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In this paper we address the question: where in configuration space is the entanglement between two
particles located? We present a thought experiment, equally applicable to discrete or continuous-variable
systems, in which one or both parties makes a preliminary measurement of the state with only enough
resolution to determine whether or not the particle resides in a chosen region, before attempting to make use of
the entanglement. We argue that this provides an operational answer to the question of how much entanglement
was originally located within the chosen region. We illustrate the approach in a spin system, and also in a pair
of coupled harmonic oscillators. Our approach is particularly simple to implement for pure states, since in this
case the subensemble in which the system is definitely located in the restricted region after the measurement is
also pure, and hence its entanglement can be simply characterized by the entropy of the reduced density
operators. For our spin example we present results showing how the entanglement varies as a function of the
parameters of the initial state; for the continuous case, we also find how it depends on the location and size of
the chosen regions. Hence we show that the distribution of entanglement is very different from the distribution
of the classical correlations.
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I. INTRODUCTION

Studying the entanglement properties of a number of spa-
tially extended many-body systems including spin chains,
coupled fermions, and harmonic oscillators �1–10� has both
given information on the potential uses of these systems in
quantum information processing, and yielded insight into
their fundamental properties. Quantum entanglement is a
measure of essentially quantum correlations, and many inter-
acting systems possess an entangled ground state
�1,2,11–15�.

In this paper we address the question: where in configu-
ration space is the entanglement between two particles lo-
cated? We pose the question using the language of spatial
entanglement, which plays a significant role in many physi-
cal realizations of QIP �quantum information processing�.
However our results are easily recast in terms of other types
of entanglement. Specifically, we investigate the location de-
pendence of the ground-state entanglement between two in-
teracting subsystems. We choose a pair of coupled harmonic
oscillators as an example, since this is a system for which
many exact results are available �8,16�. We assign one oscil-
lator to each of the two communicating parties, Alice and
Bob, but perform a thought experiment in which one or both
of them first measure the system in configuration space, with
just enough precision to localize it in some chosen region,
and thereafter are restricted to operations only within that
region. This restriction corresponds to a particular type of
projective filtering in configuration space. We ask how this
restriction affects the spatial entanglement available to them
for other purposes—for example, for teleporting additional
qubits between them. This should be distinguished from the

approach taken recently by Cavalcanti et al. �17�, who ex-
plored the effect of a finite-resolution spatial measurement
on the spin entanglement of a system of noninteracting fer-
mions and also a photonic interferometer. Our research also
contrasts with previous studies �18–20� of the entanglement
of a finite region of space with the rest of the system.

In a previous paper �21� we investigated the limiting case
where the size of the preliminary measurement region is very
small, and showed that a smooth two-mode continuous-
variable state can be approximated by a pair of qubits and its
entanglement fully characterized, even for mixed states, by
either concurrence density or negativity density; here we
shall focus on studying the variations of the entanglement
properties with the size of the region. For the present we
assume that the two particles are distinguishable; the effects
of indistinguishability on the phenomena discussed here are
a subject for further work. We argue that the shared entangle-
ment remaining to Alice and Bob provides a natural measure
of where in configuration space the entanglement was origi-
nally located. We show that the distribution of entanglement
is very different from that of the classical correlations.

II. THEORY

A. Restricting configuration space by von Neumann
measurements

Let the configuration space of the whole system be de-
scribed by the coordinates qA and qB, where qA describes
Alice’s particle and qB describes Bob’s. We will initially
present the case in which only Alice makes a preparatory
measurement on her system; suppose she has access to some
restricted portion A of the configuration space of “her” par-
ticle, whose coordinate is qA. If she measures her system
with just enough accuracy to determine whether it is in re-
gion A or not, but no more, the effect is to localize the wave
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function either inside, or outside, the chosen region. The re-
striction to lying inside the region corresponds to the projec-
tor

ÊA = �
A

�qA��qA�dqA � 1̂other, �1�

where 1̂other is the identity operation for all the other particles
�assumed distinguishable� in the system.

1. The discarding ensemble

Suppose A is of finite extent, and Alice measures the
position of her particle with just enough accuracy to deter-
mine whether it is in A or not. If so, she keeps the state for
further use; if not, she discards it �and tells Bob she has done
so�. Then the density matrix appropriate to the ensemble of
retained systems is

�̂D,A =
ÊA�̂ÊA

Tr�ÊA�̂�
=

�A�qA���qA,qother;qA� ,qother� ��A�qA��

� �
A

��qA,qother;qA,qother�dqAdqother

,

�2�

where �A is a generalized Heavyside function defined so that

�A�q� = 	1, if q � A ,

0, otherwise.
�3�

The subscript D refers to the discarding of the unwanted
states; we refer to this density matrix as describing the “dis-
carding ensemble.” Note that, if the original �̂ was a pure
state ������, then the postselected density matrix is also pure:

�̂D,A =
ÊA������ÊA

���ÊA���
. �4�

In particular this means that even though the system has
continuous variables and is therefore infinite dimensional, its
entanglement ED,A is easily calculated through the von Neu-
mann entropy S��̂�A�� of the reduced density matrix �̂�A�

=TrB�̂.

2. The nondiscarding ensemble

On the other hand if Alice chooses not to discard the
system when she fails to detect a particle in region A, the
appropriate density matrix is

�̂ND = ÊA�̂ÊA + ÊA��̂ÊA�, �5�

where the subscript ND refers to “nondiscarding” and the

complementary projector ÊA� is defined as

ÊA� 
 1̂ − ÊA = �
qA�A

�qA��qA�dqA � 1̂other. �6�

Equation �5� describes a mixed state. It differs from the
original density matrix �̂ in that off-diagonal elements of �̂
connecting qA�A and qA�A have been set to zero.

Let pA=Tr�ÊA�̂ÊA� be the probability of finding Alice’s
particle in A. Since the first and second components of �̂ND
can be distinguished by Alice and Bob using local operations
and classical communication �LOCC�, they can teleport
pAED,A+ �1− pA�ED,A� qubits on average between them.
Hence the distallable entanglement �and therefore also the
entanglement of formation� of �̂ND is not less than pAED,A
+ �1− pA�ED,A�. On the other hand, Eq. �5� also constitutes a
valid decomposition of the nondiscarding density matrix
�̂NDinto orthogonal pure states; it follows that the entangle-
ment of formation END is not greater than the average en-
tanglement of this decomposition: END� pAED,A+ �1
− pA�ED,A�. The only way these two observations can be con-
sistent is if

END = pAED,A + �1 − pA�ED,A�. �7�

If all the operators available to Alice have support only in
region A �i.e., if she can neither measure her particle’s prop-
erties, or manipulate it in any way, except when it is in A�,
then the component projected by ÊA� is “out of reach,” and

the second component ÊA��̂ÊA� of the state �̂ND is function-
ally equivalent to a separable state as far as any operation
that Alice and Bob can perform is concerned. It does not
possess any entanglement properties that are useful to Alice
and Bob. In that case, Eq. �7� reduces to END= pAED,A.

3. Precise measurements of position

If, on the other hand, Alice measures the position accu-
rately, but again keeps only those occasions when the results
lie within A, the discarding ensemble’s density matrix is

�̂P =

�
A

Êq�̂Êqdq

�
A

Tr�Êq�̂�dq

, �8�

where the subscript P refers to measuring precisely and Êq is
the projector corresponding to measuring Alice’s particle A
precisely at position q:

Êq = ��qA − q� . �9�

Equation �8� describes a density matrix that is diagonal in qA;
it is a mixed state even if all the measurements where the
particle is not found in A are discarded. Furthermore, unless
there are some additional degrees of freedom of particle qA
which are not measured, the overall density matrix can be
written as an incoherent sum of product states:

�̂P = �
A

Êq�̂Êqdq = �
A

�qA��qA�dqA, �10�

where �qA� is a state in which particle A is located exactly at
qA and particle B is in some arbitrary state. �̂P therefore
contains no remaining entanglement with Bob’s particle B.

Note that in the limit of very small measurement regions,
the distinction between precise and imprecise measurements
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disappears. The case of vanishingly small regions was ana-
lyzed in a previous paper �21�, where it was shown that a
well-defined concurrence density exists, and so the concur-
rence after the measurement is directly proportional to the
region size.

4. Measurements by both parties

Exactly analogous formulas can be written down for the
cases where Bob makes a preliminary measurement on his
particle, or both partners make a measurement. In the case
where both parties make a preliminary measurement, the re-
duced density matrix of Alice’s system that is used to calcu-
late the entanglement will naturally depend also on the mea-
surement performed by Bob.

5. An inequality for the discarding entanglement

Suppose Alice and Bob divide their configuration spaces
into a set of segments A and B, respectively, and each make
a measurement determining in which segment the system is
located. In the nondiscarding ensemble, Eq. �5� generalizes
to

�̂ND = �
AB

ÊBÊA�̂ÊAÊB, �11�

where

�
A

ÊA = �
B

ÊB = 1̂. �12�

However, this corresponds to a local operation performed by
Alice and Bob. Their shared entanglement is nonincreasing
under this operation; therefore,

E��̂� � E��̂ND� . �13�

But, by a straightforward extension of the argument given
above,

E��̂ND� = �
AB

pABED��̂D,AB� , �14�

where

pAB = Tr�ÊBÊA�̂� �15�

is the probability of finding Alice’s part of the system in A
and Bob’s part in B, and

�̂D,AB =
ÊBÊA�̂ÊAÊB

pAB
�16�

is the density matrix in the discarding ensemble after this
measurement result has been obtained. Combining Eq. �13�
and Eq. �14� we obtain the following inequality for the av-
erage of the entanglement in the discarding ensemble over all
the partitions:

�
AB

pABED��̂D,AB� � E��̂� . �17�

B. Spin systems

We can make an exactly analogous theory for the case
where Alice and Bob share a system defined on some other

state space, for example a spin system—perhaps more famil-
iar in quantum-information theory. We simply replace the

projection operator ÊA by one defined in spin space; for ex-

ample, ÊA might project onto states with a specified spin
component in a given direction. The rest of the theory is as
outlined above.

III. THE PHYSICAL SYSTEMS

A. Spins

Suppose that both Alice and Bob each possess two spins;
the first spins belonging to each of them are entangled, as are
the second spins, and the overall state ��� of the system is a
product of the state of the two pairs. For example, we could
write

��� = �cos �1�↑A1↑B1� + sin �1�↓A1↓B1�� � �cos �2�↑A2↑B2�

+ sin �2�↓A2↓B2; �18�

the state is pure so entanglement between Alice’s and Bob’s
subsystems is well quantified by the von Neumann entropy
of the reduced density matrix. Suppose also that Alice and
Bob can only handle systems if the total spins Ms available
to each party are such that Ms=0; perhaps the parts of the
state with nonzero moment are lost because of the presence
of large fluctuating fields in the environment. In the discard-
ing ensemble defined by this restriction, the state becomes

���R =
1

�1 − cos 2�1cos 2�2

�cos �1�↑A1↑B1�sin �2�↓A2↓B2�

+ sin �1�↓A1↓B1�cos �2�↑A2↑B2��; �19�

again this restricted state is pure but entanglement should
become quite different.

This type of measurement is familiar in other contexts—
for example, entanglement distillation and concentration
�22,23�.

Entanglement of a bipartite mixed spin state can also be
easily quantified by using negativity N��̂� instead as the en-
tanglement measure. We define negativity as the sum of the
magnitudes of the negative eigenvalues �i of the partially
transposed density matrix �̂TB,

N��̂� = �
is·t·�

i�0��i� . �20�

Consider the mixed state defined by

�̂ =
16F − 1

15
������ +

1 − F

15
1̂, �21�

where ��� is as defined in Eq. �18� �in contrast to the defini-
tion of Werner states, this is not a maximally entangled state�
and F� �1/16,1�. Note that when F=1, the state becomes
pure. Again an example of discarding ensembles can be ob-
tained by projecting the state �21� onto Ms=0 subspace and
renormalizing accordingly.

B. Harmonic oscillators

The density matrix of a Gaussian state can be written in
the coordinate representation �24� as
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�q��̂�q�� 
 ��q;q�� = 	1 exp− qTLq − q�TLq� −
1

2
�q

− q��TM�q − q�� +
i

2
�q − q��TK�q + q��� ,

�22�

where 	1 is a normalization constant, and where L, M, and K
are real N-dimensional matrices with L and M symmetric,
while K is arbitrary. These matrices are related to the cova-
riance matrix 
 by

1

2

−1 = � 1 0

− K 1
�T�2L 0

0 1
2 �L + M�−1 �� 1 0

− K 1
� .

�23�

We note that for a pure state, M=0 and K is symmetric.
Consider a harmonic system with a Hamiltonian �taking

�=1�

Ĥ = RT�Vm�2/2 0

0 1N/�2m�
�R , �24�

where the vector R of quadrature operators is given by the

positions Rj = X̂j and conjugate momenta RN+j = P̂j, for 1� j
�N, the NN matrix V contains the coupling coefficients,
and � is the natural frequency of uncoupled oscillators. For a
translationally invariant system the potential matrix elements
depend only on the difference between the indices: V j,k
=v�j−k�mod N for 1� j, k�N. The covariance matrix of the
ground state is then �8�


 =
1

2
� 
x

m�
� m�
p� =

1

2
�V−1/2

m�
� m�V1/2� . �25�

Since the Hamiltonian given in Eq. �24� has no coupling
between position and momentum variables, 
 is block diag-
onal and hence K=0. Furthermore if there are only nearest-
neighbor interactions, with a Hooke’s-law spring constant K,
the interaction strength is characterized by the single dimen-
sionless parameter

� =
2K

m�2 . �26�

For the two-oscillator ground state we therefore have only
one nonzero matrix:

L =
m�

8
�1 + �1 + 4� 1 − �1 + 4�

1 − �1 + 4� 1 + �1 + 4�
� . �27�

The one-particle reduced density matrices can then be easily
obtained by quadrature; for particle 1,

�̂�A��qA;qA�� = �
−�

�

dqB��qA,qB;qA� ,qB� =�2C1 − 2C2

�

 exp�− C1�qA
2 + qA�

2� + 2C2qAqA�� , �28�

where the state is normalized to unity and the constants C1
and C2 are

C1 =
1 + 2� + 3�1 + 4�

8 + 8�1 + 4�
m� �29�

and

C2 =
���1 + 4� − 1�

8�1 + 2� + �1 + 4��
m� . �30�

From Eq. �28�, we can also define the Gaussian characteristic
length � which characterizes the probability distribution of a
single particle:

� = 2m�� �1 + 4�

1 + 1�1 + 4�
��−1/2

. �31�

For bipartite Gaussian states, the entanglement of forma-
tion is known exactly �25�. For the ground state of our sys-
tem, the value is

S��̂�A�� = − log2�1 − w� −
w log2 w

�1 − w�
, �32�

where

w =
1 + 3�1 + 4� + 2�� − �1 + 4��1/4 − �1 + 4��3/4�

1 + 2� − �1 + 4�
.

�33�

IV. METHOD

For the spin system, the entanglement can be calculated
straightforwardly by standard methods; for the two-oscillator
system, we calculate the von Neumann entropy S��̂�A��, and
hence the entanglement, numerically by using two different
approaches.

A. Expansion in a complete set

We define an orthonormal set of functions, ��n�q��, with
support in a region A of configuration space of width 2a
centered at coordinate q̄:

�
q̄−a

q̄+a

�n�q��m
* �q� = �nm. �34�

A suitable choice is

�n�q� =�1

a
cos� �q − q̄�n�

2a
�, n is odd,

�n�q� =�1

a
sin� �q − q̄�n�

2a
�, n is even,

=0, if �q − q̄� � a . �35�

We then approximate the appropriate postselected density
matrix by an expansion in a finite set of the functions defined
in Eq. �35�; as an example, if only Alice makes a preliminary
measurement to localize her particle in the region A, we
have
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�̂D
�A��qA;qA�� = �

mn

N

�mn�m�qA��n
*�qA�� , �36�

with �mn given by

�mn = �
q̄A−a

q̄A+a

dqA�
q̄A−a

q̄A+a

dqA��m
* �qA��̂�A��qA;qA���n�qA�� ,

�37�

where �̂�A��qA ;qA�� is Eq. �28�. We normalize �̂D
�A��qA ;qA�� by

its trace and can then quantify entanglement by calculating
the von Neumann entropy from this normalized �̂D

�A��qA ;qA��.
Unfortunately, the quadratures in Eq. �37� must be performed
numerically, making this approach relatively time consum-
ing.

B. Configuration-space grid

We therefore also explored a direct real-space approach,
in which we first discretize the configuration space into a
finite number of measurement “bins,” then select only those
bins that correspond to the regions within which Alice’s and
Bob’s respective particles localize. For example, consider
again the case in which only Alice makes a preliminary mea-
surement, if the region is q̄A−a�qA� q̄A+a, we divide this
space into NB regions with NB+1 equally spaced points
�qA’s� covering the intervals from qA= q̄A−a to q̄A+a. We
then build the �NB+1� �NB+1� postselected one-particle re-
duced density matrix �̂D

�A��qA ;qA�� by calculating its elements
�mn’s from the one-particle reduced density matrix Eq. �28�:

�mn = �̂�A��qA
m;qA

n�, for 1 � m, n � NB + 1. �38�

As in the other approach, we calculate the von Neumann
entropy of the normalized �̂D

�A��qA ;qA�� in order to quantify
the entanglement.

Note that if, on the other hand, both parties make a pre-
liminary measurement, we start from the full two-particle
density matrix and apply Bob’s restrictions with respect to
his oscillator before we reduce it into the one-particle density
matrix for Alice’s oscillator.

We find that results from the two approaches converge to
the same values as the number of grid points, or the number
of expansion functions, tend to infinity. Since the second
�grid-based� approach is much more efficient to compute, it
has been used for all the results presented in this paper.

V. RESULTS

A. The spin system

1. Pure states

We present results in Fig. 1. For the spin system we con-
sider, entanglement present in the state equation �18� de-
pends on �1 and �2 with periods of � /2, as shown in Fig.
1�a�. The maximum entanglement is 2 ebits and occurs when
both pairs of spins are in the Bell state ��1=�2= �2n
+1�� /4�. When �1=�2=n� /2, the state reduces to all spins
either all up or down so completely loses any entanglement.

Now if the restricted region for both Alice and Bob is
chosen to be the subspace in which the total z component of
spin takes the value zero, and we work in the discarding
ensemble so all other states are eliminated, the entanglement
properties of the system become very different. Figure 1�b�
shows that the entanglement distribution of the restricted
state has periods of � instead of � /2, and the maximum
possible entanglement �now 1 ebit since the restricted sub-
spaces for both Alice and Bob are two dimensional� is
achieved whenever �1=�2 or �1+�2 are integer multiples of
� so that the restricted state is in the Bell state. Note that
there is a singularity whenever cos 2�1 cos 2�2=1.

If we compare Fig. 1�a� and 1�b�, it seems that in some
instances the restricted state has higher entanglement. This is
indeed the case as shown in Fig. 1�c�, where �S=S��̂D

�A��
−S��̂�A�� is plotted against both �1 and �2. This is an example

0 Π
����
2

Π

Θ1

0

Π
����
2

Π

Θ 2

0

2
S�Ρ�

0 Π
����
2

Π

Θ1

0

Π
����
2

Π

Θ 2

0

1
S�Ρ�

0 Π
����
2

Π

Θ1

0

Π
����
2

Π
Θ 2

�1.2

1
�S

(a)

(b)

(c)

FIG. 1. Entanglement �von Neumann entropy S��̂�A��� present in
the chosen spin system �a� when the total spins Ms is unrestricted,
�b� in the discarding ensemble when Ms for each party must be 0.
�c� Entanglement differences between the two cases; �S=S��̂D

�A��
−S��̂�A��.
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of the familiar process of entanglement concentration
�22,23�, in which some partial entanglement is concentrated
after chosen local measurements. Entanglement is not cre-
ated on average in our example because the probability of
finding Ms=0 is not 100%. Therefore the inequality Eq. �17�
is not violated.

2. Mixed states

Now we perform a similar calculation for the mixed state
�21�, comparing the entanglement �as quantified by the nega-
tivity� present when the total spins Ms is unrestricted and the
entanglement in the discarding ensemble when Ms for each
party must be 0. The results are presented in Fig. 2. We
choose three values of F for comparison; F=0.3, F=0.65,
and F=1.

In Fig. 3, we plot the variation of the entanglement N��̂�
with F by choosing both �1 and �2 to be � /4 �other values
can be chosen without affecting the qualitative behavior but
entanglement will not vanish at smaller values of F�. The
case when the total Ms is unrestricted �̂o is plotted as a solid
line, while the case of the corresponding discarding en-
semble �̂D is plotted as a dashed line. The entanglement in
both cases vanishes at F=0.25. This is similar to what we
observed in a previous paper �21�: in that case, we showed
that the entanglement �as quantified by the negativity� of a
two-mode Gaussian thermal state vanishes at the same tem-
perature regardless of whether the initial state, or the postse-
lected state in the discarding ensemble, is studied.

B. Two oscillators: The limit of small region sizes

For the Gaussian system described in Sec. III B the en-
tanglement can be evaulated analytically in the limit of very
small region sizes, following the method described in �21�.

1. Only Alice’s particle restricted

Suppose only Alice makes a preliminary measurement,
and determines that her particle is located in a region of
length 2a centered at coordinate q̄A, as in Sec. IV: q̄A−a
�qA� q̄A+a. In the discarding ensemble, the entanglement
is ED=h���
−�� log2���+ �1−��log2�1−��� with

� = a2m�
���1 + 4� − 1�

12�1 + 2� + �1 + 4��
. �39�

Note that this depends only on a and on the parameters of the
underlying oscillator system; it is independent of q̄. Note
also that the entanglement is nonzero for any nonzero �, and
can be made arbitrarily large �for a given small a� by increas-
ing �.

2. Both particles restricted

On the other hand, if both parties make measurements,
thereby also restricting Bob’s particle to a region of length
2b around q̄B, the entanglement is once again h���, but now
� becomes

� =
a2b2m2�2

72
�1 + 2� − �1 + 4�� , �40�

and the concurrence density �21� is

�2m�

6
�1 + 2� − �1 + 4� . �41�

Once again, this result depends only on the dimensionless
coupling strength � and the fundamental length unit �m��−1/2

of the oscillators; it is again independent of the location of
the centers of the measurement regions. Later we will see
that as a and b increase, the entanglement distribution gradu-
ally changes so that more entanglement is located at some
parts of configuration space than the others.
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FIG. 2. Entanglement �negativity N��̂�� present in the mixed
state �21� �a� when the total spins Ms is unrestricted, �b� in the
discarding ensemble when Ms for each party must be 0. �c� En-
tanglement differences between the two cases; �N=N��̂D�
−N��̂o�. F determines the “mixedness” of the state; when F=1, the
state is pure.
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FIG. 3. Variation of the entanglement �negativity N��̂�� with
F� �1/16,1�. F is a quantity that determines the mixedness of the
state as defined by Eq. �21�. The solid line is for the original en-
semble �̂o whereas the dashed line is for the corresponding discard-
ing ensemble �̂D. Both �1 and �2 have been set to � /4 to produce
the plots.
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C. Two oscillators: Finite region sizes

1. Only Alice’s particle restricted

For simplicity, we will set m=1, �=1 and choose the
Gaussian characteristic length �Eq. �31�� for an uncoupled
harmonic system, �=1, as our unit of length.

In this section, we consider the case in which only Alice
makes a preliminary measurement to determine that her par-
ticle lies within a finite-size region. Suppose that the size of
this region is 2a and the location of the center of the region
is q̄, the von Neumann entropy S��̂�A�� depends on both 2a
and q̄. This is shown in Fig. 4. We look at the variation with
q̄ first; Figure 4 along the q̄ axis shows some of the ex-
amples. For finite a, the entanglement is higher if we mea-
sure around the center of the wave function, where the prob-
ability of finding a particle is highest, than if we take our
measurements further away from the the center of the wave
function where the chance of finding a particle is very low.

We can understand this variation by examining Alice’s
postselected reduced density matrix in the center of Fig. 4
�q̄=0� and at the edge �q̄= ±4�. At the edge, the diagonal
elements increase rapidly towards one end; the eigenvalues
of this density matrix are dominated by these terms, resulting
in one eigenvalue being close to 1 and the other eigenvalues
being very small. The von Neumann entropy will therefore
also be small. In contrast, the diagonal elements in the center
case, instead of being dominated by a single element at one
end, are approximately constant. The resulting spread of ei-

genvalues leads to a higher von Neumann entropy.
We would also expect that as the region size approaches

the total configuration space, the entanglement in the dis-
carding ensemble should tend to the entanglement originally
present in the whole system; this is shown in the upper part
of Fig. 4, where the entanglement rises with a until it satu-
rates to the peak value of magnitude S��̂�A��=0.702 given by
Eq. �32�. Roughly speaking, this saturation occurs once the
region has expanded to include a significant portion of the
central part of the harmonic oscillator wave function.

We have already seen that in the limit of small a the
entanglement becomes independent of position. In fact, even
for finite a the entanglement is distributed very differently
from the probability distribution of Alice’s particle. This is
shown in the lower part of Fig. 4, where the colored curves
show the entanglement �scaled to a common maximum
value� as a function of q̄ for different widths 2a; for com-
parison, the black dashed plot shows the Gaussian one-
particle probability distribution with standard deviation �
given by Eq. �31�. Note that the width of the entanglement
plot varies nonmonotonically with a: the entanglement is
constant in the limits of small and large a, and has a mini-
mum width around 2a=2 �for �=6�. Note also that S��̂�A�� is
very small but is nonzero even for small �, as expected from
Eq. �39�.

For comparison, we also present in Fig. 4�b� results for a
much weaker coupling, �=0.06 compared with �=6: for
weak coupling, the entanglement has smaller peak values
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FIG. 4. �Color online� Top: Variation of the entanglement S��̂�A�� with both the width 2a and the center q̄ of the preliminary measurement
region. Bottom: S��̂�A�� plotted against q̄ for different widths, rescaled such that S��̂�A�� has the same peak value at q̄=0. A plot �the black
dashed line� of the corresponding Gaussian probability distribution for Alice’s particle, with a standard deviation � determined by the
coupling strength �, is shown for comparison. The different plots correspond to two different coupling strengths, �a� �=6 vs �b� �=0.06. The
number of bins NB used in the calculation was 200 in both cases.
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�=0.00859 in this case� and its spread is narrower, but the
qualitative features are similar in both cases.

2. Both particles restricted: Entanglement distributions

Next we consider the case where both Alice and Bob
make preliminary measurements, but not necessarily in the
same way.

We start by considering two different cases; the first �case
1� is that both parties’ preliminary measurements restrict
their particles to regions with identical widths and centers
�a=b and q̄A= q̄B�, whereas in the second case �case 2� the
region widths are the same but the center of Bob’s region is
always fixed around the centre of the wave function �a=b,
q̄B=0�. The results, for �=6, are shown together with the
previous result �case 3; only Alice makes a preliminary mea-
surement, as shown in Fig. 4�a�� for comparison in Fig. 5.
The entanglement in the discarding ensemble of case 3 is the
highest out of the three cases; this is as expected, since the
entanglement can only reduce under the additional �local�
measurements made by Bob. When the width 2a is small, the
entanglement of case 1 is higher than of case 2. However, as
2a increases, case 2 converges more rapidly to case 3 so that
its entanglement is now higher than that of Case 1, until 2a
becomes so large that the differences between all three cases
disappear.

3. Both particles restricted: Classical correlations

We now compare the entanglement distributions to the
classical correlations between the particles. Suppose that Al-

ice and Bob localize their respective particles to regions with
the same widths but different centers; the entanglement in
the discarding ensemble will depend on both q̄A and q̄B. We
shall compare the entanglement distribution with the two-
particle probability distribution P�qA�A�qB�B�, and the
conditional probability distribution for Bob’s particle given
the position of Alice’s particle, P�qB�B �qA�A�.

The two-particle probability is

P�qA � A � qB � B�

= �
q̄A−a

q̄A+a

dqA�
q̄B−a

q̄B+a

dqB  ��qA,qB;qA,qB� , �42�

and in the limit of small a ,b we have

P�qA � A � qB � B� = 4ab��q̄A, q̄B; q̄A, q̄B� . �43�

The conditional probability is

P�qB � B�qA � A� =
P�qA � A � qB � B�

P�qA � A�
, �44�

where P�qA�A� is the one-particle probability. In the limit
of small a ,b this becomes

P�qB � B�qA � A� = 2b
��q̄A, q̄B; q̄A, q̄B�

��A��q̄A, q̄A�
. �45�

In each case the small a ,b limit can be easily evaluated: we
find
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FIG. 5. �Color online� Comparison of the two different cases of preliminary measurements done by both parties together with the case
that only one party makes a preliminary measurement. The entanglement S��̂�A�� is plotted against the center q̄ of the preliminary measure-
ment region with width 2a. �Left� For 2a=0.5. �Right� For other larger values of 2a. Red long-dashed line �case 1�: Both parties’ preliminary
measurements localize their particles in regions with identical widths and centers �a=b and q̄A= q̄B�. Blue thick short-dashed line �case 2�:
The widths of the regions are the same but one center is always fixed around the center of the wave function while there is no restriction on
the other center �a=b, q̄B=0�. Black thin solid line �case 3�: Only one party makes a preliminary measurement. In all three cases, the number
of bins used in the calculation is NB=100 and �=6.
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��qA,qB;qA,qB� = 	2 exp�−
�q̄A + q̄B�2

2�+
2 −

�q̄A − q̄B�2

2�−
2 �

�46�

with “classical” standard deviations

�+
C = �2,

�−
C = � 2

�1 + 4�
�1/2

, �47�

and

��q̄A, q̄B; q̄A, q̄B�
��A��q̄A, q̄A�

= 	3 exp�−
q̄A

2

2�1
2 +

q̄Aq̄B

2�12
2 −

q̄B
2

2�2
2� �48�

with

�1 = � �1 + �1 + 4���1 + 2� + �1 + 4��
4�2 �1/2

,

�2 = � 2

1 + �1 + 4�
�1/2

,

�12 = � 1
�1 + 4� − 1

�1/2

, �49�

where 	2 and 	3 are normalization constants.
For finite a and b we capture the shape of the distributions

by fitting the numerically calculated values of P�qA

�A�qB�B� and P�qB�B �qA�A� using the same expres-
sions, Eq. �46� and Eq. �48�, thereby extracting numerical
values for �±

C, �1,2, and �12. We also use the function Eq.
�46� to fit the entanglement distribution, thereby obtaining
two further parameters �±

Q which quantify the extent of the

entanglement distribution along its principal axes.
As before, we take �=6. In Fig. 6, we show two cases of

entanglement distributions for different widths �2a=0.5 and
2a=4� of the preliminary measurement regions. We see that
the entanglement distribution with larger 2a is more symmet-
ric. The corresponding joint probability distributions and
conditional probability distributions are shown, respectively,
in Fig. 7 and Fig. 8. �Note that the figures show different
range of q̄A and q̄B.� The classical probability distributions
P�q̄A� q̄B� are more localized and symmetric in space than
the entanglement distributions.

In the limit of very small a, S��̂�A�� is constant everywhere
�Eq. �40��, so �+

Q and �−
Q must diverge; the results in Table I

show that �+
Q diverges more quickly as a reduces, while the

two parameters become comparable for large a as the en-
tanglement distribution becomes more symmetric. Indeed,
the distributions of the entanglement and the classical corre-
lations become more alike as 2a increases, because both dis-
tributions are flat out to a distance a either side of the wave
function’s central peak.

We can also study the effect of varying the coupling
strength � for a fixed �small� 2a. We plot �+

Q and �−
Q against

� with 2a=0.5 in Fig. 9�a� whereas �+
C, �−

C, �1, �2 and �12 in
Fig. 9�b�. The entanglement distribution is the most asym-
metrical and as � increases, the difference between �+

Q and
�−

Q widens. Of the quantities determining the classical prob-
ability distribution, �+

C remains constant with increasing �,
but �−

C gradually decreases. These trends arise because the
two particles tend to move together when the spring joining
them becomes strong. Therefore, as � increases, the white
rod in Fig. 8 rotates about the center of the square from the
line q̄B=0 towards the diagonal q̄A= q̄B. �1 is always the
largest out of the three parameters for the conditional prob-
ability distribution. For weak �, �12 is larger than �2, but as
� becomes larger, at some point the two plots intercept and
�12 is no longer larger than �2.
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How in the limit of very small a these quantities �Eq. �47�
and Eq. �49�� vary with � is shown in Fig. 9�c�. We see that
the behavior of these quantities do not change much, com-
pared with the previous results when 2a=0.5, apart from that
the interception points happen at smaller �. Note that �±

Q

diverge as a→0, so these parameters are not shown.

VI. CONCLUSIONS

We have presented a thought experiment that gives an
approach to determining the location in configuration space
of the entanglement between two systems. It involves choos-

ing a region of the two-party configuration space and making
a projective measurement with only enough resolution to de-
termine whether or not the system resides in this region, then
characterizing the entanglement remaining in the corre-
sponding subensemble. Our approach is particularly simple
to implement for pure states, since in this case the suben-
semble in which the system is definitely located in the re-
quired region after the measurement is also a pure state, and
hence its entanglement can be simply characterized by the
entropy of the reduced density operators.

We have given examples of the application of our method
to states of a simple spin system, where Alice and Bob share
two pairs of spin-1/2 particles, and also of a continuous-
variable system in which they share a pair of coupled har-
monic oscillators.

The first case shows how the amount of entanglement
located in the chosen region �in this case the Ms=0 mani-
fold� varies as the characteristics of the states shared by Alice
and Bob are altered. We presented results for both pure and
mixed states, and show how entanglement is affected by the
“mixedness” F both qualitativly and quantitativly. Specifi-
cally, we show that the states which are entangled from the
global point of view are also entangled by our local measures
�21�, i.e., global entanglement of the initial state vanishes at
the same point as the entanglement remaining in the discard-
ing ensemble after the preliminary measurement to locate the
system in a chosen subspace.

For the second case we have presented results as a func-
tion of the strength of the coupling between the oscillators,
as well as of the size and location of the preliminary mea-
surement regions. In all cases the remaining entanglement
saturates to the total entanglement of the system as the mea-
sured regions become large. For small measured regions the
entanglement tends to zero, but for a fixed region size the
configuration-space location can be varied in order to give a
variable-resolution map of the entanglement distribution. We
find that the distribution of the entanglement is qualitatively
different from the classical correlations between the par-
ticles, being considerably more extended in configuration
space than the joint probability density and becoming more
and more diffuse as the size of the regions decreases.

Our approach suffers from the disadvantage that there is
no sum rule on the entanglements in the discarding en-
semble: the sum of the entanglements from all the subregions
defined by a given decomposition of configuration space
does not yield the full entanglement of the system. Instead,
the entanglements from the subregions satisfy the inequality
in Eq. �17�. It would be interesting to understand in more
detail the relationship between the restricted entanglements
�as defined in this paper� and the full entanglement of the
system, and also to extend the calculations reported here to
projective measurements made in other bases, to POVMs,
and to mixed states.
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TABLE I. Table of � values for �=6.

�=6 �+
Q �−

Q �+
C �−

C �1 �2 �12

2a→0 � � 1.41 0.632 0.866 0.577 0.500

2a=0.5 10.4 2.29 1.43 0.665 0.937 0.603 0.531

2a=4 3.44 2.10 2.37 2.00 11.0 1.53 2.64
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FIG. 9. �Color online� Plots of �+, �−, �1, �12, and �2 against �.
In the plot legend, Q stands for the “quantum” entanglement distri-
bution and C for the “classical” probability distribution. �a� and �b�:
Numerical results: 2a is chosen to be 0.5 for all the cases. �c�
Analytical results: in the limit of very small a.

H.-C. LIN AND A. J. FISHER PHYSICAL REVIEW A 75, 032330 �2007�

032330-10



�1� T. J. Osborne and M. A. Nielsen, Phys. Rev. A 66, 032110
�2002�.

�2� A. Osterloh, L. Amico, G. Falci, and R. Fazio, Nature �Lon-
don� 416, 608 �2002�.

�3� G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Phys. Rev. Lett.
90, 227902 �2003�.

�4� J. I. Latorre, E. Rico, and G. Vidal, Quantum Inf. Comput. 4,
48 �2004�.

�5� B. Q. Jin and V. E. Korepin, J. Stat. Phys. 116, 79 �2004�.
�6� P. Zanardi and X. Wang, J. Phys. A 35, 7947 �2002�.
�7� M. A. Martin-Delgado, e-print quant-ph/0207026.
�8� K. Audenaert, J. Eisert, M. B. Plenio, and R. F. Werner, Phys.

Rev. A 66, 042327 �2002�.
�9� M. A. Plenio, J. Hartley, and J. Eisert, New J. Phys. 6, 36

�2004�.
�10� V. Vedral, Eur. J. Phys. 1, 289 �2003�.
�11� M. A. Nielsen, Ph.D. thesis, University of New Mexico, 1998

�e-print quant-ph/0011036�.
�12� W. K. Wootters, Contemp. Math. 305, 299 �2002�.
�13� W. K. Wootters, J. Math. Phys. 43, 4307 �2002�.
�14� K. M. O’Connor and W. K. Wootters, Phys. Rev. A 63, 052302

�2001�.
�15� H. J. Briegel and R. Raussendorf, Phys. Rev. Lett. 86, 910

�2001�.
�16� G. Giedke, M. M. Wolf, O. Kruger, R. F. Werner, and J. I.

Cirac, Phys. Rev. Lett. 91, 107901 �2003�.
�17� D. Cavalcanti, M. F. Santos, M. O. Terra Cunha, C. Lunkes,

and V. Vedral, Phys. Rev. A 72, 062307 �2005�.
�18� A. Botero and B. Reznik, Phys. Rev. A 70, 052329 �2004�.
�19� M. B. Plenio, J. Eisert, J. Dreissig, and M. Cramer, Phys. Rev.

Lett. 94, 060503 �2005�.
�20� L. Heaney, J. Anders, and V. Vedral, e-print quant-ph/0607069.
�21� H.-C. Lin and A. J. Fisher, e-print quant-ph/0608121.
�22� C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A.

Smolin, and W. K. Wootters, Phys. Rev. Lett. 76, 722 �1996�.
�23� C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schuma-

cher, Phys. Rev. A 53, 2046 �1996�.
�24� R. Simon, E. C. G. Sudarshan, and N. Mukunda, Phys. Rev. A

36, 3868 �1987�.
�25� R. W. Rendell and A. K. Rajagopal, Phys. Rev. A 72, 012330

�2005�.

CONFIGURATION-SPACE LOCATION OF THE… PHYSICAL REVIEW A 75, 032330 �2007�

032330-11


