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Random-bit generators �RBGs� are key components of a variety of information processing applications
ranging from simulations to cryptography. In particular, cryptographic systems require “strong” RBGs that
produce high-entropy bit sequences, but traditional software pseudo-RBGs have very low entropy content and
therefore are relatively weak for cryptography. Hardware RBGs yield entropy from chaotic or quantum physi-
cal systems and therefore are expected to exhibit high entropy, but in current implementations their exact
entropy content is unknown. Here we report a quantum random-bit generator �QRBG� that harvests entropy by
measuring single-photon and entangled two-photon polarization states. We introduce and implement a quantum
tomographic method to measure a lower bound on the “min-entropy” of the system, and we employ this value
to distill a truly random-bit sequence. This approach is secure: even if an attacker takes control of the source
of optical states, a secure random sequence can be distilled.
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Random numbers are commonly used in computer simu-
lations, lotteries, and, most importantly, cryptographic appli-
cations. Cryptographically strong random numbers need to
have two properties: good statistical behavior and unpredict-
ability. The numbers need to be distributed according to a
unform distribution, and an attacker should not be able to
predict the corresponding sequence of bits. Unpredictability
is quantified using the entropy content of a sequence gener-
ated by a random-bit generator �RBG� �1�.

The entropy content can be used to grade RBG security,
i.e., the ability of the generator to withstand attacks. Most
applications generate long strings of bits using algorithms
known as pseudorandom number generators, with seeds cho-
sen by the user. The entropy content of the strings generated
in this fashion is small and is ultimately determined by the
length of the �short� seed. This deficiency makes pseudoran-
dom numbers unsuitable for the most demanding crypto-
graphic applications. This fact has been recognized by both
the information theory community and the computer security
industry �2,3�. Hardware RBGs are an alternative to pseudo-
RBGs because they harvest and distill entropy from physical
systems. The most recent examples of hardware RBGs stress
the importance of directly measuring the entropy content of
the source �4�.

In principle, random bits could be produced by classical
physical processes that are too complicated to predict per-
fectly over long times, such as thermal noise. For example,
Denker has used thermal noise fluctuations in a resistor as a
randomness source, and relied on an estimate of the entropy
of the noise process to extract a random bit sequence from
digits derived from that source �4�. Further, sufficiently pow-
erful data processing systems with appropriate models or al-
gorithms may become able to predict chaotic or thermal pro-
cesses, even if only for a short time.

In quantum phenomena the outcome of a class of mea-
surements is governed by probabilistic laws: the statistical
properties of repeated measurements can be predicted, but
the result of each measurement is random. This irreducible
randomness of the quantum phenomena is postulated here
and is the basis of our RBG. Distinguishing between irreduc-
ible quantum randomness and classical randomness, that can
in principle be controlled and influenced, is at the basis of
our RBG security.

Quantum measurements can be easily used to generate
random bits. For example, if we detect the transmission and
reflection of a 45°-polarized photon �a “qubit”� on a
horizontal-vertical �H-V� polarizing beam-splitter with two
photomultipliers, each detector has the same probability to
register an event, but at any given time we cannot predict
which detector will record the next event. By assigning the
value 0 to a detection in one of the detectors and 1 to the
other we can build sequences of random numbers. Similarly,
we can use pairs of polarization-entangled photons that are
described by

��+� =
�H1V2� + �V1H2�

�2
, �1�

so that appropriately balanced coincidence measurements in
the H1-V2 and V1-H2 basis yield equiprobable outcomes.
This type of quantum coin tossing has already been exploited
for the generation of random bits �5–7�. None of those quan-
tum RBGs presented a security analysis or a method to
verify integrity.

In this work we demonstrate a quantum random-bit gen-
erator �QRBG� based on measurements made on quantum
states that span a 2�2 Hilbert �sub�space. While there are a
number of quantum systems that could readily satisfy this
constraint, we have emphasized an optical implementation
because of the ease with which quantum states can be gen-
erated and measured. We follow recent work on entropic*Electronic address: marco.fiorentino@hp.com
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statistical analysis of random sources �8–10�, and we mea-
sure a quantity known as “min-entropy,” H�, and use the
value of H� to distill a random sequence of bits from a series
of detection events using a hash function.

Our approach has two main advantages over existing QR-
BGs. First, we are able to measure and monitor continuously
the randomness of the bits, relying on a physical property of
the system. We do not rely on a posteriori statistical tests of
generated bit sequences, because these tests cannot prove
randomness unless they analyze infinite sequences. Second,
using this protocol allows us to endow an attacker with more
capabilities than any other RBG: even if she takes complete
control of the source of optical states, so long as H��0 a
sequence of bits nevertheless can be extracted that is arbi-
trarily close to a string of bits that is perfectly random �10�.

To define and measure the security of a RBG we must
define the adversarial context in which it operates. In such a
scheme one has to assume that the attacker has complete
knowledge of the protocol used and can, in principle, control
or influence part of it. This is similar to the scenarios used
for quantum key distribution in which the attacker has com-
plete control of the communication channels and knowledge
of the protocol but has no access to the transmission stations.

In our scenario, the user �Alice� can choose the quantum
system on which she makes a measurement to generate ran-
dom bits but the adversary �Eve� controls the state of the
quantum system but has no access to the measurement appa-
ratus �the tomography setup, in our case�. Notice that Alice is
not allowed to exploit other degrees of freedom different
from the ones under Eve’s control. This restriction is due to
the fact that one must assume an attacker has knowledge of
the protocol and will try to gain control of the degrees of
freedom that are actually being used for generating the ran-
dom numbers. Even using such unfavorable scenario for Al-
ice we demonstrate that a secure RBG can be built using
such assumptions. This is a worst-case scenario: our protocol
is secure a fortiori if Eve has less than total control of the
state of the system or if she tries to exploit failures in the
system to gain knowledge of the random bits.

One could argue that our adversarial scenario is somewhat
contrived because Eve is not likely to gain control of the
source. There are two arguments to counteract such objec-
tion. First, protocol robustness is increased if one shows that
it is resilient against a larger class of attacks. Second even if
Eve does not control directly the degree of freedom used to
generate the random numbers she can nevertheless take ad-
vantage of a system failure to gain knowledge of the bits
being generated. In this respect our protocol is more secure
than any other hardware random number generator we know
of.

In our protocol Alice picks the simplest quantum system,
a qubit, and makes a projective measurement to generate
random bits. In this contest, we believe, simplicity is a virtue
and this is the reason for using a qubit. This allows a com-
plete analysis and excludes the possibilities of extra degrees
of freedom used as “back doors” by Eve. More complicated
systems might have similar security but are outside the scope
of this paper.

Here we implement the qubit in the polarization of pho-
tons. The polarization state of the photons is controlled by

Eve, but she has no knowledge of the sequence of measure-
ments made by Alice except for the basis used for the pro-
jection measurement used to generate the random bits �11�.
For any other hardware RBG one requires that Eve has no
control over the randomness source while in our adversarial
scenario she completely controls one component �i.e., state
preparation� of the source.

Alice’s measurement strategy is consistent with the provi-
sion of a 2�2 Hilbert space �i.e., a qubit�, and that any state
Eve sends to Alice can be represented by a 2�2 complex
density matrix �̂. For any density matrix �̂, Eve can try to
bias the output of the QRBG in a way that is known to her,
but appears random to Alice, by sending a collection of pure
states ��i� with corresponding probabilities pi such that

�̂ = �
i

pi��i�	�i�; �2�

i.e., she can use any decomposition of �̂. Eve cannot control
the outcome of a measurement on the pure state ��i� �because
these probabilities are governed solely by the laws of quan-
tum mechanics�, but knows at each time the state Alice is
measuring. How much information can Eve obtain in this
case about Alice’s random sequence? Or, in other words,
how can Alice separate the quantum randomness from the
classical one?

We begin to answer these questions by defining an en-
tropic quantity known as the min-entropy �10�.

Definition 1. The min-entropy of a random variable X,
denoted by H��X�, is

H��X� 
 − log2�max
x�X

P�x�� , �3�

where P�x� is the probability of a particular outcome of the
random variable X. For a secure implementation the prob-
abilities P�x� should be calculated from the attacker point of
view and a worst-case scenario regarding the amount of her
knowledge. When so defined the min-entropy can be used to
determine the quality of a source of randomness. For a bi-
nary variable, H�=1 corresponds to a completely random
process, and H�=0 to a deterministic one.

Alice generates n bits by measuring the states provided by
Eve. If the bits were generated by measuring n times a qubit
in the pure state ��� in the computational basis �0�, �1�, then
the min-entropy will be

H�����	��n� = − n log2�max��	0����2, �	1����2��


 − n log2�max�P0,P1�� . �4�

This definition can be extended to a decomposition such as
the one on the right-hand side of Eq. �2�,

FIORENTINO et al. PHYSICAL REVIEW A 75, 032334 �2007�

032334-2



H����
i

pi��i�	�i�
n� = − n�
i

pi log2�max„P0���i��,P1���i��…� = n�
i

piH����i�	�i�� . �5�

Since Alice does not know anything about the decompo-
sition that Eve may be using, we will define the min-entropy

of a state �̂ �denoted H̃���̂�� to be the minimum value of the
min-entropy taken over all possible decompositions of �̂.
This approach allows us to put an upper bound on the
amount of information Eve can obtain about Alice’s se-
quence, and to determine the worst-case parameters for the
randomness extractor that is used below. �10�

By assumption, �̂ is a 2�2 density matrix, so that without
loss of generality we can write

�̂�S1,S2,S3� =
1

2
� 1 + S3 S1 − iS2

S1 + iS2 1 − S3

 , �6�

where S1,2,3 are the real Stokes parameters �for S0=1� for the
qubit space. The point �S1 ,S2 ,S3� lies inside or on the
Poincaré sphere for physical density matrices.

Definition 2. We define the function f��̂�, which is real
valued for all physical density matrices, as

f��̂� = − log2�1 + �1 − �S1 − iS2�2

2

 . �7�

We can now state the theorem that is the centerpiece of
our QRBG algorithm:

Theorem. The min-entropy of a system described by an
arbitrary density matrix �̂ is

H̃���̂� = f��̂� . �8�

This theorem can be demonstrated using the following three
lemmas, which are easily established �12�:

Lemma 1. For each pure state ���,

H�����	��� = f����	��� . �9�

Lemma 2. The two pure states represented by the density
matrices

��±�	�±� =
1

2
� 1 ± S3� S1 − iS2

S1 + iS2 1 � S3�

 �10�

with S3�=�1−S1
2−S2

2, are a valid decomposition of the density
matrix in Eq. �6�.

Lemma 3. The function f��̂�S1 ,S2 ,S3�� is a convex func-
tion of S1, S2, and S3 in the Poincaré sphere.

Using the convexity of f we can write

f��̂� 	 �
i

pif���i�	�i�� �11�

for each decomposition of �̂. Using Eq. �5� and the result of
Lemma 1 we obtain

f��̂� 	 H���
i

pi��i�	�i�
 �12�

indicating that f��̂� is a lower bound for H̃���̂�. Using
Lemma 1, we can show that the decomposition of Lemma 2
has a min-entropy equal to f��̂�, and therefore that f��̂� is
equal to the minimum of H� over all possible decomposi-

tions of �̂, i.e., f��̂�= H̃���̂�. From this demonstration, it fol-
lows that the decomposition of Lemma 2 is the optimal
choice for Eve, since it leads to the most pessimistic estimate
of the min-entropy of the source.

The theorem provides a link between the density matrix
and the source min-entropy. The latter quantity is interesting
because of the vast computer science literature on entropy
extractors �see, e.g., the review papers �8,9��. An entropy
extractor—such as the example given by Ref. �10� used in
our work here—is an algorithm that accepts an imperfect
source of random bits and outputs a sequence arbitrarily
close to a uniformly distributed sequence �13�. Given a raw
n-bit sequence the algorithm allows one to extract an m-bit
privacy-enhanced sequence which is arbitrarily close to a
uniform distribution, where
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FIG. 1. �Color online� Schematics of the QRBGs using single-photons �a� and entangled pairs �b�. PPKTP is the nonlinear crystal, PBS
is the bulk polarization beamsplitter, FPBS is the fiber polarization beamsplitter.
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m = H̃�n − 4 log2�1/
� − 2 �13�

and 
 is the statistical distance between the distribution of the
m bits and a uniform distribution. We refer the reader to Ref.
�10� for a proof of the security of the extraction algorithm,
and to Ref. �12� for the technical details of the particular
algorithm we implemented.

We realized the two implementations of the QRBG shown
in Fig. 1. The first implementation �Fig. 1�a�� uses a linearly
polarized source with average intensity at the single-photon
level. We used photons extracted from pairs generated by
spontaneous parametric down-conversion �SPDC� in a peri-
odically poled potassium titanyl phosphate �PPKTP� crystal;
however, either an attenuated laser or LED could have been
used instead. We used parametric down-conversion in a
10-mm crystal manufactured by Raicol Crystals with a pol-
ing period of 10 �m. In the crystal a photon from the violet
laser diode �13 mW at a wavelength of 405 nm, Sacher La-
sertechnik, TEC-100-405-20� is split into a pair of orthogo-
nally polarized infrared photons with a wavelength of
810 nm and a 1-nm bandwidth defined by an interference
filter. The photons are coupled into a single-mode fiber,
propagate through a polarization-controlling stage and are
split in two approximately equal parts on a fiber polarization
beamsplitter. The photons are recorded by photodetectors,
and each detection event is recoded as a random bit �0 for
horizontally polarized photons, and 1 for vertically polarized
photons�. The photons’ density matrix is tomographically re-
constructed off-line �14�. Using the density matrix and our

theorem, we compute the min-entropy H̃�=0.96, and we in-
put this value to the randomness extractor �10�. The raw-bit
generation rate is 60 kbits/ s, and the bits are passed to the
randomness extractor to obtain a bit-generation rate of ap-
proximately 57 kbits/ s. A sample file containing 100 million
random bits thus obtained is available online �15�.

The second implementation �Fig. 1�b�� uses polarization-
entangled photon pairs described by the state of Eq. �1�. The
entangled photons, generated by SPDC in the PPKTP crystal
followed by post-selection �16�, are sent to polarization con-
trollers, fiber polarization beamsplitters, and single-photon
detectors for analysis. Coincidence events are recorded as
random bits �0 for H1-V2 and 1 for V1-H2�. By restricting the
measurement to the coincidences, we effectively restrict the
2-qubit space of the photon pair to a two-dimensional Hilbert
subspace described by an effective-qubit state. By carrying
out a complete tomography of the two-qubit state �14� we
can extract the effective-qubit density matrix and the relative
min-entropy. Figure 2 shows a reconstructed density matrix

corresponding to a min-entropy of H̃�=0.38. Figure 2 shows
that the fiber birefringence changes the state without affect-
ing the min-entropy, and we do not subtract accidental coin-
cidences from the tomographic data. �Such a correction, in
fact, would increase the min-entropy, but weaken the security
of the protocol.� The raw bit rate for this QRBG is
14 kbits/ s, while the random-bits rate is 5.3 kbits/ s. Again, a
sample file with 100 million random bits is available online
�15�.

We have applied a battery of a posteriori software statis-

tical tests to the privacy enhanced output, but we stress that
these tests are only used to verify that the QRBG has been
correctly implemented: the guarantee of the QRBG security
and randomness relies on the measurement of H�. We used
the NIST test suite �17�, which consists of a set of 15 statis-
tical tests of random numbers for cryptographic applications.
Our QRBGs pass the test, and the detailed test results are
given online �15�.

A comparison between the two implementations of the
QRBG makes it obvious that the single-photon implementa-
tion is simpler and has much higher bit flux. The entangled-
photon implementation has the advantage that, by using co-
incidences, much of the stray-light noise is suppressed.
However, by carefully screening the detection apparatus, the
effect of stray photons can be made negligible even in the
single-photon case.

Let us review here the advantages of our quantum RBG
when compared with other implementations. Compared with
pseudorandom number generators our hardware RNG has the
advantage of generating bit sequences with full entropy.
Other hardware random number generators are based on cha-
otic systems �4� that can be, in principle, predicted or influ-
enced; our quantum RNG relies on quantum measurements
that are, as far as we know, fundamentally random. In addi-
tion Ref. �4� uses an estimate of the Shannon entropy �not
the min-entropy� that is realized once for all: the user cannot
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FIG. 2. �Color online� Real and imaginary part of the density
matrix for the photon pair polarization state used to generate the
random-bit sequence.
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continuously monitor the entropy to verify the security and
integrity of the RBG. Compared with other quantum RBGs
�5–7� our implementation is the first that explicitly takes into
account security. To guarantee security the min-entropy has
to be measured and filtering has to be applied in a way that is
analogous to the error correction and privacy amplification
routine used in quantum key distribution protocols. Refer-
ences �5,6� use an experimental setup that is conceptually
similar to the single photon setup of Fig. 1 whereas the po-
larization beamsplitter is substituted with a nonpolarizing
50/50 beamsplitter. For these implementations an attack sce-
nario equivalent to the one we have analyzed would involve
giving Eve control over the beamsplitter. She could, for ex-
ample, substitute the beamsplitter with a switch and therefore
completely control the outcome of the RBG. To guarantee
security and integrity of this kind of RBG Alice needs to
verify that the photons are coherently split among the output
arms of the beamsplitter and that the coherence is collapsed
by her measurement. She can do so by making interferomet-
ric measurements that are formally analogous to the one we
make but are more complicated from an experimental point
of view. For these reasons we used the polarization scheme
to implement our secure RBG.

A number of improvements in our setup are possible. The
raw-bit rate is currently limited by the data acquisition hard-
ware, so dedicated hardware can speed up the acquisition and
eliminate this bottleneck. Eventually the bit rate will be lim-

ited by the dead time in the detectors. Based on a comparison
with existing QRBGs �5� we expect that rates up to several
Mbits/s can be achieved. Using off-line tomography relies on
the assumption that the system state does not change in the
interval between the measurement of H̃� and the acquisition
of the random bits. While this is the case in the current
implementation, on-line tomography will both relax this as-
sumption and increase the bit rate. We are currently engineer-
ing a high-performance system in which on-line tomography
is carried on at the same time as the raw bits are acquired.
We also observe that at this point the security of the protocol
is limited to individual attacks; further analysis is needed to
extend the security proof to attacks in which Eve sends Alice
clusters of entangled photons.

In conclusion, we have defined the worst-case min-
entropy of a qubit and introduced a method to measure it
using quantum tomography. Based on the properties of the
min-entropy, we constructed two implementations of a self-
calibrating random number generator which is secure against
a large class of attacks. We believe that our RBG will have
important technological impact in the area of secure commu-
nications and that, properly extended, the min-entropy de-
fined here could prove to be an important tool in defining the
security of qubit-based communication protocols.

This work was supported by DARPA through seed pro-
gram number HR0011-04-3-0040.
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randomness.
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