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In recent investigations, it has been found that conservation laws generally lead to precision limits on
quantum computing. Lower bounds of the error probability have been obtained for various logic operations
from the commutation relation between the noise operator and the conserved quantity or from the recently
developed universal uncertainty principle for the noise-disturbance trade-off in general measurements. How-
ever, the problem of obtaining the precision limit to realizing the quantum NOT gate has eluded a solution from
these approaches. Here, we develop a method for this problem based on analyzing the trace distance between
the output state from the realization under consideration and the one from the ideal gate. Using the mathemati-
cal apparatus of orthogonal polynomials, we obtain a general lower bound on the error probability for the
realization of the quantum NOT gate in terms of the number of qubits in the control system under conservation
of the total angular momentum of the computational qubit plus the control system along the direction used to
encode the computational basis. The lower bound turns out to be more stringent than one might expect from
previous results. Our method is expected to lead to more accurate estimates for physical realizations of various
types of quantum computations under conservation laws and to contribute to related problems such as the
accuracy of programmable quantum processors.
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I. INTRODUCTION

Recently, there have been extensive research efforts to
explore whether fundamental physical laws put any con-
straints on realizing scalable quantum computing. Soon after
the discovery of Shor’s algorithm �1�, it was pointed out by
several physicists �2–4� that the decoherence, the exponential
decay of coherence in time, caused by the coupling between
a quantum computer and the environment would cancel out
the computational advantage of quantum computers. To
overcome this difficulty, quantum error correction was pro-
posed �5,6�, and subsequent development has established the
so-called threshold theorem: if the error caused by the deco-
herence in individual quantum gates is below a certain con-
stant threshold, it is possible in principle to efficiently per-
form an arbitrary scale of fault-tolerant quantum
computation with error correction �7�. Thus, the error correc-
tion reduces, in principle, the scalability problem to the ac-
curacy problem requiring individual quantum logic gates to
clear the error threshold, though being still quite demanding.

In general, decoherence in quantum computer compo-
nents can be classified into two classes: �i� static decoher-
ence, arising from the interaction between computational qu-
bits, typically in the memory, and the environment, and �ii�
dynamical decoherence, arising from the interaction between
computational qubits, typically in the register, and the con-
trol system of gate operations �8�. The static decoherence
may be overcome by developing materials with long deco-
herence time. On the other hand, dynamical decoherence
poses a dilemma between controllability and decoherence;
the control needs coupling, whereas the coupling causes de-
coherence. Thus, even if the interaction with the environment

is completely suppressed, the error caused by the dynamical
decoherence still remains. Clearly, if the control system is
described classically, there is no decoherence. However, this
never happens in reality with finite resources.

Barnes and Warren �9�, Gea-Banacloche �10�, and van
Enk and Kimble �11� have focused on the atom-field inter-
action between atom qubits and control electromagnetic
fields, and shown that, when the control field is in a coherent
state, the gate error scales as the inverse of the average pho-
ton number. In contrast to those model-dependent ap-
proaches, one of the current authors �12� explored the physi-
cal constraint on the error caused by dynamical decoherence
generally imposed by conservation laws and obtained accu-
racy limits by quantitatively generalizing the so-called
Wigner-Araki-Yanase theorem �13,14�: observables which
do not commute with bounded additive conserved quantities
have no precise and nondisturbing measurements. It is natu-
ral to assume that conservation laws are satisfied by the in-
teraction between the qubit and the external control system.
If the control system were to be completely described as a
classical system, the conservation law would not cause any
conflict in realizing a unitary operation on the computational
qubit, since the classical interaction causes no decoherence
and yet conserves the �infinite� total quantum number. How-
ever, in reality, the interaction may cause decoherence and
the time evolution operator on the composite system is lim-
ited to one commuting with the conserved quantity. Under
these conditions, the accuracy of the realized gate operation
generally depends on the kind of gate being considered. It
has been shown that the SWAP gate can be realized in prin-
ciple without error �12�. However, the controlled-NOT gate
and the Hadamard gate have lower bounds of the error prob-
ability that scales as the inverse of the size of the control
system, as follows.

The impossibility of precise and nondisturbing measure-
ments under conservation laws was generalized to an in-
equality for the lower bound of the sum of the noise and
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disturbance of the measuring process under a conservation
law �8�. This inequality leads to a general lower bound for
the error probability of any realization of the controlled-NOT
gate under conservation laws �8,12,15�. For single-spin qu-
bits controlled by the N-qubit control system, the angular
momentum conservation law leads to the minimum error
probability �4N2�−1 �12�. Thus, assuming a threshold error
probability 10−4–10−5 �7�, a two-qubit unitary operator needs
to be realized by an interaction with more than 100 qubit
systems, suggesting the usefulness of schemes based on
multiple-spin encoded qubits such as the universal encoding
based on decoherence-free subspaces �15–17�. In bosonic
controls, such as electromagnetic fields in coherent states,
the minimum error probability amounts to �16n̄�−1 �12�,
where n̄ is the average number of photons. The above result
also leads to a conclusion that in any universal set of elemen-
tally logic operations there is at least one logic operation that
obeys the error limit with the same scaling as above �12�.

On the other hand, without assuming the nondisturbing
condition the lower bound for the noise in arbitrary measure-
ments under arbitrary conservation laws was derived from
the commutation relation for the noise operator and the con-
served quantity �18� or simply from the universal uncertainty
principle �19�; see Refs. �20–22� for the universal uncertainty
principle. This inequality also leads to a general lower bound
for the error probability of the realization of the Hadamard
gate that amounts to the minimum error probability �4N2�−1

for any N-qubit control system and �16n̄�−1 for any electro-
magnetic control field in a coherent state with an average
number of photons, n̄ �19�. Gea-Banacloche and one of the
authors �23� compared the above result for electromagnetic
control fields with the previous result obtained by Gea-
Banacloche �10� for the Jaynes-Cummings interaction, and it
was concluded that the constraint based on the angular mo-
mentum conservation law represents an ultimate limit closely
related to fluctuations in the quantum field phase. The use of
the Jaynes-Cummings model in the above model-dependent
approach �10,11� was questioned by Itano �24�, and subse-
quently Silberfarb and Deutsch �25� justified the Jaynes-
Cummings model in the limit of small entanglement; see also
replies to Itano by van Enk and Kimble �26� and by Gea-
Banacloche �27�. The above consistency result between the
model-dependent and model-independent approaches en-
forces the validity of the use of the Jaynes-Cummings model
and substantially clarifies the whole situation.

The above methods for deriving conservation-law-
induced quantum limits for quantum logic operations are
also applicable to the Toffoli gate and the Fredkin gate to
obtain similar lower bounds. However, the problem of ob-
taining the precision limit to realizing the quantum NOT gate
has eluded a solution from these approaches, and hence the
problem has been open as to how the minimum error for that
gate scales with the size of the control system. In this paper,
in order to solve this problem we devise a method of deriv-
ing the precision limit and show that there exists a nonzero
lower bound, which indeed scales as the inverse size of the
control system, of the error probability for the quantum NOT

gate.
Our formulation has various common features with the

formulation of programmable quantum processors �28–30�,

in which a set of unitary operators is to be realized by se-
lecting a unitary operator on the composite system, the sys-
tem plus the ancilla, and by selecting a set of ancilla states,
whereas in our problem a single unitary operator is to be
realized under a conservation law by selecting a unitary op-
erator on the composite system satisfying the conservation
laws and by selecting a single ancilla state. In previous in-
vestigations the accuracy of programmable quantum comput-
ing has been measured by the so-called process fidelity, a
fidelity-based distance measure between two operations,
whereas here we investigate in the completely bounded �CB�
distance or gate trace distance, a trace-distance-based mea-
sure. Thus, our method is expected to contribute to the prob-
lem of programmable quantum processors and related sub-
jects �31–33� in future investigations.

This paper is organized as follows. Section II gives the
basic formulations and main results. We define the error
probability in realizing the quantum NOT gate based on the
CB distance. We subsequently show that a pure input state
gives the worst error probability. This enables us to assume,
without loss of generality, that the input state is a pure state.
In preparation for deriving the lower bound of the error prob-
ability, in Sec. III we generally describe the maximum trace
distance between the two output states from the realization
and from the ideal quantum NOT gate. In Sec. IV, we intro-
duce the conservation law into the discussion. By minimiz-
ing the error probability over arbitrary choices of the evolu-
tion operator obeying the conservation law, we give a lower
bound which depends only on the ancilla input state. In Sec.
V, we optimize the ancilla input state and derive a general
lower bound expressed as a function of the size �the number
of qubits� of the ancilla. Chebyshev polynomials of the sec-
ond kind, a family of orthogonal polynomials, are used to
solve this problem. To show the tightness of the bound, in
Sec. VI, we consider classically complete realizations, real-
izations which correctly carry out the quantum NOT operation
when the input state is a computational basis state. We obtain
the attainable lower bound for classically complete realiza-
tions. This result also shows that the general lower bound
can be attained up to constant factor of the ancilla size. In the
final section, we summarize our study and comment on the
direction of future studies.

II. FORMULATION AND MAIN RESULTS

A. Qubits and conservation laws

The problem to be considered is formulated as follows.
The main system S is a single qubit described by a two-
dimensional Hilbert space HS with a fixed computational
basis ��0�,�1��. The Pauli operators XS, YS, and ZS on HS are
defined by XS= �0�	1�+ �1�	0�, YS=−i�0�	1�+ i�1�	0�, and ZS

= �0�	0�− �1�	1�. We refer to XS as the quantum NOT gate.
We suppose that the computational basis is represented by

the z component of spin and consider the constraint on real-
izing the quantum NOT gate XS under the angular momentum
conservation law. More specifically, we assume that the con-
trol system is described as an N-qubit system A, also called
the ancilla, and that the interaction between S and A pre-
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serves the z component of the angular momentum of the
composite system S+A, and study the unavoidable error
probability in realizing the quantum NOT operation.

Each qubit Ai for i=1,2 , . . . ,N in the ancilla A is de-
scribed by a two-dimensional Hilbert space HAi

. Accord-
ingly, the Hilbert space HA of the ancilla A is the tensor
product HA= � i=1

N HAi
and the Hilbert space H of the com-

posite system S+A is H=HS � HA. The observable ZS on
HS is identified with ZS � IA1

� IA2
� ¯ � IAN

, where IAi
for

i=1,2 , . . . ,N is the identity operator on HAi
, respectively.

Let ZAi
be the Pauli Z operator on HAi

, which is also iden-
tified with the corresponding operator on H. The sum of
Pauli Z operators on A is denoted by

ZA = 

i=1

N

ZAi
,

and the corresponding sum of S+A is denoted by

Z = ZS + ZA.

Let U be the evolution operator of S+A during the inter-
action between S and A to realize the quantum NOT gate on
S. We assume that U satisfies the conservation law

�U,Z� = 0, �1�

where �U ,Z�=UZ−ZU. We shall show that the conservation
law �1� causes unavoidable decoherence in realizing XS by
U.

To obtain the error probability, we describe the output
state of S resulting from the evolution of S+A. Let �S and �A
be states of S and A, respectively, so that the input state of
S+A is the product state �S � �A. Then the output state
EU,�A

��S� of S is given by

EU,�A
��S� = TrA�U��S � �A�U†� , �2�

where TrA�·� is the partial trace over HA. On the other hand,
for the perfect quantum NOT gate, the output state EXS

��S� of
S would be

EXS
��S� = XS�SXS

†. �3�

In the following sections we shall show that there exists
an unavoidable error probability of the output state �2� in
realizing the output state �3� under the conservation law �1�.
The unavoidable error probability for any unitary operator U
satisfying the conservation law �1� will be evaluated to be at
least

1

2
�1 − cos

�

N + 2
�

for the worst input state �S of S and for the best input state
�A of A, and the achievability to this lower bound will be
shown asymptotically. This lower bound is much tighter than
the lower bound 1

16N2+4
anticipated from previous investiga-

tions for other gates as to be shown numerically.

B. Error probability and CB distance

To state our results more precisely, we introduce the fol-
lowing definitions. Any pair �U ,�A� consisting of a unitary
operator U on HS � HA and a state �A on HA is called a gate
implementation or simply an implementation with ancilla A.
Every implementation �U ,�A� determines the trace-
preserving completely positive �CP� map EU,�A

of the states
of S by Eq. �2� called the gate operation determined by
�U ,�A�; see Ref. �7� for trace-preserving CP maps in quan-
tum information theory. An implementation �U ,�A� is said to
be conservative if it satisfies Eq. �1�. We consider the prob-
lem as to how accurately we can make the gate operation
EU,�A

to realize the quantum NOT gate EXS
. The worst error

probability of this realization is defined by the completely
bounded distance �34,35� �the CB distance, or the half-CB-
norm distance� between EU,�A

and EXS
, given by

DCB�EU,�A
,EXS

� = sup
n,�

D„EU,�A
� idn���,EXS

� idn���… ,

�4�

where D�· , · � denotes the trace distance �or the half-trace-
norm distance� �7� defined by

D��1,�2� =
1

2
Tr���1 − �2��

for any states �1 and �2 of S, idn is the identity operation on
an n-level system E, and � runs over the density operators on
S+E. Since the trace distance of the output states can be
interpreted as the achievable upper bound on the classical
trace distances, or the total-variation distances, between the
probability distributions arising from any measurements on
those states �7�, the CB distance can be interpreted as the
ultimate achievable upper bound on those classical trace dis-
tances with further allowing measurements over the environ-
ment with entangled input states; see, for example, �36� for a
discussion on the enhancement of channel discriminations
with an entanglement assistance. Thus, we interpret
DCB�EU,�A

,EXS
� as the worst error probability of EU,�A

in re-
alizing EXS

. The phrase “error probability” in the following
discussion means the CB distance �4�. Clearly,

DCB�EU,�A
,EXS

� � max
�S

D„EU,�A
��S�,EXS

��S�… ,

and minimizing max�S
D(EU,�A

��S� ,EXS
��S�) over all the con-

servative implementations �U ,�A�, we find

DCB�EU,�A
,EXS

� � min
�U,�A�

max
�S

D„EU,�A
��S�,EXS

��S�… . �5�

The right-hand side of this inequality can be interpreted as a
precision limit of the quantum NOT gate under the conserva-
tion law �1�. If the limit could take zero, it might be consid-
ered that there exists a perfect realization in EU,�A

. However,
we show that such a realization does not exist because of the
conservation law �1�.

C. Sufficiency of pure input states

Now, we shall simplify the maximization over the input
state �S by showing that it suffices to consider only the pure
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state �S. To show this, we use the fact that the output trace
distance is jointly convex in its inputs:

DEU,�A�

i

pi�i�,EXS�

i

pi�i��
� 


i

piD„EU,�A
��i�,EXS

��i�… , �6�

where 
ipi=1 and pi�0. This follows easily from the joint
convexity of the trace distance �7� and the linearity of opera-
tions EXS

and EU,�A
.

From the above inequality, a pure input state certainly
gives the maximum of the trace distance. To see this briefly,
let �S=
iqi��i�	�i�, where 
iqi=1 and qi�0. Then, there ex-
ists a pure state �� j� such that

DEU,�A�

i

qi��i�	�i��,EXS�

i

qi��i�	�i���
� 


i

qiD„EU,�A
���i�	�i��,EXS

���i�	�i��…

� D„EU,�A
��� j�	� j��,EXS

��� j�	� j��… . �7�

Thus in considering max�S
D(EU,�A

��S� ,EXS
��S�), we shall as-

sume in later discussions without loss of generality that the
input state �S is a pure state.

D. Pure conservative implementations

An implementation �U ,�A� is said to be pure if �A is a
pure state. In this case, we shall write �U ,�A�= �U , �A�� if
�A= �A�	A�. In the following sections, we shall mainly con-
sider the case where the ancilla state is a pure state. Here, we
shall show a purification method that makes any general con-
servative implementation a pure conservative implementa-
tion, so that every conservative implementation with N-qubit
ancilla has a pure conservative implementation with �N
+ �log2 rank��A���-qubit ancilla, where rank��A� denotes the
rank of �A.

Let �U ,�A� be a conservative implementation with
N-qubit ancilla A. Then, we have the spectral decomposition

�A = 

j=1

R

pj�� j�	� j� , �8�

where R=rank��A�, 	� j ��k�=� jk, pj �0 for all j ,k=1, . . . ,R,
and 
 jpj =1. Let A� be the N�-qubit ancilla system extending
A satisfying N�=N+ �log2 R�. Let �A���HA� be such that

�A�� = 

j=1

R

�pj�� j� � �	 j� , �9�

where �	 j��HA�−A, 		 j �	k�=� jk for all j ,k=1, . . . ,R. We de-
fine a unitary operator U� on HS � HA � HA�−A by U�=U
� I, where I is the identity operator on HA�−A.

Now, we consider the implementation �U� , �A���. It is easy
to see that U� satisfies the conservation law �U� ,Z�=0,
where Z is the sum of Pauli Z operators in S+A�. We shall
show the relation

EU,�A
= EU�,�A��. �10�

Let �S be any input state. Then, by Eq. �9� we have

TrA�−A��S � �A��	A��� = �S � �A. �11�

We also have

EU�,�A����S� = TrA��U���S � �A��	A���U�†�

= TrATrA�−A��U � I���S � �A��	A����U†
� I��

= TrA�UTrA�−A��S � �A��	A���U†� .

From Eq. �11�, we have

EU�,�A����S� = TrA�U��S � �A�U†� .

Since �S is arbitrary, Eq. �10� follows from Eq. �2�.
The implementation �U� , �A��� is a pure conservative

implementation and has �N�=N+ �log2 rank��A���-qubit an-
cilla.

E. Gate fidelity and gate trace distance

For any two trace-preserving CP maps E1 and E2 their
distance measures are defined as follows. The gate fidelity
�7� F�E1 ,E2� between E1 and E2 is defined by

F�E1,E2� = inf
�S

F„E1��S�,E2��S�… , �12�

where �S varies over all the states of S and F�· , · � on the
right-hand side denotes the fidelity defined by

F��1,�2� = Tr���1
1/2�2�1

1/2�1/2� �13�

for all states �1 and �2 of S. By the joint concavity of the
fidelity ��7�, p. 415� the infimum in Eq. �12� can be replaced
by the one over only all the pure states �S of S.

We define the gate trace distance D�E1 ,E2� between E1

and E2 by

D�E1,E2� = sup
�S

D„E1��S�,E2��S�… , �14�

where �S varies over all the states of S. By the result ob-
tained in Sec. II C, the supremum in Eq. �14� can be replaced
by the one over only all the pure states �S of S.

For any state �1 and any pure state �2, the fidelity and the
trace distance are related by

D��1,�2� � 1 − F��1,�2�2

�see Eq. �9,111� of Ref. �7��. Since EXS
��S� is a pure state

provided that �S is pure, we have

D„EU,�A
��S�,EXS

��S�… � 1 − F„EU,�A
��S�,EXS

��S�…2 �15�

for any pure state �S of S. Taking the supremum over all the
pure states �S of both sides of Eq. �15�, for any implemen-
tation �U ,�A� we obtain
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DCB�EU,�A
,EXS

� � D�EU,�A
,EXS

� � 1 − F�EU,�A
,EXS

�2.

�16�

In Ref. �19�, the realization of the Hadamard gate HS
= �1/�2���0�	0�+ �1�	0�+ �0�	1�− �1�	1�� has been considered
and it has been proved that for any pure conservative imple-
mentation �U , �A�� with N-qubit ancilla A, we have

1 − F�EU,�A�,EHS
�2 �

1

4N2 + 4
, �17�

where EHS
��S�=HS�SHS

†.1 Since any conservative implemen-
tation �U ,�A� with N-qubit ancilla A can be purified to be a
pure conservative implementation �U� , �A��� with �N
+ �log2 rank��A���-qubit ancilla A�, we have

1 − F�EU,�A
,EHS

�2 �
1

4�N + log2 rank��A��2 + 4
. �18�

Since N+ �log2 rank��A���2N, we conclude that every con-
servative implementation �U ,�A� with N-qubit ancilla A sat-
isfies

1 − F�EU,�A
,EHS

�2 �
1

16N2 + 4
. �19�

In other words, we have

min
�U,�A��

max
�S

�1 − F�EU,�A�,EHS
�2� �

1

4N2 + 4
, �20�

where �U , �A�� varies over all the pure conservative imple-
mentations with N-qubit ancilla A, and we have

min
�U,�A�

max
�S

�1 − F�EU,�A
,EHS

�2� �
1

16N2 + 4
, �21�

where �U ,�A� varies over all the conservative implementa-
tions with N-qubit ancilla A.

F. Main results

Unfortunately, the method for deriving Eq. �17� cannot be
applied to the quantum NOT gate. In this paper we develop a
method for analyzing the gate trace distance D�EU,�A

,EXS
�

instead of considering the gate fidelity F�EU,�A
,EXS

� and we
shall prove the following relations. In Sec. V, we shall show
that any pure conservative implementation �U , �A�� with
N-qubit ancilla satisfies

D�EU,�A�,EXS
� �

1

2
�1 − cos

2�

N + 4
� . �22�

It follows from the above that any conservative implementa-
tion �U ,�A� with N-qubit ancilla satisfies

D�EU,�A
,EXS

� �
1

2
�1 − cos

2�

N + log2 rank��A� + 4
� .

�23�

An implementation �U ,�A� is called a classically complete
implementation of the quantum NOT gate, or classically com-
plete implementation for short, if it satisfies

EU,�A
��0�	0�� = �1�	1� , �24�

EU,�A
��1�	1�� = �0�	0� . �25�

In Sec. VI, we shall consider classically complete pure con-
servative implementations. We shall find the attainable lower
bound for this case, so that we obtain

min
�U,�A��

max
�S

D„EU,�A���S�,EXS
��S�… =

1

2
�1 − cos

2�

N + 2
� ,

�26�

where �U , �A�� varies over all the classically complete pure
conservative implementations with N-qubit ancilla A pro-
vided N is even, and we obtain

min
�U,�A��

max
�S

D„EU,�A���S�,EXS
��S�… =

1

2
�1 − cos

2�

N + 1
� ,

�27�

provided N is odd. From the above, any classically complete
conservative implementation �U ,�A� with N-qubit ancilla
satisfies

D�EU,�A
,EXS

� �
1

2
�1 − cos

2�

N + log2 rank��A� + 2
� .

�28�

Since N+log2 rank��A��2N, from the above we have

1

2
�1 − cos

2�

N + 1
� � min

�U,�A�
max

�S

D„EU,�A
��S�,EXS

��S�…

�
1

2
�1 − cos

�

N + 1
� , �29�

where �U ,�A� varies over all the classically complete imple-
mentations with N-qubit ancilla. From Eqs. �22� and �27�, we
have

1

2
�1 − cos

2�

N + 1
� � min

�U,�A��
max

�S

D„EU,�A���S�,EXS
��S�…

�
1

2
�1 − cos

2�

N + 4
� , �30�

where �U , �A�� varies over all the pure conservative imple-
mentations. Finally, from Eqs. �23� and �27�, we have

1Note that the presentation of Ref. �19� discusses the conservation
law for the x component of the spin instead of the z component
considered in the present paper. However, in that argument the x
component and the z component are completely interchangeable,
since we have both relations H†XH=Z and H†ZH=X from H=H†.
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1

2
�1 − cos

2�

N + 1
� � min

�U,�A�
max

�S

D„EU,�A
��S�,EXS

��S�…

�
1

2
�1 − cos

�

N + 2
� , �31�

where �U ,�A� varies over all the conservative implementa-
tions with N-qubit ancilla A.

III. LOWER BOUND OF THE GATE TRACE DISTANCE

In this section, we investigate the maximum trace distance
over all possible input states of S for given U and �A in a
general way without considering the conservation law.

A. System input state and trace distance

We start with a description of the output states controlled
by any unitary operator U on HS � HA. Any pure input state
��� of S can be described as

��� = 
�0� + ��1� , �32�

where �
�2+ ���2=1. We assume that the input state of A is a
pure state �A�, so that the input state of the composite system
S+A is the product state ��� � �A�. When �0� or �1� is an input
state of S the corresponding output state of S+A can be
generally expressed as

U��0� � �A�� = �0� � �A0
0� + �1� � �A1

0� ,

U��1� � �A�� = �0� � �A0
1� + �1� � �A1

1� , �33�

where �Aj
i��HA for i , j=0,1. Normalizing these states gives

��A0
0��2 + ��A1

0��2 = 1, ��A0
1��2 + ��A1

1��2 = 1. �34�

The output state of S+A corresponding to ��� can then be
expressed as

U���� � �A�� = 
��0� � �A0
0� + �1� � �A1

0��

+ ���0� � �A0
1� + �1� � �A1

1�� . �35�

Normalizing Eq. �35� gives

Re�
*��	A0
0�A0

1� + 	A1
0�A1

1��� = 0. �36�

The output state EU,�A������ªEU,�A�����	��� of S is given by
the partial trace of Eq. �35� with respect to A as follows:

EU,�A������ = TrA�U����	�� � �A�	A��U†�

= ��
�2��A0
0��2 + 
�*	A0

1�A0
0� + 
*�	A0

0�A0
1�

+ ���2��A0
1��2��0�	0� + ��
�2	A1

0�A0
0� + 
�*	A1

1�A0
0�

+ 
*�	A1
0�A0

1� + ���2	A1
1�A0

1���0�	1� + ��
�2	A0
0�A1

0�

+ 
�*	A0
1�A1

0� + 
*�	A0
0�A1

1� + ���2	A0
1�A1

1���1�	0�

+ ��
�2��A1
0��2 + 
�*	A1

1�A1
0�

+ 
*�	A1
0�A1

1� + ���2��A1
1��2��1�	1� . �37�

On the other hand, if the quantum NOT gate were to be per-
fectly realized, the output state EXS

�����ªEXS
����	��� would

be given by

EXS
����� = XS���	��XS

†

= ���2�0�	0� + 
*��0�	1�

+ 
�*�1�	0� + �
�2�1�	1� . �38�

We now consider the trace distance between EU,�A������ and
EX�����. Note that the trace distance between two-
dimensional states �	 and � can be described as

D��	,�� = ���01
	 − �01

 �2 − ��00
	 − �00

 ���11
	 − �11

 � , �39�

where �ij
k = 	i��k�j� for k=	 ,. Using this relation, the trace

distance D(EXS
����� ,EU,�A������) is

D„EU,�A������,EXS
�����…

= ��
*� − ��
�2	A1
0�A0

0� + 
�*	A1
1�A0

0� + 
*�	A1
0�A0

1�

+ ���2	A1
1�A0

1���2 − ����2 − ��
�2��A0
0��2

+ 
�*	A0
1�A0

0� + 
*�	A0
0�A0

1� + ���2��A0
1��2��

� ��
�2 − ��
�2��A1
0��2 + 
�*	A1

1�A1
0�

+ 
*�	A1
0�A1

1� + ���2��A1
1��2���1/2. �40�

Let �0= ��A0
0��2 and �1= ��A1

1��2. Then ��A1
0��2=1−�0 and

��A0
1��2=1−�1 by Eq. �34�. Thus Eqs. �36� and �40� give

D„EU,�A������,EXS
�����… = ��
*��1 − 	A1

0�A0
1�� + 
�*	A1

1�A0
0�

− �
�2	A1
0�A0

0� − ���2	A1
1�A0

1��2

+ �− �
�2�0 + ���2�1

− 2 Re�
*�	A0
0�A0

1���2�1/2. �41�

Clearly ��−�
�2�0+ ���2�1�−2 Re�
*�	A0
0 �A0

1���2�0, and
hence we obtain

D„EU,�A������,EXS
�����… � �
*��1 − 	A1

0�A0
1�� + 
�*	A1

1�A0
0�

− �
�2	A1
0�A0

0� − ���2	A1
1�A0

1�� . �42�

B. Lower bound for maximum trace distance

In the following, we shall prove that for any U and �A�,
we have

max
�S

D„EU,�A���S�,EXS
��S�… �

1

2
�1 − 	A1

0�A0
1�� , �43�

by considering the maximization of Eq. �42� over the input
state ��� of S. This means that the output trace distance must
satisfy Eq. �43� for any interaction and any input state of A.
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The proof is as follows. We consider the input state ����
=
�0�+��1� such that �
�= ���= 1

�2
. Let � be such that 
*�

= 1
2ei� and 0���2�. Then Eq. �42� gives

D„EU,�A�������,EXS
������… �

1

2
�ei��1 − 	A1

0�A0
1�� + e−i�	A1

1�A0
0�

− 	A1
0�A0

0� − 	A1
1�A0

1�� . �44�

Here three complex numbers 1− 	A1
0 �A0

1�, 	A1
1 �A0

0�, and
−	A1

0 �A0
0�− 	A1

1 �A0
1�, which are determined by U and �A�, can

be expressed as

1 − 	A1
0�A0

1� = r1ei�1, 	A1
1�A0

0� = r2ei�2,

− 	A1
0�A0

0� − 	A1
1�A0

1� = r3ei�3, �45�

where ri�0 and 0��i�2� for i=1,2 ,3. Then r1= �1
− 	A1

0 �A0
1�� and

D„EU,�A�������,EXS
������…

�
1

2
�r1 + r2ei�−2�−�1+�2� + r3ei�−�+�3−�1�� . �46�

Note that Eq. �46� is maintained for any � which is indepen-
dent of U and �A�. Hence, we consider the following two
cases. In the first case, suppose that U and �A� satisfy r2

�r3. In this case, for the input state ��a�� of S with �= 1
2 ��2

−�1�, we have

D„EU,�A����a���,EXS
���a���… =

1

2
�r1 + r2 + r3ei�−��2−�1�+�3−�1�/2�

�
1

2
�r1 + r2 − r3� �

1

2
r1.

Thus, there exists a state ��� of S that satisfies
D(EXS

����� ,EU,�A������)�
1
2r1 in the case where r2�r3. In the

second case, suppose that U and �A� satisfy r2�r3. In this
case, for the input state ��b�� with �=�3−�1, we have

D„EU,�A����b���,EXS
���b���… =

1

2
�r1 + r2ei�−2��3−�1�−�1+�2� + r3�

�
1

2
�r1 + r3 − r2� �

1

2
r1.

Thus, there exists a state ��� of S that satisfies
D(EU,�A������ ,EXS

�����)�
1
2r1 in the case where r2�r3. We

therefore conclude that for any U and �A�, there exists a state
��� of S such that the input state �S= ���	�� satisfies

D„EU,�A���S�,EXS
��S�… �

1

2
�1 − 	A1

0�A0
1�� . �47�

This completes the proof.
In Eq. �43�, if the inner product 	A1

0 �A0
1� could take one by

a certain choice of U and �A�, the lower bound could take
zero. This may mean a perfect realization of EU,�A� exists.
However, we will show in the following sections that the

inner product cannot take one by assuming the conservation
law �1�. This result will give us a precision limit of the quan-
tum NOT gate.

IV. PRECISION LIMIT GIVEN THE ANCILLA STATE

In this section, we derive the lower bound which depends
on the input state of the ancilla system by minimizing the
right-hand side of Eq. �47� over the evolution operator U
under the conservation law.

A. Constraints on ancilla input states

We start with the description of the input state of A. The
sum of the Pauli Z operators on A is the operator ZA on HA
given by

ZA = 

i=1

N

ZAi
.

We denote the eigenspace in ZA of an eigenvalue 	 by E	
ZA.

The eigenvalues are N−2n, where n=0,1 ,2 , . . . ,N. The di-
mension of the eigenspace of the eigenvalue N−2n is dn

= N!
�N−n�!n! . Note that the Hilbert space of A is the direct sum

of the spaces EN−2n
ZA for n=0,1 , . . . ,N:

HA = �n=0
N EN−2n

ZA . �48�

Therefore, for any input state �A� of A there exist an�C and
��n

A��EN−2n
ZA with ���n

A��=1 satisfying

�A� = 

n=0

N

an��n
A� . �49�

Normalizing Eq. �49� gives



n=0

N

�an�2 = 1. �50�

Next we describe the output state of S+A under the con-
servation law. Let Em

ZS be the eigenspace of an eigenvalue
m=1, −1 of ZS and E�

Z be the eigenspace of an eigenvalue �
of Z, where Z=ZS+ZA, which has

� = N + 1 − 2n , �51�

where n=0,1 , . . . ,N ,N+1. The eigenspace E�
Z can be ex-

pressed by the tensor product of the space E1
ZS � EN−2n

ZA and
the space E−1

ZS � EN−2n
ZA as follows:

EN+1
Z = E1

ZS � EN
ZA,

EN+1−2
Z = �E1

ZS � EN−2
ZA � � �E−1

ZS � EN
ZA� ,

EN+1−4
Z = �E1

ZS � EN−4
ZA � � �E−1

ZS � EN−2
ZA � ,

]

EN+1−2n
Z = �E1

ZS � EN−2n
ZA � � �E−1

ZS � EN−2�n−1�
ZA � ,
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]

E−N+1
Z = �E1

ZS � E−N
ZA� � �E−1

ZS � E−N+2
ZA � ,

E−N−1
Z = E−1

ZS � E−N
ZA. �52�

Note that the conservation law �1� can be equivalently
expressed by the relation2

UE�
Z � E�

Z �53�

for all �. Equations �52� and �53� then show that the output
state U��0� � ��n

A�� is an element of the subspace �E1
ZS

� EN−2n
ZA � � �E−1

ZS � EN−2�n−1�
ZA � for n=1,2 , . . . ,N, since

U��0� � ��n
A�� � U�E1

ZS � EN−2n
ZA � � UEN+1−2n

Z � EN+1−2n
Z

= �E1
ZS � EN−2n

ZA � � �E−1
ZS � EN−2�n−1�

ZA � . �54�

Similarly, the output state U��0� � ��0
A�� is an element of the

subspace E1
ZS � EN

ZA, since

U��0� � ��0
A�� � U�E1

ZS � EN
ZA� = UEN+1

Z � EN+1
Z

= E1
ZS � EN

ZA. �55�

Therefore, by Eqs. �54� and �55�, there exist ���n
A�0

0��EN−2n
ZA

and ���n−1
A �1

0��EN−2�n−1�
ZA such that

U��0� � ��n
A�� = �0� � ���n

A�0
0� + �1� � ���n−1

A �1
0� , �56�

where ���−1
A �1

0�=0. Normalizing Eq. �56� gives

����n
A�0

0��2 + ����n−1
A �1

0��2 = 1. �57�

Similarly, for the output state U��1� � ��n
A��, there exist

���n+1
A �0

1��EN−2�n+1�
ZA and ���n

A�1
1��EN−2n

ZA such that

U��1� � ��n
A�� = �0� � ���n+1

A �0
1� + �1� � ���n

A�1
1� , �58�

where ���N+1
A �0

1�=0. Normalizing Eq. �58� gives

����n+1
A �0

1��2 + ����n
A�1

1��2 = 1. �59�

We can now obtain useful relations for the output state of
S+A under the conservation law. For the output state
U��0� � �A��, Eqs. �49� and �56� give

U��0� � �A��

= �0� � �

n=0

N

an���n
A�0

0�� + �1� � �

n=0

N

an���n−1
A �1

0�� .

�60�

Similarly, for the output state U��1� � �A��, Eqs. �49� and �58�
give

U��1� � �A��

= �0� � �

n=0

N

an���n+1
A �0

1�� + �1� � �

n=0

N

an���n
A�1

1�� .

�61�

Comparing Eq. �33� with Eqs. �60� and �61�, we obtain the
following relations:

�A0
0� = 


n=0

N

an���n
A�0

0� , �A1
0� = 


n=0

N

an���n−1
A �1

0� ,

�A0
1� = 


n=0

N

an���n+1
A �0

1� , �A1
1� = 


n=0

N

an���n
A�1

1� . �62�

B. Optimization of the gate trace distance by
ancilla input

We can now estimate the inner product 	A1
0 �A0

1�. By Eq.
�62�,

	A1
0�A0

1� = 

n,n�=0

N

an�
*an	��n�−1

A �1
0���n+1

A �0
1� , �63�

where the inner product 	��n�−1
A �1

0 � ��n+1
A �0

1� is given as

	��n�−1
A �1

0���n+1
A �0

1� = �0 for n� − 1 � n + 1,

	��n+1
A �1

0���n+1
A �0

1� for n� − 1 = n + 1.
�

�64�

Therefore,

	A1
0�A0

1� = 

n=0

N−2

an+2
*an	��n+1

A �1
0���n+1

A �0
1� . �65�

By the triangle inequality, we have

�	A1
0�A0

1�� � 

n=0

N−2

�an+2��an��	��n+1
A �1

0���n+1
A �0

1�� . �66�

From Eqs. �50�, �57�, and �59�, the Schwarz inequality gives
the relations



n=0

N−2

�an+2��an� � 1, �67�

�	��n+1
A �1

0���n+1
A �0

1�� � ����n+1
A �1

0������n+1
A �0

1�� � 1. �68�

Thus,

�	A1
0�A0

1�� � 

n=0

N−2

�an+2��an� � 1, �69�

2To see this, let P� be the projection on E�
Z. Then, �53� is equiva-

lent to UP�= P�UP� for all �, whereas �1� is equivalent to UP�

= P�U for all �. Thus, �1� implies �53�. Conversely, from �53� we
also have U�I− P��= �I− P��U�I− P�� to obtain P�U= P�UP� for all
�, and consequently �1� follows from �53�.
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so that the maximum of �	A1
0 �A0

1�� is at most 
n=0
N−2�an+2��an�.

Therefore, the minimum of 1
2 �1− 	A1

0 �A0
1�� on the right-hand

side of Eq. �43� is at least 1
2 �1−
n=0

N−2�an+2��an��. Since in the
above argument the unitary operator U was arbitrary but sat-
isfied the conservation law, we have

min
U

max
�S

D„EU,�A���S�,EXS
��S�… �

1

2
�1 − 


n=0

N−2

�an+2��an�� ,

�70�

where U varies over all the unitary operators on HS � HA
satisfying Eq. �1�. This is a useful inequality that allows us to
evaluate a lower bound of the quantum NOT gate given the
input state of the ancilla system. For example, if an is a
constant, such as

an =
1

�N + 1
�71�

for all n=0,1 , . . . ,N, then whatever evolution operator is
used, an error probability 1

N+1 determined by Eq. �70� is un-
avoidable.

The following questions regarding Eq. �70� still remain:
What is the lower bound over the input states of the ancilla
system? Can we reduce the lower bound to zero by choosing
appropriate input states of A? In the next section, we will
quantitatively show that there exists a nonzero lower bound
of the error probability for any input state of the ancilla sys-
tem and any evolution operator. In order to obtain the bound,
it is necessary to minimize Eq. �70� over the input states of A
under condition �50�.

V. PRECISION LIMIT GIVEN THE ANCILLA SIZE

We consider the maximization of 
n=0
N−2�an+2��an� over input

states of the ancilla system to minimize the right-hand side
of Eq. �70� under condition �50�. In the first place, we show
that this problem can be reduced to the derivation of the
maximum eigenvalue of a symmetric matrix. Second, we
explain how to derive the maximum eigenvalue, making use
of the recurrence formula of Chebyshev polynomials of the
second kind. We finally describe the lower bound of the
quantum NOT gate which depends only on the size of the
ancilla system.

A. Lower bound and eigenvalue problem

The summation 
n=0
N−2�an+2��an� can be divided into two

parts: the summation of odd subscripts, such as �a0��a2�,
�a2��a4� , . . ., and that of even subscripts, such as �a1��a3�,
�a3��a5� , . . .. For even N,



n=0

N−2

�an+2��an� = 

r=0

�N−4�/2

�a2r+1��a2r+3� + 

r=0

�N−2�/2

�a2r��a2r+2� ,

�72�

where N�2. For odd N,



n=0

N−2

�an+2��an� = 

r=0

�N−3�/2

�a2r+1��a2r+3� + 

r=0

�N−3�/2

�a2r��a2r+2� ,

�73�

where N�3. We now assume that N is even for simplicity;
we will comment on the case of odd N later. To rewrite the
summation, we define an �N+1�-dimensional vector A† by

A† = ��a1�, �a3�, . . . , �aN−1�, �a0�, �a2�, . . . , �aN�� , �74�

where the odd indexed �even indexed� elements are in the
first �second� half elements of the vector and the number of
those elements is N

2
� N

2 +1�. The summation can then be ex-
pressed by a matrix and the vector A as



n=0

N−2

�an+2��an�

= A†�
0 1 0 ¯ 0 ¯ 0

0 0 1 ] ]

� �

0 1

0 0 ¯ 0

0 ¯ 0 0 1 0 ¯

] ] 0 0 1

� �

0 1

0 ¯ 0 0

�A ,

�75�

where the matrix has four submatrices. The upper left �lower
right� submatrix is the N

2 �
N
2

�� N
2 +1�� � N

2 +1�� matrix with
all the first subdiagonal entries 1 and all the other entries 0.
The upper right �lower left� submatrix is the N

2 � � N
2 +1�

�� N
2 +1��

N
2
� matrix with all the entries zero. Taking the com-

plex conjugate of both sides of Eq. �75� gives



n=0

N−2

�an+2��an�

= A†�
0 0 ¯ 0 ¯ 0

1 0 ] ]

0 1 �

] � 0 0

1 0 0 ¯ 0

0 ¯ 0 0 0 ¯

] ] 1 0

0 1 �

� 0

0 ¯ 0 1 0

�A .

�76�

Therefore, adding Eq. �75� to Eq. �76� gives
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n=0

N−2

�an+2��an� = A†�
0 1

2 0 ¯ 0 ¯ 0
1
2 0 1

2 ] ]

0 1
2 0 �

� �

1
2 0

1
2 0 1

2

0 1
2 0 0 ¯ 0

0 ¯ 0 0 1
2 0 ¯

] ]

1
2 0 1

2

0 1
2 0 �

� �

1
2 0

1
2 0 1

2

0 ¯ 0 0 1
2 0

�A , �77�

where the upper left and lower right submatrices are sym-
metric with all the first subdiagonal and superdiagonal en-
tries 1 /2 and all the other entries 0. Let Aodd

† and Aeven
† be

two vectors defined by

Aodd
† = ��a1�, �a3�, �a5�, . . . , �aN−1�� ,

Aeven
† = ��a0�, �a2�, �a4�, . . . , �aN�� , �78�

and Sl be an l� l symmetric matrix defined by

Sl =�
0 1

2 0 0
1
2 0 1

2 0

0 1
2 0 �

0 0 � �

1
2

1
2 0

� . �79�

Then, Eq. �77� can be written as



n=0

N−2

�an+2��an� = Aodd
† SN/2Aodd + Aeven

† SN/2+1Aeven

� �Aodd�2sN/2 + �Aeven�2sN/2+1, �80�

where sl is the maximum eigenvalue of the symmetric matrix
Sl. Recall that �Aodd�2+ �Aeven�2=A† ·A=1, and thus

max

�an�2=1

�

n=0

N−2

�an+2��an�� = max�sN/2,sN/2+1� , �81�

where the maximization on the right-hand side means select-
ing the larger of sN/2 and sN/2+1.

Taking the difference between Eqs. �72� and �73� into
account, we apply the same analysis for odd N. Then, we
have

max

�an�2=1

�

n=0

N−2

�an+2��an�� = s�N+1�/2. �82�

In this way, the maximization of the summation

n=0

N−2�an+2��an� under condition �50� reduces to the derivation
of the maximum eigenvalue of the symmetric matrices SN/2
and SN/2+1.

B. Eigenvalue problem and orthogonal polynomials

Next we shall determine the maximum eigenvalue, as
mentioned above, and give the lower bound of the quantum
NOT gate. It is well known that the eigenvalues and the
eigenvectors of the matrix Sl are obtained from a recurrence
formula of orthogonal polynomials as follows �37,38�.
Chebyshev polynomials Wl�x� for l=1,2 , . . . of the second
kind are defined by the relation

Wl�cos �� =
sin�l + 1��

sin �
, �83�

where 0����, and are polynomials of the precise degree l
and satisfy the recurrence formula

xW0�x� =
1

2
W1�x� , �84�

xWl�x� =
1

2
Wl+1�x� +

1

2
Wl−1�x� , �85�

where l�1. The roots x=xl,k of the equation Wl�x�=0 are
given by

xl,k = cos
k�

l + 1
�86�

for k=1,2 , . . . , l. Let W†�xl,k� be an l-dimensional vector de-
fined as
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W†�xl,k� = „W0�xl,k�,W1�xl,k�, . . . ,Wl−1�xl,k�… . �87�

Since Wl�xl,k�=0, Eqs. �85� and �84� give

SlW�xl,k� =�
0 1

2 0
1
2 0 1

2

0 1
2 0 �

0 0 � �

1
2

1
2 0

��
W0�xl,k�
W1�xl,k�

]

]

Wl−1�xl,k�
�

= �
1
2W1�xl,k�

1
2W0�xl,k� + 1

2W2�xl,k�
]

1
2Wj−1�xl,k� + 1

2Wj+1�xl,k�
]

1
2Wl−2�xl,k� + 1

2Wl�xl,k�
� = xl,kW�xl,k� .

�88�

Thus, the vector W�xl,k� is an eigenvector of Sl with eigen-
value xl,k. Therefore, the maximum eigenvalue of Sl is

sl = xl,1 = cos
�

l + 1
�89�

and the corresponding eigenvector is given by

W†�xl,1� = � sin
�j + 1��

l + 1

sin
�

l + 1
�

j=0

l−1

. �90�

C. Derivation of the lower bound given the size
of the ancilla

We have found the maximum eigenvalue, and thus we can
now describe a lower bound of the error probability in real-
izing the quantum NOT gate. For even N, Eqs. �81� and �89�
give

max

�an�2=1



n=0

N−2

�an+2��an� = cos
2�

N + 4
. �91�

Recall that the minimization of Eq. �70� over the input states
of A is derived from the maximization of 
n=0

N−2�an+2��an�.
Thus,

min
�U,�A��

max
�S

D„EU,�A���S�,EXS
��S�… �

1

2
�1 − cos

2�

N + 4
� .

�92�

Similarly, for odd N,

min
�U,�A��

max
�S

D„EU,�A���S�,EXS
��S�… �

1

2
�1 − cos

2�

N + 3
� .

�93�

Here cos 2�
N+4 is greater than cos 2�

N+3 , and hence we have
finally obtained the lower bound for the error probability of
any realization of the quantum NOT gate with N-qubit control
system under the angular momentum conservation law as

min
�U,�A��

max
�S

D„EU,�A���S�,EXS
��S�… �

1

2
�1 − cos

2�

N + 4
�
�94�

for any N��2�. The bound depends only on the size of the
ancilla system: the larger N, the closer to zero is the lower
bound.

According to previous works �12,19� based on the uncer-
tainty principle, it may be expected that the lower bound of
the quantum NOT gate scales with the inverse of N as

1
4�N2+1� � 1

4N2 . However, the new bound has the leading order
1
2

�1−cos 2�
N+4

�� �2

N2 , so that the lower bound obtained here is
really tighter than that as depicted by Fig. 1.

D. Lower bound: General case

We have considered the case where the ancilla state is a
pure state. In the following we shall consider the general
case. Let �U ,�A� be a conservative implementation with N
qubit ancilla A. Then, its purification �U� , �A��� is a conser-
vative pure implementation with �N+ �log2 rank�A��-qubit an-
cilla A� such that EU,�A

=EU�,�A��. Applying Eq. �94� to
EU�,�A��, we have

max
�S

D„EU,�A
��S�,EXS

��S�…

�
1

2
�1 − cos

2�

N + log2 rank�A + 4
� , �95�

and from N+log2 rank�A�2N, and we conclude

5 10 15 20

0.05

0.1

0.15

0.2

0.25

FIG. 1. Plot of the lower bounds as a function of N. The solid
line shows the lower bound 1

2
�1−cos 2�

N+4
� of the quantum NOT gate

in Eq. �94�. The dashed line shows the lower bound 1
4�N2+1� previ-

ously obtained for the Hadamard gate in Ref. �19�.
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min
�U,�A�

max
�S

D„EU,�A
��S�,EXS

��S�… �
1

2
�1 − cos

�

N + 2
� ,

�96�

where �U ,�A� varies over all the conservative implementa-
tions with N-qubit ancilla.

VI. LOWER BOUNDS FOR CLASSICALLY COMPLETE
IMPLEMENTATIONS AND THEIR ATTAINABILITY

In the preceding section, we have shown that a general
lower bound for the error probability in realizing the quan-
tum NOT gate is given by the 1−cos�1/N� scale for the an-
cilla size N, instead of 1/N2 scaling already known for some
other gates. Since 2�1−cos�1/N��=1/N2−1/ �12N4�+¯, the
new scale has the same leading order as 1 /N2 up to a con-
stant, but it is natural to ask if the higher-order terms are
really meaningful. Here, we shall answer this question, so
that the 1−cos�1/N� scale is the best result. To show this, we
shall show the attainability of a lower bound with the 1
−cos�1/N� scale for classically complete conservative pure
implementations. Thus, a classically complete conservative
implementation exists even with only 2-qubit ancilla,
whereas the substantial error occurs when the input state is a
superposition of computational basis states. This result also
shows that the general lower bound for conservative imple-
mentations with N-qubit ancilla can be reached by a classi-
cally complete conservative pure implementations with
2N-qubit ancilla.

A. Classically complete pure implementations

Let �U� , �A��� be a classically complete conservative pure
implementation. Then, we have the following relations:

U���0� � �A��� = �1� � �A1�
0� ,

U���1� � �A��� = �0� � �A0�
1� , �97�

where �A1�
0� and �A0�

1��HA.
First, we discuss the constraint on the input state �A�� of A

imposed by the above relations. To illustrate this, we de-
scribe �A�� as

�A�� = 

n=0

N

an���n
A�� , �98�

where ��n
A�� are normalized vectors in the eigenspaces EN−2n

ZA

for all n=0,1 , . . . ,N and we have 
n=0
N �an��

2=1. Suppose that
the input state of S is �0�. Recalling that relation �55� holds
by the conservation law, the output state corresponding to the

input state �0� � ��0
A�� can be written as

U���0� � ��0
A��� = ei���0� � ��0

A�� , �99�

where ei�� is a phase factor. Thus the output state corre-
sponding to the input state �0� � �A�� can be expressed as

U���0� � �A��� = a0�e
i���0� � ��0

A�� + 

n=1

N

an�U���0� � ��n
A��� .

�100�

Comparing with Eq. �97�, a0� must be zero. Similarly, aN�
must be zero, considering the input state �1�.

We now describe the output state in S from �U� , �A��� for
any pure input state ���. This is given by the partial trace of
the output state in S+A with respect to A:

EU�,�A������� = TrA�U����� � �A����	�� � 	A���U�†�

= ���2�0�	0� + 
*�	A1�
0�A0�

1��0�	1�

+ 
�*	A0�
1�A1�

0��1�	0� + �
�2�1�	1� . �101�

Here, we use abbreviations such as E�����ªE����	��� for
any operation E. The trace distance between the ideal quan-
tum NOT operation �38� and EU�,�A������� is then

D„EXS
�����,EU�,�A�������… = �
*���1 − 	A1�

0�A0�
1�� . �102�

Thus, the derivation of the lower bound for the gate imple-
mentation �U� , �A��� can be reduced to estimating the maxi-
mum value of 	A1�

0 �A0�
1�, which is very similar to the general

analysis of Sec. IV. However, this case differs from the gen-
eral analysis in that a0=aN=0. Taking this condition into
account, �A1�

0� and �A0�
1� can be written as

�A1�
0� = 


n=1

N−1

an����n−1
A� �1

0� , �A0�
1� = 


n=1

N−1

an����n+1
A� �0

1� ,

�103�

where ���n−1
A� �1

0� and ���n+1
A� �0

1� are normalized vectors in the
eigenspaces EN−2�n−1�

ZA and EN−2�n+1�
ZA , respectively. Thus,

�	A1�
0�A�0

1�� � 

n=1

N−3

�an+2� ��an�� , �104�

and therefore,

min
U�

max
�S

D„EU�,�A����S�,EXS
��S�… �

1

2
�1 − 


n=1

N−3

�an+2� ��an��� .

�105�

Since the discussion in Sec. V can be applied to minimizing
Eq. �105� over the input states of A, we see that for even N

min
�U�,�A���

max
�S

D„EU�,�A����S�,EXS
��S�… �

1

2
�1 − cos

2�

N + 2
� .

�106�

This lower bound is slightly larger than the one for the gen-
eral case; the difference comes close to zero for large N of
the ancilla system. We shall comment on the odd N-case
later.
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B. Attainability of the lower bound for classically complete
pure implementations

Next we show that there exists a classically complete
implementation �U� , �A��� which attains the lower bound
1
2

�1−cos 2�
N+2

�. We begin by describing the input state �Ã� as
follows. Let ��en�i� be fixed orthonormal bases in eigenspace
EN−2n

ZA as

��en�1�, ��en�2�, . . . , ��en�k�, . . . , ��en�dn� , �107�

for n=0,1 , . . . ,N, where dn= N!
n!�N−n�! . In addition, Ãodd

† and

Ãeven
† are two vectors:

Ãodd
† = �ã1, ã3, ã5, . . . , ãN−1� ,

Ãeven
† = �ã2, ã4, ã6, . . . , ãN−2� , �108�

where Ãodd
† �Ãeven

† � is an �N /2� ��N /2−1�� dimensional vec-
tor whose entries are indexed by odd �even� numbers. We
assume that these vectors satisfy

Ãodd =
1

CN/2
W�xN/2,1� , Ãeven = 0, �109�

where CN/2= �W�xN/2,1�†W�xN/2,1��1/2. It follows that �Ãodd�2

=1 by normalization. We assume that the input state �Ã� is
given by

�Ã� = 

n=1

N−1

ãn��en�1� . �110�

Recall that W�xN/2,1� is an eigenvector with the maximum
eigenvalue of SN/2. Then the coefficients ãn satisfy the fol-
lowing equation:



n=1

N−3

ãn+2ãn = Ãodd
† SN/2Ãodd =

1

CN/2
2 W�xN/2,1�†SN/2W�xN/2,1�

= sN/2 = cos
2�

N + 2
. �111�

Constructing the evolution operator Ũ can be accom-
plished by determining the transformation for all orthonor-

mal bases. We require that Ũ satisfy the following condi-
tions. For n=1,2 , . . . ,N,

Ũ„�0� � ��en�1�… = �1� � ��en−1�1� ,

Ũ„�1� � ��en−1�1�… = �0� � ��en�1� , �112�

and for all bases except those that appear in Eq. �112�,

Ũ„�0� � ��en�i�… = �0� � ��en�i� ,

Ũ„�1� � ��en�i�… = �1� � ��en�i� . �113�

These requirements determine one-to-one mapping on the
orthonormal basis, ��0� � ��en�i� , �1� � ��en�i��, and hence there
uniquely exists a unitary operator Ũ fulfilling the above re-

quirements. Note also that Ũ satisfies the conservation law
�1�, since from Eqs. �112� and �113� we have the relations
UE�

Z�E�
Z for all �, which are equivalent to the conservation

law, as seen in Eq. �53�.
We now describe the output state of �Ũ , �Ã�� and the trace

distance between the ideal output state and that of �Ũ , �Ã��.
The output states for �0� and �1� can be generally written as

Ũ��0� � �Ã�� = �0� � �Ã0
0� + �1� � �Ã1

0� ,

Ũ��1� � �Ã�� = �0� � �Ã0
1� + �1� � �Ã1

1� , �114�

respectively, where �Ãj
i��HA with i , j=0,1. On the other

hand, by the definitions of Ũ and �Ã�, we have

Ũ��0� � �Ã�� = Ũ��0� � 

n=1

N−1

ãn��en�1��
= �1� � �


n=1

N−1

ãn��en−1�1�� ,

Ũ��1� � �Ã�� = Ũ��1� � 

n=1

N−1

ãn��en�1��
= �0� � �


n=1

N−1

ãn��en+1�1�� . �115�

Thus we have the following relations:

�Ã0
0� = 0, �Ã1

0� = 

n=1

N−1

ãn��en−1�1� ,

�Ã0
1� = 


n=1

N−1

ãn��en+1�1� , �Ã1
1� = 0. �116�

Let EŨ,�Ã������ be the output state of S from �Ũ , �Ã��. The
trace distance between EXS

����� and EŨ,�Ã������ can be ex-
pressed in the same way as for Eq. �41� so that we have

D„EŨ,�Ã������,EXS
�����… = ��
*��1 − 	Ã1

0�Ã0
1�� + 
�*	Ã1

1�Ã0
0�

− �
�2	Ã1
0�Ã0

0� − ���2	Ã1
1�Ã0

1��2

+ ��− �
�2�̃0 + ���2�̃1�

− 2 Re�
*�	Ã0
0�Ã0

1���2�1/2, �117�

where ��Ã0
0��2= �̃0, ��Ã1

1��2= �̃1. However, in this case, �̃0= �̃1
=0 from Eq. �116�, and therefore

D„EŨ,�Ã������,EXS
�����… = �
*��1 − 	Ã1

0�Ã0
1��� .

Recall that ��en�1� are orthonormal bases. Then, Eq. �111�
gives
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	Ã1
0�Ã0

1� = 

n,n�=1

N−1

ãnãn�	�en−1�1��en�+1�1�

= 

n�=1

N−3

ãn�+2ãn� = cos
2�

N + 2
. �118�

Thus,

D„EŨ,�Ã������,EXS
�����… = �
*��1 − cos

2�

N + 2
�� .

Since the right-hand side is maximized where �
*��= 1
2 , we

have

max
���

D„EŨ,�Ã������,EXS
�����… =

1

2
�1 − cos

2�

N + 2
� .

�119�

That is, the model �Ũ , �Ã�� attains the lower bound in Eq.

�106�. Notice that our model �Ũ , �Ã�� has a distribution of
�an�, as given by Eq. �109�. Figure 2 describes the distribu-
tion for N=100. From a qualitative point of view, in order to
reduce the lower bound of the quantum NOT gate, an input
state of the ancilla system should be prepared which has a
sufficiently thick distribution in the neighborhood of eigen-
value 0, rather than a constant distribution, such as that given
by Eq. �71�.

For odd N, the lower bound can be given by setting the
input state and the evolution operator as those analogous to
the case of even N. The bound is 1

2
�1−cos 2�

N+1
�. The attain-

ability of this bound is also proved by the analogous argu-
ment.

Thus, we have shown that

min
�U,�A��

max
�S

D„EU,�A���S�,EXS
��S�… =

1

2
�1 − cos

2�

N + 2
� ,

�120�

if N is even, and

min
�U,�A��

max
�S

D„EU,�A���S�,EXS
��S�… =

1

2
�1 − cos

2�

N + 1
� ,

�121�

if N is odd, where �U , �A�� varies over all the classical com-
plete pure implementation with N qubit ancilla.

For arbitrary N, we conclude as a common lower bound

min
�U,�A��

max
�S

D„EU,�A���S�,EXS
��S�… �

1

2
�1 − cos

2�

N + 2
� ,

�122�

where �U , �A�� varies over all the classically complete pure
implementation with N-qubit ancilla.

We have considered the case where the ancilla state is a
pure state. The lower bound for the general case is obtained
by the previously developed purification argument, and we
conclude the following relations. We have

max
�S

D„EU,�A
��S�,EXS

��S�…

�
1

2
�1 − cos

2�

N + log2 rank �A + 2
� , �123�

for any classically complete implementation �U ,�A� with
N-qubit ancilla, and

min
�U,�A�

max
�S

D„EU,�A
��S�,EXS

��S�… �
1

2
�1 − cos

�

N + 1
� ,

�124�

where �U ,�A� varies over all the classically complete imple-
mentation with N-qubit ancilla.

VII. CONCLUDING REMARKS

In this paper, we have studied the precision limit of the
quantum NOT gate or the bit-flip gate, one of the most basic
gates in quantum computation, represented on the single-spin
computational qubit by considering the angular momentum
conservation law obeyed by the interaction between the com-
putational qubit and the control system supposed to comprise
many qubits. Actually, we have considered the effect of the
angular momentum conservation law only in a direction the
same as the computational basis, usually set as the z direc-
tion. Then, the conserved quantity and the computational ba-
sis are represented by the Pauli Z operator, whereas the quan-
tum NOT gate is represented by the Pauli X operator. Thus, it
is expected that this noncommutativity leads to a precision
limit of the gate operation.

In the previous method which was used for other gates
�12,19�, one finds a way in which the gate under consider-
ation is used as a component of a measuring apparatus, ap-
plies a quantitative generalization of the Wigner-Araki-
Yanase �WAY� theorem to this measuring apparatus, and
obtains the lower bound of error probability. For the Had-
amard gate, one finds that it is used to convert the Z mea-
surement to the X measurement and that the Z measurement
can be done without error under the conservation law of the

20 40 60 80 100

0.05

0.1

0.15

0.2

FIG. 2. Distribution of �an� with odd subscripts for N=100
which gives the lower bound in Eq. �106�. This figure shows

1
CN/2

W�n−1�/2�xN/2,1� as a function of odd n.
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z component. Then, one can conclude that the inevitable er-
ror of the X measurement, calculated from the quantitative
version of the WAY theorem, is yielded from the converter
using the Hadamard gate. This and similar arguments cannot
be applied to the quantum NOT gate, since the quantum NOT
gate does not convert the direction of measurement, but sim-
ply flips the measured bit.

In this paper, we have developed a method for obtaining
the inevitable error probability by evaluating the maximum
trace distance between the output from the gate realization
and the output from the ideal gate. The previous method
naturally leads to a lower bound for the infidelity �one minus
the squared fidelity�. Since the infidelity is dominated by the
trace distance, our method gives a tighter lower bound for
the error probability.

Our method is based on a straightforward evaluation of
the trace distance of two output states and enables us to find
the precision limit, Eq. �70�, explicitly described by the input
state of the ancilla system. It is thus possible to obtain infor-
mation on how much an ancilla input has an inherent error
probability in itself. The correspondence between the two
methods is not easy to elicit, but it is an interesting problem
for future studies, which would lead to a deeper understand-
ing of the precision limits to quantum control systems.

We have also obtained the lower bound �94� expressed by
the size of the ancilla system by minimizing Eq. �70� over
the input states of A using Chebyshev polynomials of the
second kind. The lower bound is much tighter than the scal-
ing expected from the previous result based on the WAY
theorem. Since the quantitative generalization of the WAY
theorem has a close relation to the universal uncertainty prin-
ciple for measurement and disturbance �19,20�, the previous

lower bound for pure conservative implementations is based
on the variance of the ancilla state and scales as 1

4N2+4
� 1

4N2 ,
whereas our method revealed the lower bound
1
2

�1−cos 2�
N+4

�� �2

N2 as a tighter bound. The higher-order terms

in 1
2

�1−cos 2�
N+4

� are considered to be meaningful, since the
lower bound 1

2
�1−cos 2�

N+2
� is attained among classically

complete pure conservative implementations. Interestingly,
the attainability result shows that the best ancilla states to
attain the lower bound are not maximum variance states or
uniformly distributed states, but those states with the distri-
bution determined by the recurrence relation characterized
by Chebyshev polynomials.

Although our study has assumed that the ancilla system
consists of N qubits for comparison with the previous re-
search, the present method is not restricted to this particular
control system, and it can be readily applied to other control
systems, such as atom-field systems, where the present
method would lead to a lower bound that scales as the in-
verse of the photon number �23�. Our method will be also
expected to contribute to the problem of programmable
quantum processors �28–30� and related subjects �31–33� in
future investigations.
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