
of the robustness of their entanglement against losses �10�.

The entanglement transfer from free propagating light to
atomic systems has been achieved experimentally in recent
years �1,11�. From the theoretical point of view, the resonant
entanglement transfer between a bipartite continuous vari-
able systems and a pair of qubits has been analyzed in �12�
where the CV field is assumed to be a two-mode squeezed
vacuum or twin-beam �TWB� state �13� with the two modes
injected into spatially separate cavities. Two identical atoms,

both in the ground state, are then assumed to interact reso-
nantly, one for each cavity, with the cavity mode field for an
interaction time shorter than the cavity lifetime. More re-
cently, a general approach has been developed �6�, in which
two static qubits are isolated by the real world by their own
single mode bosonic local environment that also rules the
interaction of each qubit with an external driving field as-
sumed to be a general broadband two-mode field. This model
may be applied to describe a cavity QED setup with two
atomic qubits trapped into remote cavities. In Ref. �7� the
problems related to different interaction times for the two
qubits are pointed out, either for atomic qubits or in the case
of superconducting quantum interference devices �SQUID�
qubits. The possibility to transfer the entanglement of a TWB
radiation field to SQUIDS has been also investigated in �8�.

Very recently, in �14� the entanglement transfer process
between CV and qubit bipartite systems was investigated.
Their scheme is composed by two atoms placed into two
spatially separated identical cavities where the two modes
are injected. They consider resonant interaction of two-mode
fields, such as two-photon superpositions, entangled coherent
states, and TWB, discussing conditions for maximum en-
tanglement transfer.

The inverse problem of entanglement reciprocation from
qubits to continuous variables has been discussed in �15� by
means of a model involving two atoms prepared in a maxi-
mally entangled state and then injected into two spatially
separated cavities, each one prepared in a coherent state. It
was shown that when the atoms leave the cavity their en-
tanglement is transferred to the post-selected cavity fields.
The generated field entanglement can be then transferred
back to qubits, i.e, to another couple of atoms flying through
the cavities. In a recent paper �16� the relationship between
entanglement, mixedness, and energy of two qubits and two
mode Gaussian quantum states has been analyzed, whereas a
strategy to enhance the entanglement transfer between TWB
states and multiple qubits has been suggested in �17�.
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In this paper we investigate the dynamics of a two-mode
entangled state of radiation coupled to a pair of localized
qubits via the off-resonance Jaynes-Cummings interaction.
We focus our attention on the entanglement transfer from
radiation to atomic qubits, though our analysis may be em-
ployed also to describe the effective interaction of radiation
with superconducting qubits. In particular, compared to pre-
vious analysis, we consider in detail the effects of off-
resonance interactions �detuning� and different interaction
times for the two qubits. As a carrier of entanglement we
consider the general case of two-mode states that can be
represented by a Schmidt decomposition in the Fock number
basis. These include Gaussian states of radiation such as twin
beams, realized by nondegenerate parametric amplifiers by
means of spontaneous down conversion in nonlinear crystals,
as well as non-Gaussian states, as, for example, pair-coherent
�TMC, also known as two-mode coherent� states �18�, that
can be obtained either by degenerate Raman processes �19�
or, more realistically, by conditional measurements �20� and
nondegenerate parametric oscillators �21,22�. In fact, we find
that TMC are more effective in transferring entanglement to
qubits than TWB states and this opens perspectives on the
use of non-Gaussian states in quantum information process-
ing.

The paper is organized as follows: in the next section we
introduce the Hamiltonian model we are going to analyze for
entanglement transfer, as well as the different kinds of two-
mode CV states that provide the source of entanglement. In
Sec. III we consider resonant entanglement transfer, which is
assessed by evaluating the entanglement of formation for the
reduced density matrix of the qubits after a given interaction
time. In Secs. IV and V we analyze in some detail the effects
of detuning and of different interaction times for the two
qubits. Section VI closes the paper with some concluding
remarks.

II. HAMILTONIAN MODEL

We address the entanglement transfer from a bipartite CV
field to a pair of localized qubits assuming that each CV
mode couples to one qubit via the off-resonance Jaynes-
Cummings interaction �as it happens by injecting the two
modes in two separate cavities�. We allow for different inter-
action times for the two subsystems and assume �14� that the
initial state of the two modes is described by a Schmidt
decomposition in the Fock number basis

�x� = �
n=0

�

cn�x��nn� , �1�

where �nn�= �n� � �n� and the complex coefficients cn�x�
= �nn �x� satisfy the normalization condition �n=0

� �cn�x��2=1.
The parameter x is a complex variable that fully character-
izes the state of the field. Notice that a scheme for the gen-
eration of any two-mode correlated photon number states of
the form �1� has been recently proposed �20�. The simplest
example within the class �1� is given by the Bell-like two-
mode superposition �TSS�

�x� = c0�00� + c1�11� . �2�

Equation �1� also describes relevant bipartite states, as, for
example, TWB and TMC states. In these cases we can re-
write the coefficients as cn�x�=c0�x�fn�x�, where

TWB: c0�x� = 	1 − �x�2, fn�x� = xn, �3�

TMC: c0�x� =
1

	I0�2�x��
, fn�x� =

xn

n!
, �4�

where I0�y� denotes the modified Bessel function of zero
order. For TWB states the parameter �x� is related to the
squeezing parameter, and ranges from 0 �no squeezing� to 1
�infinite squeezing�. For TMC states, �x� is related to the
squared field amplitude and can take any positive values. The
bipartite states described by Eq. �1� show perfect photon
number correlations. The joint photon number distribution
has indeed the simple form Pnk�x�=�nk�cn�x��2. For the TSS
states the joint photon distribution is given by P00= �c0�2 and
P11=1− P00, whereas for TWB and TMC it can be written as
Pnk�x�=�nkP00�x��fn�x��2. As we will see in the following the
photon distribution plays a fundamental role in understand-
ing the entanglement transfer process.

The average number of photon of the states �x�, i.e., �N�
��x�= �x �a†a+b†b �x�, a and b being the field mode opera-
tors, is related to the dimensionless parameter �x� by

TWB: �N��x� = 2
�x�2

1 − �x�2
, �5�

TMC: �N��x� =
2�x�I1�2�x��

I0�2�x��
, �6�

where I1�y� denotes the modified Bessel function of first or-
der. In Fig. 1 we show the first four terms of the photon
distribution for TMC and TWB states, respectively, as func-
tions of the mean photon number.

The states in Eq. �1� are pure states, and therefore we can
evaluate their entanglement by the Von Neumann entropy
Svn�x� of the reduced density matrix of each subsystem. For
the TSS case we simply have

Svn = − P00 log2 P00 − �1 − P00�log2�1 − P00� , �7�

and, of course, the maximum value of 1 is obtained for P00

= P11= 1
2 . The corresponding state ��+�= �00�+�11�

	2
is a Bell-like

maximally entangled state. For TWB states the Von Neu-
mann entropy can be written as

Svn�x� = − log2�1 − �x�2� −
2�x�2

1 − �x�2
log2�x� , �8�

whereas for TMC states we use the general expression

Svn�x� = − log2 P00�x� − P00�x��
i=1

�

�f i�x��2 log2�f i�x��2. �9�

It is clear that the Von Neumann �VN� entropy diverges in
the limit �x�→1 �for TWB� and in the limit �x�→� �for
TMC� because the probability P00�x� vanishes. The VN en-
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tropy at fixed energy �average number of photons of the two
modes� is maximized by the TWB expression �8�. For this
reason TWB states are also referred to as maximal entangled
states of bipartite CV systems.

We consider the interaction of each radiation mode with a
two-level atom flying through the cavity. If the interaction
time is much shorter than the lifetime of the cavity mode and
the atomic decay rates, we can neglect dissipation in system
dynamics. On the other hand, we consider the general case of
atoms with different interaction times and coupling con-
stants, prepared in superposition states, and off-resonance in-
teraction between each atom and the relative cavity mode.
All these features can be quite important in practical imple-
mentations such as in cavity QED systems with Rydberg
atoms and high-Q microwave cavities �23�, as noticed in �7�.
In the interaction picture, the interaction Hamiltonian Hi is
given by

Hi = − ��Aa†a − ��Bb†b + �gA�a†SA,−
12 + aSA,+

12 �

+ �gB�b†SB,−
12 + bSB,+

12 � , �10�

where SA,±
12 and SB,±

12 are the lowering and raising atomic op-
erators of the two atoms and �A, �B denote the detunings
between each mode frequency and the corresponding atomic
transition frequency. The initial state of the whole system,

���0�� = �x� � ���0��A � ���0��B,

evolves by means of the unitary operator U���=exp
�− i

�Hi�� that can be factorized as the product of two off-
resonance Jaynes-Cummings evolution operators UA��� and
UB��� �24� related to each atom-mode subsystem. For the
initial state of both atoms we considered the following gen-
eral superposition of their excited ��2�� and ground ��1��
states:

���0��A = A2�2�A + A1�1�A,

���0��B = B2�2�B + B1�1�B, �11�

where �A2�2+ �A1�2=1 and �B2�2+ �B1�2=1. This includes the
most natural and widely investigated choice of both atoms in
the ground states, but will also allow us to investigate the
effect of different interaction times.

Due to the linearity of evolution operator U��� and its
factorized form, the whole system state ������ at a time � can
be written as

������ = c0�x��
n=0

�

fn�x�UA�����n�0��A � UB�����n�0��B,

�12�

where ��n�0��A,B= ���0��A,B � �n�A,B. In each of two
atom-field subspaces A and B we expand the wave
function on the basis 
�2��k� , �1��k+1��k=0

� � 
�0��1��. The
coefficients cA,1,k�0�= A�2�A�k � ��n�0��A and cB,1,k�0�
= B�2�B�k � ��n�0��B of the initial states are

cA,1,0�0� = A1�n,0, cB,1,0�0� = B1�n,0,

cA,2,k�0� = A2�k,n, cB,2,k�0� = B2�k,n,

cA,1,k+1�0� = A1�k+1,n, cB,1,k+1�0� = B1�k+1,n. �13�

The Jaynes-Cummings interaction couples only the coeffi-
cients of each variety K whereas cA,1,0�0�, cB,1,0�0� do not
evolve. Therefore, for each variety in the subspaces A and B
the evolved coefficients can be obtained by applying the off-
resonance Jaynes-Cummings 2�2 matrix Ujk so that

c2,k��� = U11�k,��c2,k�0� + U12�k,��c1,k+1�0� ,

c1,k+1��� = U21�k,��c2,k�0� + U22�k,��c1,k+1�0� ,

where

U11�k,�� = cos�Rk�

2

 − i

�

Rk
sin�Rk�

2

 ,

U12�k,�� = −
2ig	k + 1

Rk
sin�Rk�

2

 = U21�k,�� ,

U22�k,�� = cos�Rk�

2

 + i

�

Rk
sin�Rk�

2

 , �14�

where the generalized Rabi frequencies are Rk

=	4g2�k+1�+�2. To derive the evolved atomic density op-
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FIG. 1. The first four terms Pnn, n=0, . . . ,3 of the joint photon
distribution of the state �x� as a function of average photon number
�N�. �a� TMC, �b� TWB.
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erator 	a
1,2 we first consider the statistical operator of

the whole system 	���= ������������� and then we trace
out the field variables. The explicit expressions of the
density matrix elements in the standard basis

�2�A�2�B , �2�A�1�B , �1�A�2�B , �1�A�1�B� are reported in the Ap-
pendix.

III. ENTANGLEMENT TRANSFER AT RESONANCE

As an example we consider exact resonance for both
atom-field interactions, equal coupling constant g, and the
same interaction time �. For the initial atomic states we will
discuss the following three cases: both atoms in the ground
state ��1�A�1�B�, both atoms in the excited state ��2�A�2�B�, and
one atom in the excited state and the other one in the ground
state ��1�A�2�B�. In all these cases the atomic density matrix
after the interaction 	a

1,2 has the following form:

	a
1,2 =�

	11 0 0 	14

0 	22 0 0

0 0 	33 0

	14
* 0 0 	44

� . �15�

The presence of the qubit entanglement can be revealed by
the Peres-Horodecki criterion �25� based on the existence of
negative eigenvalues of the partial transpose of Eq. �15�.
From the expressions of the eigenvalues


1
PT = 	44, 
2

PT = 	11,


3,4
PT =

	22 + 	33 ± 	�	22 − 	33�2 + 4�	14�2

2
, �16�

we see that only 
4
PT can assume negative values. In the case

of TSS the expression of 
4
PT can allow us to derive in a

simple way analytical results for the conditions of maximum
entanglement transfer as a function of dimensionless interac-
tion time g�, as well as to better understand the results in the
case of TWB and TMC states. In order to quantify the
amount of the entanglement and, in turn, to assess the en-
tanglement transfer we choose to adopt the entanglement of
formation �F �26�. We rewrite the atomic density matrix in
the magic basis �27� 	a

MB and we evaluate the eigenvalues of
the non-Hermitian matrix R=	a

MB�	a
MB�*:


1,2
R = 	22	33, 
3,4

R = �		11	44 ± �	14��2. �17�

In this way we calculate the concurrence �28� C
=max
0,�1−�2−�3−�4�, where �i=	
i

R are the square
roots of the eigenvalues 
i

R selected in the decreasing order,
and then evaluate the entanglement of formation

�F = −
1 − 	1 − C2

2
log2

1 − 	1 − C2

2

−
1 + 	1 − C2

2
log2

1 + 	1 − C2

2
. �18�

In the case of both qubits initially in the ground state,
�1�A�1�B, the expression of 
4

PT simply reduces to 	22−�	14�,

because 	22=	33, and it is possible to derive the following
simple formula:


4
PT�P00,g�� = sin2�g�� � ��1 − P00�cos2�g��

− 	�1 − P00�P00� . �19�

We note that only the vacuum Rabi frequency is involved, a
fact that greatly simplifies the analysis of atom-field interac-
tion compared to all the other atomic configurations. Let us
first consider the Bell-like state �P00= 1

2
� and look for the g�

values maximizing the entanglement of the two atoms. The
solution of equation 
4

PT� 1
2 ,g��=− 1

2 is given by g�= 

2 �2k

+1� with k=0,1 ,2 , . . . . The above condition is also relevant

0
0.5

1

0

6

12
0

0.5

1

P
00

gτ

ε
F

0
5

10

0

6

12
0

0.5

1

<N>
gτ

ε
F

0
5

10

0

6

12
0

0.5

1

<N>gτ

ε
F

(a)

(b)

(c)

FIG. 2. Entanglement of formation �F of the qubit systems as a
function of the dimensionless time g� and the CV state parameter
P00 �a� or the average number of photons �N� �b,c� for the case of
both atoms initially in the ground state. �a� TSS, �b� TWB, �c�
TMC.
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to explain the entanglement transfer for TWB and TMC
states, as discussed below. To evaluate the entanglement
transfer also for not maximally entangled TSS states in Eq.
�2�, we calculate the entanglement of formation as a function
of both the dimensionless interaction time g� and the prob-
ability P00. As it is apparent from Fig. 2�a�, there are large
and well-defined regions where �F�0. In particular, the ab-
solute maxima ��F=1� occur exactly at P00=0.5 and for g�
values in agreement with the above series. In addition, if we
consider the sections at these g� values, we obtain exact
coincidence with the Von Neumann entropy function
Svn�P00�. Therefore, complete entanglement transfer from the
field to the atoms is possible not only for the Bell state,
though only for the Bell state may we obtain the transferral
of 1 ebit. In Fig. 2�b� we consider the entanglement of for-
mation vs g� and mean photon number �N� in the TWB case.
We note that the regions of maximum entanglement corre-
spond to those of TSS states and the maxima occur at g�
values close to 


2 �2k+1�, as shown in Table I. We can ex-
plain this by considering the TWB photon distribution �see
Fig. 1�b��. We note that the terms P00 and P11 are always
greater or equal than the other terms Pnn �n�1� and that for
�N��2 they dominate the photon distribution �P00+ P11

�1�. Therefore, the main contribution to entanglement trans-
fer is obtained from the above two terms as for the TSS state.
In order to explain the absolute maximum found in the sec-
ond peak at �N�=1.82, we note that in this case P00 and P11

are closer to the value 0.5 of a Bell state. In addition, for
large �N� and g� values, there are small regions �not visible
in the figure� where entanglement transfer is possible. This is
due to the terms Pnn �n�1� in the photon distribution. In
Fig. 2�c� we show the TMC case and we note that for �N�
�4 there are four well-defined peaks where the entangle-
ment is higher than in the TWB case. Also in this case the g�
values of the maxima �see Table II� nearly correspond to

those of TSS states. As in the previous case this can be
explained by the TMC photon distribution �see Fig. 1�a��,
where for �N��4 the dominant components of the photon
distribution are P00 and P11. The absolute maximum is in the
second peak at �N�=1.09 because P00 and P11 are even
closer to the Bell state than in the other peaks, and this also
explains the larger entanglement value �F. For �N��4 and
large g� there are regions with considerable entanglement
values, due to the fact that P00 and P11 are always smaller
than the other terms Pnn �n�1� that dominate the atom-field
interaction.We note that the maxima of �F are higher than in
the TWB case.

A similar analysis can be done in the case of initially
excited atoms �2�A�2�B. For the TSS states we can again write
a simple equation for the eigenvalue of the partial transpose:


4
PT�P00,g�� = �1 − P00�sin2�	2g��cos2�	2g�� + sin2�g��

��P00 cos2�g�� − 	�1 − P00�P00 cos2�	2g��� ,

�20�

where, with respect to Eq. �19�, an additional frequency is
present. For the Bell state we can look for g� values maxi-

TABLE I. Maxima of the qubit entanglement of formation �F

for the resonant interaction with TWB and for both qubits initially
in the ground state �see Fig. 2�b��.

g�max �N�max �F,max P00 P11

1.56 0.87 0.64 0.69 0.21

4.61 1.82 0.81 0.52 0.25

7.85 1.07 0.68 0.65 0.23

11.03 1.07 0.68 0.65 0.23

TABLE II. Maxima of the qubit entanglement of formation �F

for the resonant interaction with TMC and for both qubits initially
in the ground state �see Fig. 2�c��.

g�max �N�max �F,max P00 P11

1.56 0.89 0.84 0.61 0.34

4.66 1.09 0.90 0.54 0.39

7.85 0.99 0.87 0.57 0.37

11.01 0.99 0.88 0.57 0.37
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FIG. 3. �a� The function 
4
PT� 1

2 ,g��+ 1
2 as in Eq. �20� for the

Bell-state case with both atoms in the excited state. �b� Entangle-
ment of formation �F vs P00 for TSS states compared to Von Neu-
mann entropy �dashed line� for some values of g�, corresponding to
the following numbered minima: �1� 2.03, �2� 4.53, �3� 11.07, �4�
26.68.
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mizing the entanglement transfer. In this case the problem
can be solved numerically and we found, for example, in the
range g�=0−50, that only for g�=26.68� 17


2 we can solve
the equation 
4

PT� 1
2 ,g��=− 1

2 with a good approximation as
shown in Fig. 3�a�. In Fig. 3�b� we consider also nonmaxi-
mally entangled TSS states, showing the entanglement of
formation �F vs the probability P00 for g� values correspond-
ing to numbered minima in Fig. 3�a�. We see that only for
g�=26.68 a Bell state can transfer 1 ebit of entanglement,
but the entanglement transfer is complete also for all the
other P00 values. A nearly complete transfer can be obtained
also for g�=11.07, but in the other cases the entanglement
transfer is only partial even for the Bell state. We note that in
�14� it is shown that for g�=11.07 one finds maximum en-
tanglement transfer for both atomic states �1�A�1�B, �2�A�2�B
but starting with a different Bell-like field state ��−�
= �10�−�01�

	2
.

In the TWB case we find large entanglement transfer for
g� values very close to the ones of minima �2–4� for the TSS
states in Fig. 3�a�. Some g� values corresponding to maxima
of �F in the case of both atoms in the ground state are miss-
ing, and the best value of �F in the considered range is at
g�=26.65. Also for the TMC states for small �N� we have
large entanglement transfer corresponding to the above g�
values, but in addition for �N��4 and large g� values there
are regions with considerable entanglement.

Finally, in the case of one atom in the excited state and the
other one in the ground state ��1�A�2�B�, it is not possible to
write for TSS states a simple equation such as Eq. �20� be-
cause in the atomic density matrix, Eq. �15�, 	22�	33, unlike

in the previous cases. However, there are again only two
frequencies involved as in the TSS case and we can do a
similar analysis as in the above case of both atoms in the
excited state. Here we only mention that for dimensionless
interaction times corresponding to common maxima for the
different atomic states, the maxima of �F are rather lower
than in the cases ��1�A�1�B� and ��2�A�2�B�, and, more general,
the transfer of entanglement is sensibly reduced as a function
of �N�.

IV. DETUNING EFFECT

From the practical point of view it is important to evaluate
the effects of the off-resonant interaction between the atoms
and their respective cavity fields, which can be actually pre-
pared in nondegenerate optical parametric processes. We as-
sume equal interaction times for both atoms and we consider
the case of resonant interaction for the atom A and off-
resonant interaction for atom B. As an example we consider
the TMC case, both atoms in the ground state and the value
g�=4.66, corresponding to the maximum entanglement
transfer. In Fig. 4�a� we see that up to detuning values on the
order of the inverse interaction time the entanglement is pre-
served by the off-resonant interaction of atom B. In Fig. 4�b�
we show the more general case of off resonance for both
atoms, taking equal detuning values for simplicity. The effect
is greater than in the previous case but it is negligible again
up to �B�=1.

Figure 5 shows the analogous behavior for the TWB
states for g�=4.61. We see that near the peak of entangle-
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FIG. 4. The off-resonance interaction effect in the TMC case,
both atoms in the ground state and g�=4.66. �a� �A�=0 and �B�
=0 �dashed line�, 1, 2, 3, 4, 5. �b� �A�=�B�=0 �dashed line�, 1, 2,
3, 4, 5.
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FIG. 5. The off-resonance interaction effect in the TWB case,
both atoms in the ground state and g�=4.61. �a� �A�=0 and �B�
=0 �dashed line�, 1, 2, 3, 4, 5. �b� �A�=�B�=0 �dashed line�, 1, 2,
3, 4, 5.
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ment the TMC states seem more robust to off-resonance in-
teraction than the TWB states.

V. EFFECT OF DIFFERENT INTERACTION TIMES

In the previous analysis we considered equal coupling
constant and interaction time for both atoms. However, ex-
perimentally we may realize conditions such that the param-
eter g� is different for the two interactions due to the limita-
tions in the control of both atomic velocities and injection
times or in the values of the coupling constants �7�.

We first consider the effect of different interaction times
at exact resonance and simultaneous injection of both atoms
prepared in the ground state. In Figs. 6�a� and 6�b� we show
the TMC case for g�A=4.66 and g�A=11.01, corresponding
to two maxima of entanglement as discussed in the previous
section, and we investigate the effect of different dimension-
less interaction times for the atom B such that g�B�g�A. We
see that increasing the difference g�A−g�B the entanglement
decreases. However for �N��4, if g�B has a value close to
the one corresponding to a maximum, as for g�A=1.56 in
Fig. 6�a� and g�A=7.85 in Fig. 6�b�, i.e., if g�A−g�B�
, the
entanglement again reaches large values. The effect is more
important for g�A=11.01 where the entanglement transfer is
the same as for equal interaction times. In Figs. 6�c� and
6�d�, we show an analogous effect for the TWB case. We
finally consider the possibility that atom B enters the cavity
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FIG. 6. The effect of different interaction times for �A=�B=0,
and both atoms injected simultaneously in the ground state. In �a�
the TMC case for g�A=4.66 and g�B values �a� 4.66, �b� 4.4, �c� 4.2,
�d� 4.0, �e� 3.8 and 1.56 �dashed line�. In �b� the TMC case for
g�A=11.01 and g�B values �a� 11.01, �b� 10.8, �c� 10.6, �d� 10.4, �e�
10.2 and 7.85 �dashed line�. In �c� the TWB case for g�A=4.61 and
g�B values �a� 4.61, �b� 4.4, �c� 4.2, �d� 4.0, �e� 3.8 and 1.56 �dashed
line�. In �d� the TWB case for g�A=11.03 and g�B values �a� 11.03,
�b� 10.8, �c� 10.6, �d� 10.4, �e� 10.2 and 7.85 �dashed line�.
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FIG. 7. The entanglement of formation �F vs �N� for a time g�
of simultaneous presence of both atoms after the delayed injection
of atom A. Atom A is prepared in the ground state and atom B in
superposition states such that �B1�2=0 �dashed line�, �a� 0.25, �b�
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The TWB case with g�=4.61.
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just before atom A. We assume that when atom A enters its
cavity the two-mode field can still be described by Eq. �1�.
Due to the interaction with its cavity field the atom B will be
in a superposition state B1�1�B+B2�2�B. In this case the
atomic density matrix 	a

12 has only two null elements, 	23
=	32

* , hence we evaluate the eigenvalues of the non-
Hermitian matrix numerically. We calculate the amount of
entanglement transferred to the atoms after the time � of their
simultaneous presence into the respective cavities in the case
of exact resonance, equal coupling constant and velocity, as-
suming atom A prepared in the ground state. In Fig. 7�a� we
show the TMC case for g�=4.66 and different values of �B1�2
ranging from 0 �that is for �1�A�2�B� to 1 �that is �1�A�1�B�. We
note that the behavior of �F gradually changes from one limit
case to the other one for �N��4, when the photon distribu-
tion approaches that of a TSS state. For larger values of �N�
we see the occurrence of a second peak in the case �1�A�2�B.
In Fig. 7�b� we show the TWB case for g�=4.61 and we note
that the gradual change described above occurs for nearly all
values of the mean photon number �N�.

VI. CONCLUSIONS

In this paper we have addressed the transfer of entangle-
ment from a bipartite state of a continuous-variable system to
a pair of localized qubits. We have assumed that each CV
mode couples to one qubit via the Jaynes-Cummings inter-
action and have taken into account the degrading effects of
detuning and of different interaction times for the two sub-
systems. The transfer of entanglement has been assessed by
tracing out the field degrees of freedom after the interaction,
and then evaluating the entanglement of formation of the
reduced atomic density matrix.

We found that CV states initially prepared in a two-state
superposition are the most efficient in transferring entangle-
ment to qubits with Bell-like states able to transfer a full ebit
of entanglement. We have then considered multiphoton
preparation as TWB and TMC states and found that there are
large and well-defined regions of interaction parameters
where the transfer of entanglement is effective. At fixed en-
ergy �average number of photons� TMC states are more ef-
fective in transferring entanglement than TWB states. We
have also found that the entanglement transfer is robust
against the fluctuations of interaction times and is not dra-
matically affected by detuning. This kind of robustness is
enhanced for the transfer of entanglement from non-
Gaussian states as TMC states.

Overall, we conclude that the scheme analyzed in this
paper is a reliable and robust mechanism for the engineering
of the entanglement between two atomic qubits and that bi-
partite non-Gaussian states are promising resources in order
to optimize this protocol. Finally, we mention that our analy-
sis may also be employed to assess the entanglement transfer
from radiation to superconducting qubits.
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APPENDIX: ATOMIC DENSITY MATRIX ELEMENTS

The elements of the 4�4 atomic density matrix 	a
12 in the

standard basis 
�2�A�2�B , �2�A�1�B , �1�A�2�B , �1�A�1�B� are as
follows:

	11�x� = �c0�x��2��A2�2�B2�2�
j=0

�

�f j�x��2�UA11�j,���2�UB11�j,���2 + A1
*A2B1

*B2�
j=0

�

f j�x�f j+1
* �x�UA11�j,��UB11�j,��UA12

* �j,��UB12
* �j,��

+ �A2�2�B1�2�
j=0

�

�f j+1�x��2�UA11�j + 1,���2�UB12�j,���2 + �A1�2�B2�2�
j=0

�

�f j+1�x��2�UA12�j,���2�UB11�j + 1,���2

+ �A1�2�B1�2�
j=0

�

�f j+1�x��2�UA12�j,���2�UB12�j,���2 + A1A2
*B1B2

*�
j=0

�

f j+1�x�f j
*�x�UA12�j,��UB12�j,��UA11

* �j,��UB11
* �j,��� ,

�A1�

	22�x� = �c0�x��2��A2�2�B2�2�
j=1

�

�f j−1�x��2�UA11�j − 1,���2�UB21�j − 1,���2 + A1
*A2B1

*B2�
j=1

�

f j−1�x�f j
*�x�UA11�j − 1,��UB21�j

− 1,��UA12
* �j − 1,��UB22

* �j − 1,�� + �A2�2�B1�2��
j=1

�

�f j�x��2�UA11�j,���2�UB22�j − 1,���2 + �UA11�0,���2�
+ �A1�2�B2�2�

j=1

�

�f j�x��2�UA12�j − 1,���2�UB21�j,���2 + �A1�2�B1�2�
j=1

�

�f j�x��2�UA12�j − 1,���2�UB22�j − 1,���2
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+ A1A2
*B1B2

*�
j=1

�

f j�x�f j−1
* �x�UA12�j − 1,��UB22�j − 1,��UA11

* �j − 1,��UB21
* �j − 1,��� , �A2�

	33�x� = �c0�x��2��A2�2�B2�2�
j=0

�

�f j�x��2�UA21�j,���2�UB11�j,���2 + A1
*A2B1

*B2�
j=0

�

f j�x�f j+1
* �x�UA21�j,��UB11�j,��UA22

* �j,��UB12
* �j,��

+ �A1�2�B2�2��
j=1

�

�f j�x��2�UA22�j − 1,���2�UB11�j,���2 + �UB11�0,���2� + �A2�2�B1�2�
j=0

�

�f j+1�x��2�UA21�j + 1,���2�UB12�j,���2

+ �A1�2�B1�2�
j=0

�

�f j+1�x��2�UA22�j,���2�UB12�j,���2 + A1A2
*B1B2

*�
j=0

�

f j+1�x�f j
*�x�UA22�j,��UB12�j,��UA21

* �j,��UB11
* �j,��� ,

�A3�

	44�x� = �c0�x��2��A2�2�B2�2�
j=1

�

�f j−1�x��2�UA21�j − 1,���2�UB21�j − 1,���2 + A1
*A2B1

*B2�
j=1

�

f j−1�x�f j
*�x�UA21�j − 1,��UB21�j

− 1,��UA22
* �j − 1,��UB22

* �j − 1,�� + �A2�2�B1�2��
j=1

�

�f j�x��2�UA21�j,���2�UB22�j − 1,���2 + �UA21�0,���2�
+ �A1�2�B2�2��

j=1

�

�f j�x��2�UA22�j − 1,���2�UB21�j,���2 + �UB21�0,���2� + �A1�2�B1�2��
j=1

�

�f j�x��2�UA22�j − 1,���2 + �UB22�j

− 1,���2 + 1� + A1A2
*B1B2

*�
j=1

�

f j�x�f j−1
* �x�UA22�j − 1,��UB22�j − 1,��UA21

* �j − 1,��UB21
* �j − 1,��� , �A4�

	12�x� = �c0�x��2��A2�2B1
*B2��

j=1

�

�f j�x��2�UA11�j,���2UB11�j,��UB22
* �j − 1,�� + �UA11�0,���2UB11�0,���

+ �A1�2B2B1
*�

j=1

�

�f j�x��2�UA12�j − 1,���2UB11�j,��UB22
* �j − 1,�� + A1A2

*�B2�2�
j=1

�

f j�x�f j−1
* �x�UA12�j − 1,��UB11�j,��UA11

* �j

− 1,��UB21
* �j − 1,�� + A1A2

*�B1�2��
j=1

�

f j+1�x�f j
*�x�UA12�j,��UB12�j,��UA11

* �j,��UB22
* �j − 1,��

+ f1�x�UA12�0,��UB12�0,��UA11
* �0,���� , �A5�

	13�x� = �c0�x��2��A2�2B1B2
*�

j=0

�

f j+1�x�f j
*�x�UA11�j + 1,��UB12�j,��UA21

* �j,��UB11
* �j,��

+ �A1�2B1B2
*��

j=1

�

f j+1�x�f j
*�x�UA12�j,��UB12�j,��UA22

* �j − 1,��UB11
* �j,�� + f1�x�UA12�0,��UB12�0,��UB11

* �0,���
+ A1

*A2�B2�2��
j=1

�

�f j�x��2UA11�j,���UB11�j,���2UA22
* �j − 1,�� + UA11�0,���UB11�0,���2� + A1

*A2�B1�2�
j=0

�

�f j+1�x��2UA11�j

+ 1,���UB12�j,���2UA22
* �j,��� , �A6�
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	14�x� = �c0�x��2��A2�2�B2�2�
j=1

�

f j�x�f j−1
* �x�UA11�j,��UB11�j,��UA21

* �j − 1,��UB21
* �j − 1,��

+ A1
*A2B1

*B2��
j=1

�

�f j�x��2UA11�j,��UB11�j,��UA22
* �j − 1,��UB22

* �j − 1,�� + UA11�0,��UB11�0,���
+ �A2�2�B1�2��

j=1

�

f j�x�f j−1
* �x�UA11�j + 1,��UB12�j,��UA21

* �j,��UB22
* �j − 1,�� + f1�x�UA11�1,��UB12�0,��UA21

* �0,���
+ �A1�2�B2�2��

j=1

�

f j+1�x�f j
*�x�UA12�j,��UB11�j + 1,��UA22

* �j − 1,��UB21
* �j,�� + f1�x�UA12�0,��UB11�1,��UB12

* �0,���
+ �A1�2�B1�2��

j=1

�

f j+1�x�f j
*�x�UA12�j,��UB12�j,��UA22

* �j − 1,��UB22
* �j − 1,�� + f1�x�UA12�0,��UB12�0,���

+ A1A2
*B1B2

*�
j=1

�

f j+1�x�f j−1
* �x�UA12�j,��UB12�j,��UA21

* �j − 1,��UB21
* �j − 1,��� , �A7�

	23�x� = �c0�x��2A1
*A2B1B2

*��
j=0

�

�f j�x��2UA11�j,��UB22�j − 1,��UA22
* �j − 1,��UB11

* �j,�� + UA11�0,��UB11
* �0,��� , �A8�

	24�x� = �c0�x��2��A2�2B1B2
*�

j=1

�

f j�x�f j−1
* �x�UA11�j,��UB22�j − 1,��UA21

* �j − 1,��UB21
* �j − 1,��

+ �A1�2B1B2
*��

j=1

�

f j+1�x�f j
*�x�UA12�j,��UB22�j,��UA22

* �j − 1,��UB21
* �j,�� + f1�x�UA12�0,��UB22�0,��UB21

* �0,���
+ A1

*A2�B2�2��
j=1

�

�f j�x��2UA11�j,���UB21�j,���2UA22
* �j − 1,�� + UA11�0,���UB21�0,���2� + A1

*A2�B1�2��
j=1

�

�f j�x��2UA11�j,��

��UB22�j − 1,���2UA12
* �j − 1,�� + UA11�0,���� , �A9�

	34�x� = �c0�x��2��A2�2B1
*B2��

j=1

�

�f j�x��2�UA21�j,���2UB11�j,��UB22
* �j − 1,�� + �UA21�0,���2UB11�0,���

+ �A1�2B1
*B2��

j=1

�

�f j�x��2UA22�j − 1,��UB11�j,��UA22
* �j − 1,��UB22

* �j − 1,�� + UB11�0,���
+ A1A2

*�B2�2�
j=1

�

f j�x�f j−1
* �x�UA22�j − 1,��UB11�j,��UA21

* �j − 1,��UB21
* �j − 1,��

+ A1
*A2�B1�2��

j=1

�

f j+1�x�f j
*�x�UA22�j,��UB12�j,��UA21

* �j,��UB22
* �j − 1,�� + f1�x�UA22�0,��UB12�0,��UA21

* �0,���� .
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