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Control of the transfer of quantum information encoded in quantum wave packets moving along a spin chain
is demonstrated. Specifically, based on a relationship with control in a paradigm of quantum chaos, it is shown
that wave packets with slow dispersion can automatically emerge from a class of initial superposition states
involving only a few spins, and that arbitrary unspecified traveling wave packets can be nondestructively
stopped and later relaunched with perfection. The results establish an interesting application of quantum chaos
studies in quantum information science.
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I. INTRODUCTION

Great effort is being devoted to studies of spin chains as
promising “quantum wires” for quantum information trans-
fer. With spin chains, a quantum state can be transferred
without requiring an interface between the communication
channel and a quantum computer �1�, i.e., quantum informa-
tion can be transferred and processed with the same hard-
ware. Spin chains also allow for quantum computing with an
always-on interaction �2,3�, even in the presence of a global
control field �3�. The latest experimental progress on fabri-
cation and characterization of atomic spin chains was re-
ported in Ref. �4�. Spin chain Hamiltonians may be also
realized by atomic gas in an optical lattice.

Perfect state transfer in spin chains might occur under
special circumstances �5–7�. However, in the general case,
dispersion effects often degrade the transmission fidelity and
improving the fidelity becomes a central issue. Notably, it
has been proven that the transmission fidelity can be signifi-
cantly improved if the receiver stores the received signal in a
large quantum memory before decoding �8�. Another general
approach to high-fidelity quantum-state transfer advocates
the use of quantum wave packets to encode the quantum
state of a qubit �9,10�. This approach is important because
dispersion of wave packets can be insignificant. In particular,
Osborne and Linden �9� have shown that high transmission
fidelity can be achieved by exploiting, if attainable, a Gauss-
ian wave packet whose shape is well preserved. The slow
dispersion of a wave packet can be further suppressed by
applying a static parabolic �hence global� magnetic field �11�.

In the context of the wave packet approach to quantum-
state transfer, we focus below on two questions: �1� How can
one create spin wave packets with certain desired features?
�2� How can one control the motion of a quantum wave
packet in a spin chain so that the packet can be stopped at an
arbitrary time, held, and then restarted later, without loss of
quantum information? Such type of controlled quantum-state
transfer, if possible, should be a highly valuable tool in a
variety of situations, e.g., cases in which the information
receivers need additional waiting time to repair a quantum
memory, or to prepare for a time window of high transmis-

sion fidelity. The importance of stoppable quantum-state
transfer may be also appreciated by noting the analogy to the
potential impact of the stopping of light �12� in quantum
information science. Further, a working scenario for the stop-
ping and perfect relaunching of quantum-state evolution of a
spin chain should be also of considerable interest in the con-
text of perfect quantum-state reconstruction and perfect
quantum-state storage in systems of interacting qubits �13�.

In this paper we first show that by optimizing a particular
transport property using quantum superposition states com-
prising only a few spins �e.g., four or five�, wave packet pairs
with some highly desired features emerge automatically from
the ensuing dynamics. We then demonstrate that by applying
a sequence of pulsed parabolic magnetic fields one can ma-
nipulate these wave packets, stopping them and later re-
launching the traveling wave packets without individually
addressing the spins. As shown below, the stopping, followed
by relaunching, can in principle perfectly preserve the quan-
tum information being transferred. This is made possible by
taking advantage of powerful relationships between control-
ling spin dynamics and controlling quantum diffusion dy-
namics in a paradigm of quantum chaos.

This paper is organized as follows. In Sec. II we introduce
a mapping between a Heisenberg spin chain kicked by a
parabolic magnetic field and a paradigm in quantum chaos
�14,15�. In Sec. III we propose a conceptually simple ap-
proach to the creation of spin wave packet pairs moving
along the spin chain with slow dispersion and other desired
features. The key result of this work is in Sec. IV, where
stopping and relaunching spin wave packets are studied both
numerically and analytically. Section V concludes this paper.

II. HEISENBERG SPIN CHAIN IN A PULSED MAGNETIC
FIELD AND THE DELTA-KICKED ROTOR

Consider then an open-ended Heisenberg chain of N spins
in a constant magnetic field B and subject to a parabolic
�-pulsed magnetic field. The Hamiltonian is given by
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where ����x ,�y ,�z� are the Pauli matrices, J is the nearest-
neighbor spin-spin interaction constant, Cj and n0 are the
coefficient and minimum location of the parabolic kicking
field, and T0 is the kicking period. Below, we denote the n
=1 �n=N� spin as the left �right� end of the chain. The con-
stant field B lifts the system degeneracy and the dynamics is
restricted to a subspace with fixed total polarization Sz de-
fined as

Sz � �
n=1

N

�n
z . �2�

Throughout this work we consider only the subspace of Sz
=2−N.

Let �m� be one of the basis states, with the mth spin up
and all other spins down. The propagator for the time period

�jT0−0+ , �j+1�T0−0+� is V̂�2JT0�Û�Cj�. Here Û�Cj� repre-
sents the action due to the delta pulse, with

	m�Û�Cj��n� = exp�− i�Cj/2��n − n0�2��mn. �3�

The term V̂ stems from the evolution inherent in the Heisen-
berg interaction. An important recent study �14� has shown
that, in the N→ +� limit �and apart from some irrelevant
phase�,

	m�V̂�2JT0��n� 
 i�m−n�J�m−n��2JT0� , �4�

where J�m−n� is an ordinary Bessel function. The analytical

behavior of Û�Cj� and V̂�2JT0� is therefore completely in
parallel with that associated with the propagator of the
�-kicked rotor �DKR� �the best known model in quantum
chaos �16�� with Hamiltonian

HDKR = �P̂ − P0�2/2 − K cos����
j

��t − j� . �5�

Indeed, in the representation of the basis states �m�
�cos�m�� /�� and for an effective Planck constant �, the
DKR propagator takes the familiar form v̂�k�û��� with

	m�û����n� = exp�− i��/2��n − ñ0�2��mn �6�

and

	m�v̂�k��n� 
 i�m−n�J�m−n��k� �7�

with �k=K / � �. Comparing these two systems, it is clear that
upon the mapping

�m� ↔ �m� , �8�

2JT0 ↔ k , �9�

n0 ↔ P0/ � , �10�

Cj ↔ � , �11�

the many-body spin chain dynamics is mapped to that of
DKR �14,15,17�, i.e., the motion of a spin wave packet along
the spin chain is mapped to DKR quantum diffusion dynam-
ics in its m space. Hence we can, whenever possible, shed
light on the former by considering aspects of the latter, e.g.,
quantum resonance, Kolmogorov-Arnold-Moser �KAM�
curves in phase space, etc. More significantly for this work,
as shown below, it allows us to use tools from the control of
quantum DKR dynamics �18–20� to manipulate states in the
spin chain. Further, this mapping between spin chain and
DKR allows us to go beyond the parameter regime confined
by the true DKR �discussed below�.

III. GENERATION OF SPIN WAVE PACKETS

In the context of the wave packet approach to quantum-
state transfer, we now consider the first issue on spin wave
packet generation �21�. Given a small number of basis states
that could be used for encoding the state of a qubit, what
initial superposition states should be exploited to induce the
creation of quantum wave packets with slow dispersion?
Here this interesting question is considered in the absence of
an external field, where the system propagator is given by

V̂�2JT0�. Remarkably, the associated DKR analogy now be-
comes a case of quantum resonance with �=4�, with a
propagator analogously given by

v̂�k = 2JT0� = exp�i�2JT0�cos���� . �12�

Using this connection, the issue becomes to find initial su-
perposition states within a given small subspace, such that
the evolving quantum state remains well localized. At first
glance this “localization” requirement seems too demanding
because the main feature of quantum resonance dynamics is
ballistic diffusion in the DKR m space. However, as we have
discovered, this can still be obtained by maximizing a diffu-
sion rate of DKR. Qualitatively speaking, for superposition
states maximizing a quadratic diffusion rate introduced be-
low, the ensuing dynamics will push outwards as much as
possible the excitation profile in the m space, thus generating
two well-separated wave packets with almost zero amplitude
in between.

Quantitatively, let us first define the diffusion rate opera-
tor as

D̂ = lim
t→+�

Ê�t� − Ê�0�
t2 , �13�

where Ê�t� is the energy operator for the free rotor in the
Heisenberg representation. For the quantum resonance case
considered here one obtains

D̂ = A sin2��� , �14�

where A is a constant. Note that D̂ only couples states �m� of
the same parity. Consider now a sample case where a super-
position state
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��m0
� = �

n=−2

n=2

�2n�m0 + 2n� �15�

is exploited to encode a qubit state, i.e., only five basis states
are used here. The state with the largest diffusion rate, de-

noted D, is simply given by the eigenfunction of D̂ in the
subspace of �m0+2n� �−2	n	2� with the largest eigen-
value. In particular, if these basis states do not involve state
�0�, then the maximized D is attained if �0=0.577, �−2
=�+2=−0.5, and �−4=�+4=0.289.

The significance of such an initial superposition state with
maximized D is demonstrated in Fig. 1�a�, with m0=101 for
a 201-spin chain. In particular, a well-separated wave packet
pair is seen to quickly emerge, and its dispersion after its
emergence is impressively slow in the absence of any exter-
nal static fields. Note that, unlike the accelerator mode ap-
proach proposed in Ref. �14�, the wave packet pair is created
by the system dynamics itself. Note also that the excitation
amplitudes between the two wave packets are surprisingly
small. Because the total polarization here is fixed, a well-
separated wave packet pair directly indicate quantum en-
tanglement between well-separated parts of the spin chain,
and their travel in opposite directions distributes information
or entanglement to both ends of the spin chain. Further re-
sults �not shown� indicate that in the case of minimized D or
an arbitrarily chosen initial state, the system dynamics ge-
nerically creates a quickly delocalizing state �note also that
even in chaotic cases different initial superposition states
may also lead to dramatic differences in the ensuing quantum
diffusion dynamics �22��. These further demonstrate the im-
portant role of an initial superposition state with a maxi-
mized diffusion rate in encoding the quantum information.
Certainly, if more basis states are allowed in encoding the
quantum information, then wave packet pairs with even
slower dispersion can be created with the same approach.

It is also desirable to be able to create a well-separated
wave packet pair that transfers information to a common end
of the spin chain. For example, if two wave packets with
identical shape can be created, then one of them may be

analogous to a “backup” copy as the other is being trans-
ferred and received first. Note that this possibility is not in
violation of the quantum no-cloning theorem, because here
the two wave packets do not independently describe the
quantum state of the involved spins. Rather, the two wave
packets describe the entanglement between two particular
sections of the spin chain.

The creation of such a wave packet pair is achieved here
by going beyond the kicked rotor perspective and exploiting
the boundary effect associated with the spin chain. That is,
we apply the above scenario, but with the initial encoding
state ��m0

� located at m0
N /2, and with the requirement that
no information receiver presents at the left �n=1� end. To be
more specific, consider a sample result shown in Fig. 1�b�,
with m0=30. The wave packet creation dynamics in the early
stage is seen to be analogous to the case of Fig. 1�a�. Some-
time later, the generated wave packet moving to the left hits
the boundary and gets reflected. As demonstrated in Fig.
1�b�, this then creates a pair of wave packets where both of
the members of the pair are moving to the right, with their
shape indistinguishable from one another, with almost zero
excitation in-between, and a peak-to-peak distance of 2�m0

−1� spins.

IV. STOPPING AND RELAUNCHING WAVE
PACKET PROPAGATION

In this section, taking the wave packets obtained in the
previous section as examples, we shall consider an indepen-
dent issue, namely, stopping and relaunching the quantum-
state transfer along a spin chain. A parabolic magnetic field
�see Eq. �1�� is proposed as the control field with a simple
global feature, and we aim to achieve our control objective
with an always-on Heisenberg interaction.

Thanks to the DKR analogy discussed above, the problem
is now converted into the question of how to stop and suc-
cessfully restart the transport process in the DKR m space.
We do so below by exploiting control features of the DKR
system. Two features are relevant, one classical and one
quantal.

The classical basis of our control scenario arises by ex-
ploiting the phase space KAM curves of the underlying clas-
sical dynamics. That is, if the kicking magnetic field is suf-
ficiently frequent that the chaoticity parameter �2JT0Cj� in
the classical DKR is sufficiently small, the underlying clas-
sical dynamics will be mainly integrable and the associated
KAM curves will present strong barriers to the quantum
transport in the m space. Because KAM curves will be al-
most everywhere, these classical structures can effectively
stop the travel of arbitrary and unknown quantum wave
packets.

Figure 2 displays the fate of the moving wave packet pair
shown in Fig. 1�a� �solid lines� after a kicking parabolic field
is introduced. As is clearly seen in Figs. 2�a� and 2�b�, the
transfer of the wave packet pair to both ends of the spin
chain is stopped. This dynamical effect can also be under-
stood as a type of quantum Zeno effect achieved by fre-
quently applying �but far from infinitely fast� external pulses
to a system.
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FIG. 1. Emergence of a wave packet pair in a Heisenberg chain
of 201 spins, shown with the projection probability of the many-
body wave function onto basis states �m�. The initial condition is a
superposition state ��m0

� given by Eq. �15�, for �a� m0=101 and �b�
m0=30. The system wave function then evolves, with its shape
given by the solid lines at time t1 with 2Jt1=15 and by the dashed
lines after an additional period t2, with �a� 2Jt2=30 and �b� 2Jt2

=45. The arrows show the travel direction of the wave packets.
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However, although the wave packet pair in Figs. 2�a� and
2�b� has stopped moving, its internal structure is seen to be
changing in a subtle manner. This indicates that evolution of
the quantum phases characterizing the stopped wave packets
is still not frozen. This fact turns out to be disastrous when
the kicking field is turned off in order to relaunch the state
transfer. For example, Fig. 2�c� displays the wave function
after the kicking field has been off for a period of t2 with
2Jt2=30: The background fluctuation is greatly increased,
and the main peaks of the wave packet pair do not move
further.

Hence, using KAM curves alone, which is a purely clas-
sical control mechanism, does not offer a satisfactory means
of stopping the wave packet. To improve the control one
must compensate for the quantum phases that are accumu-
lated during the stopping process. This phase accumulation is
due to the spin-spin interaction as well as the kicking field.

Consider then an important observation made in our pre-
vious work on the quantum control of DKR dynamics
�18,20�, i.e.,

	m�v̂�k��n� =
1

�
�

0

2�

cos�m��exp�ik cos����cos�n��d�

=	m��− 1�mv̂�− k��− 1�n�n�

=	m�û�2��v̂�− k�û�2���n� . �16�

The first line in Eq. �16� holds by definition, the second line
becomes obvious if the integration variable � is changed to
�+�, and the last line is obtained by use of the definition of
û���. Equation �16� hence proves

v̂�k� = û�2��v̂�− k�û�2�� . �17�

Returning to a finite spin chain system, this result indicates
that

V̂�2JT0� 
 Û�2��V̂�− 2JT0�Û�2�� . �18�

That is, the sign of the intrinsic interaction constant J can be
effectively reversed if we apply two parabolic � kicks of
particular strength. As such, it becomes possible to compen-
sate for the quantum phase evolution inherent in the spin
chain. As to the quantum phases induced by the kicking field,
they can also be compensated for by considering kicking
fields with the sign of Cj reversed.

Given these considerations we present in Table I an ex-
plicitly designed special pulse sequence that can relaunch
stopped wave packets with perfection. For this special pulse
sequence, the KAM curves associated with small �2JT0C�
still play a key role because they directly prevent the state
transfer, in the same manner as demonstrated in Fig. 2. What
is remarkable now is the total time evolution operator asso-
ciated with the entire stopping process. In terms of the DKR
analogy, this operator can be written as �after some manipu-
lation�

�û�− C/2�v̂�k�û�− C/2��M�û�C�/2�v̂�k�û�C�/2��M

=�û�− C/2�v̂�k�û�− C/2��M�û�C/2�v̂�− k�û�C/2��M

=�û�− C/2�v̂�k�û�− C/2��M��û�C/2�v̂�− k�û�C/2��M�

= ¯ = 1, �19�

where C�=C+4�, M�=M −1. In obtaining Eq. �19� we have
used

û�C� = û�C/2 + 2��û�C/2 + 2�� �20�

and Eq. �16�. Equation �19� proves that at the end of the
stopping time all properties characteristic of an unknown
quantum wave packet can be exactly restored. This exact
rephasing indicates that the dynamical evolution associated
with the second M /2 kicks, in addition to offering a dynami-
cal barrier to stop the quantum transport, precisely reverses
the evolution associated with the first M /2 kicks. As such,
the stopping is entirely nondestructive, as long as the system
is not subject to noise effects during the stopping process.
Evidently then, wave-packet-assisted information transfer
can be perfectly relaunched as the kicking field is turned off.
This theoretical result applies exactly to an infinitely long
spin chain. But fortunately, as also demonstrated below, it
applies extremely well to a finite-length chain. Note also that
the designed pulse sequence in Table I is a significant exten-
sion beyond a true DKR system because both positive and
negative “�” ��↔Cj� are exploited here.

In parallel with Fig. 2, Fig. 3 displays a computational
example using the pulse sequence given in Table I. As in Fig.
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FIG. 2. Stopping of quantum-state transfer in a spin chain by a
parabolic kicking field, with Cj =0.5. The initial state, the meaning
of the wave function profile, and the spin chain used for calcula-
tions are the same as in Fig. 1�a�. 2JT0=0.25, and the first � kick
comes at time t1 with 2Jt1=15. �a� and �b� are the results after 100
and 200 kicks. The kicking field is then turned off and �c� displays
the state after an additional period t2 with 2Jt2=30.

TABLE I. The j dependence of Cj �see Eq. �1�� in an explicitly
designed pulse sequence for the stopping of arbitrary wave packets
for a period of 2M kicks. C is a constant discussed in the text. Note
that some system parameters used here are beyond what is allowed
in a true kicked rotor system.

j 1 �1,M� M +1 �M +1,2M� 2M +1

Cj C /2+2� C 2� −C −C /2
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2, right before the first kick the quantum state is the wave
packet pair described by the solid lines in Fig. 1�a�. Figure
3�a� confirms that the wave packet pair is not moving as the
special pulse sequence is on. Figure 3�b� shows that at the
end of the stopping period, we have restored the initial con-
dition �compare Fig. 3�b� with the solid lines in Fig. 1�a��.
The restoration fidelity in the numerical calculations for a
201-spin chain is found to be higher than �1−10−13�. The
kicking field is then turned off. As expected, quantum-state
transfer is relaunched and the wave packets continue their
journey, with slow dispersion, towards both ends of the spin
chain �Fig. 3�c��. Indeed, results in Fig. 3�c� are indistin-
guishable from the dashed lines in Fig. 1�a�.

The control scenario proposed in this work can also lead
to other very interesting approaches to the manipulation of
quantum entanglement dynamics of a spin chain. Here we
briefly discuss three possibilities. First, by modifying the
kicking field profile we can choose to stop only one compo-
nent of a wave packet pair, e.g., of the pair shown in Fig.
1�b� with dashed lines, thereby offering an interesting
method of tuning the time delay between two wave packets
moving in the same direction. This then offers a means of
controlling the distance between two entangled parts of the
spin chain. Second, because the sign of the intrinsic spin-spin
interaction constant J can be effectively reversed if we apply
� kicks of particular strength, it can be easily shown that one

can bounce back an arbitrary and unknown moving wave
packet to the sender at a time of our choosing. Third, by
controlling the time delay between the two wave packets
and/or taking advantage of the feasibility of time reversal,
we may also recombine two localized wave packets at a lo-
cation different from that of the initial state. This recombi-
nation dynamics resembles that of a double-slit experiment,
thereby generating interesting interference patterns along the
spin chain. Such kind of interference patterns of spin excita-
tions, and their fate under a variety of circumstances, may
work as a novel interferometer for fundamental studies in
quantum physics.

V. CONCLUSION

To conclude, based on a mapping between a kicked spin
chain and the delta-kicked rotor system �14�, we have shown
that previous quantum control results in the delta-kicked ro-
tor system �18–20,22� can be applied to the control of spin
wave packet propagation and hence the control of propagat-
ing quantum information encoded in wave packets. Specifi-
cally, we have proposed a simple approach to wave packet
creation in a Heisenberg spin chain and demonstrated the
possibility of stopping and relaunching information transfer
without individually addressing spins or turning off spin-spin
interactions. Several interesting applications of this work in
manipulating the dynamics of a spin chain are also dis-
cussed. The results indicate that many insights from the
quantum chaos research can be very useful for quantum in-
formation science. This work also adds more support to the
use of spin chains as quantum wires, and might be useful in
designing new quantum computation algorithms with an
always-on qubit-qubit interaction �2,3�. Extensions to other
types of spin chains are under consideration.
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