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Quantum-nondemolition measurement of photon arrival using an atom-cavity system
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A simple and efficient quantum-nondemolition measurement (QND) scheme is proposed in which the arrival
of a signal photon is detected without affecting the qubit state. The proposed QND scheme functions even if
the ancillary photon is replaced with weak light composed of vacuum and one-photon states. Although the
detection scheme is designed for entanglement sharing applications, it is also suitable for general purification

of a single-photon state.
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I. INTRODUCTION

Social needs for secure communications to prevent eaves-
dropping, impersonation, falsification, and denial of service
have increased dramatically in recent years accompanying
the expansion of the service industry on the internet. Com-
munication protocols based on quantum entanglement with
nonlocal correlation have been the focus of intensive re-
search as a possible means of providing secure communica-
tions [1,2]. Such protocols often require prior sharing of en-
tangled photons [3] or entangled atomic systems [4-8]
among more than two nodes. However, there is a practical
difficulty in sharing entangled photons between distant
nodes, since the photons are usually transmitted over lossy
communication channels [2,9]. In such situations, photons
entangled at the input of the channel can readily become a
useless mixture of vacuum and photons at the output. To
address this problem, it is necessary to purify the final mix-
ture by removing the vacuum component [10,11]. Quantum-
nondemolition (QND) measurements, by which the arrival of
a signal photon is detected without affecting the qubit state
(encoded into the polarization mode), may be very suitable
for this purpose [3,12]. In this study, a new scheme for QND
measurement that can be applied in cases involving the mix-
ture of vacuum and photons is proposed.

Figure 1(a) shows the general process of QND detection.
In this scheme, an ancillary photon prepared at the ancillary
input A;, is transmitted and the photon is detected at the
detector D1 of the ancillary output A,,, only when a signal
photon appears at the signal input S;,. The mixed state com-
posed of vacuum and one-photon states at §;, is thus purified
into a one-photon state at the output port S, after filtering
by filter F, which allows the signal photon to pass through
the filter only when the detector D1 detects the ancillary
photon. When there is no photon at §;,, ancillary photons
appear at the reflection port A,,.

It is necessary to compose the corresponding realizations
for the above scheme such that the qubit state of the signal
photon is unchanged. Figure 1(b) shows the proposed QND
scheme for the case that the qubit state is encoded into the
polarization mode of the signal photon. When the signal pho-
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ton appears at S;,, the photon is transmitted or reflected at the
polarization beam splitter PBS1 depending on the polariza-
tion mode. The polarization of the transmitted photon is or-
thogonal to that of the reflected photon. After passing
through PBS1, the wave packet of the signal photon is de-
scribed by the superposition of the transmitted and reflected
wave-packet components. Each component then enters into
the QND with a single polarization mode (SQND). The ele-
ments SQND on each path are identical.

The process in SQND should be the same as that for QND
in Fig. 1(a) except in two aspects. To maintain coherence
between the transmitted and reflected components of the sig-
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FIG. 1. (a) Schematic representation of QND measurement of a
signal photon. (b) Proposed QND measurement scheme. (c) Pro-
posed implementation of SQND for a single-mode polarized pho-
ton. Sjyey,: input-output channel of signal photon; Aj,/gyres: input-
output-reflection channel of ancillary photon; F: filter; BS: half
beam splitter; R: polarization rotator (changes the polarization of
the input photon to the orthogonal polarization); C: circulator; D:
photodetector; PBS: polarization beam splitter.
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nal photon, the transmitted wave-packet components of the
ancillary photons at each ancillary output A,, should be
combined at the half beam splitter BS1 before detection by
D2 and D3 [Fig. 1(b)] in order to erase information on the
path taken by the signal photon. For the same purpose, the
input state at each ancillary input port A;, in Fig. 1(b) must
be a superposition of vacuum and one-photon states. In par-
ticular, when the input state at each A;, is a one-photon state,
the wave-packet component at each ancillary reflection port
A,y must be detected by the same procedure as for the wave-
packet component at each ancillary output port A,,,. The sig-
nal component at each output shown in Fig. 1(b) is recom-
bined by PBS2 after or before detection for ancillary
photons. The signal photon thus passes through the filter F/
only when an ancillary photon is detected at D2 or D3.

The functionality of SQND has been proposed and dem-
onstrated based on a x'* material for modulating the phase
of the ancillary photon only when a signal photon passes
through the material [13,14]. The phase change is then de-
tected by a single-photon self-interference measurement after
separating the ancillary photon from the signal photon,
which are orthogonally polarized, by PBS. However, phase
modulation by a single photon is very small [12], and the
interference related to phase modulation will be suppressed
due to entanglement between the signal photon and the an-
cillary photon, which changes the pulse shape of the ancil-
lary photon. The self-interference effect is thus reduced, de-
grading the efficiency of SQND. To avoid the use of weak
X nonlinearities, a single-photon QND device composed of
linear optics and projective measurements has been pro-
posed. However, such a scheme requires strict mode match-
ing between the signal photon and the probe photon as one of
a maximally entangled photon pair [12,15].

The QND measurement scheme is implemented in the
present study by a simple and efficient method involving a
two-sided atom-cavity system consisting of two identical
mirrors and an atom coupled with a single mode of a cavity.
Figure 1(c) shows a schematic of the proposed implementa-
tion for SQND. The polarizations of the signal and ancillary
photons are orthogonal, and the two photons are combined
by the polarization beam splitter PBS3 and directed to the
two-sided atom-cavity system. The solid circle in Fig. 1(c)
represents the intracavity atom, which interacts with photons
via the cavity mirrors. The ancillary photons are considered
to be totally reflected by the atom cavity when there is no
signal photon at the input. This is realizable as suggested by
the experiments of Turchette and co-workers [16,17]. When
a signal photon arrives at the input, reflection of ancillary
photons at the atom cavity is suppressed by saturation of the
atomic transition due to the absorption of signal photons.
Detection of the ancillary photon at D2 and D3 thus implies
the arrival of the signal photon.

In the scheme shown in Fig. 1(c), the circulator C1 plays
the role of separating the signal photon reflected at the atom
cavity from the photon at the input port. Likewise, C2 sepa-
rates the ancillary photon reflected at the atom cavity from
the photon at the ancillary input port A;,. PBS4 separates the
signal photon transmitted at the atom cavity from the trans-
mitted ancillary photon. The signal photon thus appears at
output port 1 or 2, where the wave packet of the signal pho-

PHYSICAL REVIEW A 75, 032320 (2007)

ton is described by the superposition of the wave-packet
components of output ports 1 and 2. These components are
then combined by the half beam splitter (BS2) and the signal
wave-packet appears at uutput when perfect mode-matching
at BS2 is achieved. For the unachievable case, the wave-
packet component of the signal photon leaks out on the op-
posite side of the output at BS2. The leaked component will
still be useful for QND as shown in Fig. 1(b) if the leaked
components on each path are combined by PBS and another
signal output port is prepared.

The performance of the proposed QND scheme [Fig.
1(b)] is characterized in terms of efficiency and success
probability, where the efficiency is defined as the probability
that the signal photon appears at output 1 or 2 [Fig. 1(c)]
when the ancillary photon is detected, while the success
probability is defined as the probability that the ancillary
photon is detected when the signal photon appears at output
port 1 or 2. To estimate these quantities, the responses of the
two-sided atom-cavity system for one- and two-photon input
was analyzed considering a range of pulse durations for the
input photons. Useful conditions for the QND are also exam-
ined. The pulse shape of the output signal photon after the
time-resolved detection of the ancillary photon is analyzed
qualitatively, since information on the pulse shape is impor-
tant for processing the signal photons with other photons. It
is found to be possible to increase the efficiency by up to
100% by increasing the pulse duration of the ancillary pho-
ton. However, the success probability is decreased simulta-
neously to 0% in a trade-off relationship. The efficiency is
maintained even if the ancillary photon is replaced with
weak light described by the superposition of vacuum and
one-photon states, although the success probability is re-
duced in such a case. These results suggest that the mode
matching between the input light and the cavity mode is less
critical in the proposed scheme [18] than in the QND pro-
posals based on interferometry [12,13,15].

The remainder of this paper is organized as follows. In
Sec. II, the Hamiltonian for the two-sided atom-cavity sys-
tem is presented and the corresponding model is introduced.
The output state for the atom-cavity system is then derived
for one-photon pulse input (Sec. IIT), and the output state for
two-photon input is obtained using the results for one-photon
input (Sec. IV). In Sec. V, the performance of the proposed
QND is examined quantitatively and the coherence of the
output signal photons is analyzed qualitatively for the case
that the influence of the dephasing in the QND process is
negligible. The implementation of the proposed QND is then
discussed in Sec. VI

II. THEORETICAL MODEL

To analyze the responses of a two-sided cavity, in which a
single two-level system couples with the single mode of the
cavity, for one- and two-photon pulse input, a model of spa-
tiotemporal propagation to and from the two-sided atom-
cavity system is necessary. The proposed model is illustrated
in Fig. 2. The cavity couples with the left-side field mode F;
and the right-side field mode Fj via the two mirrors, which
have transmittance T and 7' (T=T"). In the figure, g and e
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FIG. 2. Schematic representation of cavity geometry.

denote the ground and excited states of the single two-level
atom. It is assumed that only one longitudinal and transversal
mode is allowed in the cavity. The vertical arrow on the left
side of the cavity (F;) represents the radiative input (r;
<0) and output (r, >0) fields at the cavity, where r; corre-
sponds to the spatial coordinate. The vertical arrow on the
right side (Fg) similarly represents the input (r,<<0) and
output (rg>0) fields. The two-way arrows at the origin on
the left and right arrows represent coupling of the atom-
cavity system with the radiative fields F; and Fyp.
The total Hamiltonian for this model is as follows:

I:I: 2 (I:IFi'i'I:IintFi) +I:Iintac (1)
i=L,R

with

ﬁ]Fiz J dk ﬁckil;;(k)l;ﬂ(k)’

—o0

Hipp = j dkiti\| b} (k) — by (k)],
1 % T 1 i

I:Iintac = ﬁg(dT&— + 6{&) s

where 6_=|g){e|, and d and b F,-(k) are the annihilation opera-
tors for the single mode of the cavity and the radiative field
F; (i=L,R), respectively. The single mode of the cavity is
resonantly coupled with the atomic system and all the Hamil-
tonians have been formulated in a rotating frame defined by
the transition frequency of the atomic system w,. The wave
vector is likewise defined in the rotating frame, that is, k is
defined relative to the resonant wave vector w/c. The factor
Vew/ s the coupling constant between the single mode of
the cavity and the radiative field, where « is the cavity decay
rate due solely to the coupling of the cavity mode with the
radiative field F;. The factor g is the coupling constant be-
tween the cavity mode and the two-level system.

The response of the two-sided atom cavity depends on the
relative magnitude of the cavity decay rate « with respect to
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the coupling constant g. The bad-cavity regime characterized
by k> g [19,20] is assumed, as described below.

III. ONE-PHOTON PROCESSES

In the following calculations, it is assumed that the two-
level system is in the ground state before the arrival of the
input one-photon pulse from the left side of the cavity. The
state of the field-atom-cavity system for one-photon pro-
cesses can be expanded on the basis of the wave-number
eigenstates |k;) and |kg) of the radiative fields, the excited
state of the two-level system |E), and the cavity one-photon
state |C). The state |k;) denotes a state with the atom in the
ground state g, the cavity mode a, and all modes of the “R
field” kg in the vacuum state, and one mode of the “L field”
k; in the first excited state, with the remaining states being
the vacuum state, i.e., |k, )= g,Oa,lkL,OkR). Likewise, |kg)
g’Oa’OkL’lkR>’ |C>= g’1a70kL’0kR>’ and |E>
e,Oa,OkL,OkR). The quantum state for the one-photon pro-
cess can then be written as

|‘1’(t)>=<I>(E;t)|E>+A(C;t)|C>+fdkst(kL;t)|kL>

. j Akl @

On these bases, the Hamiltonian given by Eq. (1) can be
expressed as

A A A |CK *
Hlph=ﬁCkL+thR+ih ;f dkL(|kL><C| - |C><kL|)

i \/% | atatiaci- ok + o

+|EXC)),

where

k; =f dk; ;). (3)

The equations for the temporal evolution of the probability
amplitudes O(E;1), A(C;t), ¥lky 1), and p(kg;1) can thus be
obtained from the Schrodinger equation ifd/dt|W(t))

=H|W (7)) using Egs. (2) and (3) as follows:

(50 =~ igA(C2), 4)

iA(C;t) =—igd(E;r) - \/Ef dky ik ;1)
dt T

- \/T—K f dkyblkii), 5)
w

i‘/’(kuf) =—ikpcylkst) + \/EA(CJ), (6)
dt T
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di(b(kR;t) = — ikgc Plkg;t) + \/EA(C;I). (7)
t T

The evolutions (k; ;1) and ¢(kg;1) can be obtained by inte-
grating Egs. (6) and (7):

t
. CK . ’
Plhpst) = e Dy (k) + | — f dr' et TIN(Cst),
™),

(8)
t

d)(kR;t) — e—ikRC(t—t,-) d)(kR;ti) + %f dt!e—ich(t_[’)A(C;l/) ,
vV,

)

where #; is the initial time of the evolution. To describe the
evolution in real space, the results of the integrations of Eqs.

Y (rp—c(t=1)31)
= (rp=c(t=1):1)

P (rpst) = 3
= (rp—ct—1,)31) - \/fA(C;r— 2) for 0 <r, <c(t-1).
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(8) and (9) are subjected to Fourier transformation using

o0

1 )
ik;r: .
— | dkje""ilk;;1)

] for r; <0
N27J

Pi(rjst) =

1 * .
- Ej—w dkje’k.i’.iw(kj;t) for r; >0,

where j=L,R. (10)

As the incoming field r;<<0 is discontinuously connected to
the outgoing field r;>0 via the mirror of the cavity, which
changes the phase of the incoming field by r, the phase of
the incoming field amplitude is different from that of the
outgoing amplitude by .

The real-space representation of the temporal evolution
on the field F; is then given by

for r;, <0
for c(t—1,) <rp

(1

Cc

The first case corresponds to the single-photon amplitude propagating on the incoming field r; <0, the second case corre-
sponds to reflection of the single-photon amplitude by the left mirror of the cavity and then propagation on the outgoing field
r;. >0, and the third case consists of two parts; the component reflected by the left mirror, and the amplitude of a single photon

re-emitted into the outgoing field ;>0 after absorption by the cavity.
Likewise, the real-space representation of the temporal evolution on the field F reads as

pp(rg—c(t=1,):1)

brlreit) =3 $rlrp = (= 1:)313)

The temporal evolution of the cavity one-photon amplitude
can be obtained by integrating Eq. (5) and using the Fourier
transform (10):

t
dr' e D) + e 2K IA(C 1)

i

A(C;t)z—igf

1,

t
- \”2KCf dl"e_Mt_l’)'/fL(— c(t’ =1);t;)
1

i

t
- \"Zxcf dt' e (= c(t —1):t).  (13)
1

i

Since, in the present analysis, the atom-cavity system is in

/2
— Pplrp—c(t—1);t) - —KA(C;t— r—R) for 0 <rg<cl(t—r)
c c

for rp <0
fOI' C(t_tl) < rr

(12)

the ground state before the one-photon input pulse propagat-
ing on the field F; arrives at the system, the cavity-state
amplitude A(C;z;) and the excited-state amplitude ®(E;1;) at
the initial time are zero, and the field amplitude i (r;;1;) is
zero for the region r; >0. Moreover, it is assumed that the
state of the field F is initially the vacuum state, that is, the
field amplitude ¢g(rg;t;) is zero. Under these assumptions,
Egs. (12) and (13) can be reduced as follows:

A(C;t):—igf

1,

t
dt' e 2= (E:1)

i

t
oy f ' ey (= o(f —1):1) (14)
t:

1
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0

dr(rgst) = B ,2—KA<C;I—Z
c

It is assumed above that the atom-cavity system is in the
bad-cavity regime characterized by «>g. The cavity one-
photon amplitude given by Eq. (14) can then be approxi-
mated as

AC:t) = — iL-D(E:1)
2K

t

—\2ke f dr' e 2=y (= o' —1,)31,). (16)
I

The excited-state amplitude ®(E;7) can be obtained by inte-
grating Eq. (4) and then substituting Eq. (16), affording

t
D(E;t) = ig\’ZKCJ dt"e~ 121"
g

t” " !
X J dr' ey (= e(t' = 1)31)
li
where I' = g%/«k. (17)

The temporal evolution of the excited-state amplitude is ex-
plicitly dominated by the atomic dipole relaxation character-
ized by the rate I' and is implicitly and effectively restricted

Y (rp—c(t—1);1) =0
Y (rp—c(t=1)3t)

dy(rp;t) = t
- Ef dr" e U =rile=y, (—e(#" = 1)31,) for 0 < rp<cl(t—t).
t:

1

) for 0 <rg<c(t-t).
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for rg<Oorc(t—1) <rg
(15)

by the cavity decay characterized by the rate « and the input
pulse duration. The reduction of that amplitude due to the
cavity decay prevents efficient interaction between the input
photon and the two-level system, which is the starting point
of efficient nonlinear two-photon interaction. It is therefore
assumed that the pulse duration of the input one-photon is
much larger than the cavity decay time 1/k. The excited-
state amplitude (17) can then be approximated as

r( .
D(E;1) =i % f di"e Ty (= e~ 1))
l

for t— ;> 1/k. (18)

Likewise, the cavity one-photon amplitude given by Eq. (16)
can be approximated with Eq. (18) as

r r( "
MG =2y / % J di"e” Ty (= et = 1))
li

- \,Zi‘//L(_ c(t—1);t) fort—1;> 1/k. (19)
K

The effective field amplitude for ¢;(r; ;) can be obtained
by substituting Eq. (19) into Eq. (11), giving

for C(t_tl) < rr

for r;, <0
(20)

Here, the first case is equal to zero, since the field amplitude #; (r;;7;) is assumed to be initially equal to zero for r;,>0. The
second case corresponds to the incoming field amplitude at the atom-cavity system, and the third case corresponds to the field
amplitude of the photon re-emitted by the intracavity atomic system.

The effective-field amplitude for ¢g(rg;t) can similarly be obtained as

dr(rp—c(t=1,);t)=0
Pr(rg;t) =

Here, the first case is equal to zero according to the initial
condition, and the second case represents the interference
between the field amplitude of the transmitted photon with-
out absorption by the atomic system and the field amplitude

r ! I
-5 f dt"e™ TRy (—o(" = 1)30,) + P (rp— c(t = 1,)31,) for 0 < rg < c(t—1,).
4

for rp <0 orc(t—1t) <rg
(1)

of the photon re-emitted by the atomic system.

To investigate the outgoing amplitudes o (r;>0;1);
¢r(rg>0;1) for an arbitrary incoming amplitude under the
above-mentioned initial conditions, it is convenient to repre-
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sent the outgoing amplitudes as a matrix element of the evo-
lution operator, as follows.

o

P (rst) =R = | drjull)(rpry st -

—0

1) Xy (rpsty),

(22)

Pr(rgst) = (rg| ¥ (1)) = f dri”(ll;h RT3t = 1) X (rpst;).

(23)

Here, ulph(rL,rL,t t;) and ulph(rR,rL,t t;) are the matrix el-
ements of the evolution operator ¢~(/*) H Iph, representing the
transition probability amplitude from the state |r;) at time ¢;
to the state  |r;) or |rg) at time 7, where |[r)
== —=4 dk; e~k ’/|k) for j=L,R. These matrix elements can

be obtamed approximately by comparing the results of Eqs.
(20)—(23), as follows:

u(lf,)h(rbri;t —1) = abs(”L,rL,f ;) (24)

R
u(lpz(rR, rit—1) =ul® (reoryit=1) + u(rporsii— 1)

(25)
with
o (rporpst = 1) = 8rg = c(t = 1)) = 17)
and
_ £e—(F/2c‘)[c(t—t,-)+r£—rj]
2¢
dbs( rL’ i) =

for 0 <r;<c(t—1)+rpand r; <0
0 for r; > c(r—1;) +rp or r; > 0.
(26)

for j=L,R.

The component u,,, is the transition component for the
transmitted photon without absorption by the atomic system,
while u,,, is the transition component for the photon re-
emitted by the atomic system.

IV. TWO-PHOTON PROCESSES

The interaction between two photons in the atom-cavity
system is treated as follows. It is assumed that the two pho-
tons, Photonl and Photon2, are distinguishable by the polar-
ization mode in this case. The atomic system described by
the theoretical model can thus be implemented as a V-type
three-level system. In the V-type system, there are two ex-
) and |&), with orthogonal polarizations but
sharing the same ground state |g) (see Fig. 3). The transition
to the excited state |&,(;)) is caused by Photonl (2). Accord-
ing to this representation, the total Hamiltonian is given by

PHYSICAL REVIEW A 75, 032320 (2007)

1) [€2)

Photonl Photon2

)

FIG. 3. V-type three-level system.

H = 2 intac

(H}?]l) + Hsz) + H

i=L.Rij=12
with
HY = f dk ﬁckiz};_(k)épj(k)
i _oo ij i
AL * CK_~. . A
H)p = f _dkifiy / bl (0d; = djbr, (k)]
A\ =hgaje? + 6™V, 27)
where 6V |g><§j and d; and bF (k) are the annihilation

operators for the jth mode of the cav1ty and the radiative
field F;; (i=L,R and j=1,2), respectively. The other condi-
tions are the same as in the theoretical model.

To extend the response function for the one-photon input
given by Egs. (24) and (25) to the two-photon case, the state
description for one-photon processes presented above must
be extended to two-photon processes to afford the total
Hamiltonian given by Eq. (27) for the distinguishable two-
photon input involving Photonl and Photon2. The states for
two-photon processes obtained by extending the state de-
scription for one-photon processes are as follows:

|C ki) @ |kiry)
1C1) @ [k, ki) @ [C)
|E1) @ [kio), |k Ep) ® |Ey). (28)

Here, i,i’=L,R. The state |ij> denotes a state with the atom
in the ground state g;, the cavity mode a;, and all modes of
the
“Rj field” kg; in the vacuum state, and one mode of the “Lj
field” k;; in the first excited state, Wlth the remaining states
being the vacuum state, i.e., [k;;)=|g;,0 aj, L, OkR) Like-
wise, |kg;)= |gj,0u],0kL lkR |C) lg. 1, ’OkL OkR> and
|E;)=le; +04; Ok, > O )for] 1,2.

Denotmg the states ), and |&,) of the V-type system
by |g1.g &), and |g1,e2) the interaction Hamiltonian

intae given in Eq. (27) can be rewritten for the interaction
with two distinguishable photons (Photonl and Photon2) as
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2 ﬁg)tac:hg E (ICXE |+ [EXC))
j=12 i=L.R

® <|C2><C2|+J dki2|ki2><ki2|>

+ <|C1><C1| +f dki1|kil><ki1|) ® (|CXE,|

+|Ey)XCy). (29)

See the Appendix for the derivation of Eq. (29). To facilitate
formulation of the matrix element of temporal evolution for
two-photon processes, the Hamiltonian given by Eq. (29) is
further divided into a linear term and a nonlinear term as
follows:

A

H _ Hlm + HNonlm

intac — *intac intac

where

Hl.m

intac

=hg[(|CXE |+ |[EXC]) ® iﬁ)h + i(l;)h ® (|CX(E,|
+|ExXCa])] (30)

HYOMIN = — 1i6[(|C\Ey | + [E\XCH]) ® [EJNE,| + |E XE|
® (|CHEs| +|E)Cy))]

with

IA&Qh = (J dkij|kij><kij| + |Cj><cj| + |Ej><Ej|>

i=L.R \J -
(31)

The linear term given by Eq. (30) describes the dynamics of
the two photons, Photonl and Photon2, which are absorbed
and emitted independently. The linear Hamiltonian includes
transitions to the state |E;,E,), where both photons are ab-
sorbed by the atomic system. This transition is impossible in
a two-level system (a V-type three-level system is considered
here). The nonlinear term given by Eq. (31) suppresses tran-
sitions to the state |E;,E,).

The total Hamiltonian given by Eq. (27) for two-photon
processes is thus given by

IA{2ph — I:Ilin + IA{Nonlin' (32)
A=A, o 10, +1), © A, (33)

[:INonlin - _ (If](l)

intac

® |EJE,| + |E\XE,| ® Hp), (34)

mtac
where
i, = 1)

intac

+ 2 hek + HYJY + |E)XE;
i=L,R

with

]Q(U):f dk[jkij|kij><kij

s
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Ly ek [T
Hfil’ljl)fc‘ =if ;f dkij(|kij><cj| - |Cj><kij

A

intac

),

and

= ﬁg(|cj><E_,‘| + |E,><C/|),

where the indices i=L,R distinguish the left-side field of the
two-sided cavity from the right-side field, and the indices j
=1,2 distinguish the two photons and the two excited states.

As the temporal evolution described by H'n s composed
of the evolution of a single photon, the corresponding matrix
element of the temporal-evolution operator can be expressed
as the product of the individual single-photon matrix ele-
ments given by Egs. (24) and (25), i.e.,

lin(jk)
Upph

(Fj1s T3 Lot = 1) = ”?,Zh(rjﬁril;f_ 1)
k
X“(lp)h(rkz;riz;t— t;)

for j,k=L,R. (35)

The components of re-emission from the state |E;, E,) can
be effectively described by

j k
u:(n]b)s(rjl’rllll = ti)ugb)s(rkarL2;t - 1)

for 0 <rj,rp <c(t—1;) +Minlry,r;,]  (36)

using Eq. (26). These re-emission components refer to the
process in which the two photons are absorbed and remitted
simultaneously by an atom. However, the nonlinear term
(34) eliminates these components [19]. The total matrix ele-
ment for two-photon processes can thus be described by

(k) o
W15 23 s Trost = 1)

= ulzi;,?k)(rjl,rkz;rlil,ri2;t - 1)
+ “lz\llf;hn(jk)(rjl,szﬂ’ilvriz;f— t),
where
Nonlin(jk)

(rjl,rk2;r£1,r£2;t—t[)2—[Eq. (36)] (37)

The output wave function on the left-side and right-side out-
put fields can then be expressed as

Usph

o]
A ’ 1 (jk) 0 ro.
q’jk(rjlsrk%t)— erlerZMth(rjl’rkZ’rLl’rLZ’t_ti)

-0

X W, (rsr0st)  for jk=L,R.  (38)

The output wave function describes the far-field state of the
photons after interaction with the atom-cavity system. In
general, a two-photon wave function propagating in free
space is given by W (r;, 103 1) =W (rj; —ct, ry,—ct). The re-
sults of Eq. (37) and (38) can therefore be simplified by
transformation to a moving coordinate system, i.e.,

rjl—cl=xj1,
rjz—C[:.ij,

’ ot
rpp—Cti=Xpg,
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!
Tpo—Cli=Xp5

for j,k=L,R.

In this coordinate system, the output wave function in the
outgoing far field is expressed as

(e
out( 1’xk2)—f delde2xu2ph( Xj15 X253 XL 15X 2)

WL (xr xt,)  for j,k=L,R, (39)
where ug’;‘}i(le JXk23X11,X],) is given by

Lt ’
u2ph( Xj1s X5 X 15X o) = u2ph ( Xk X 15X )

Nonlin(jk
+ uzsn il )(xll’xkz’xLl’xLZ)
where
1 i k
“2131({ ()1 X023 X 15X0) = “th(le §x£1)“(1p)h(xk2§x£2)
with
L L
u(pL(xLaxL) = ugbl(xbxi) ,
R R
u(lp;l(xR’xi) = uEraLs(xR’xL) + udbs('xR"xL)
ug;ns(xj;xi) = 8(x; - x)),
' U tnow—) '
abs( xp) == ——e 2N for x; < xp,
and

Nonhn(;k)( l’ka;xil’xiz)

= abs( l’xLl)uabq(xk%xLz)

for 0 < x;1,x0 < Min[xy ,x7,].

V. PERFORMANCE OF QND MEASUREMENT

The performance of the proposed QND (Fig. 1) is evalu-
ated using Eq. (39). The pulsed mode of the one- and two-
photon input is assumed to be a Gaussian mode W, (x;)

= Z=ex [-2x?/d*], where d is the input pulse duration. The
dv p L putp
one- and two-photon pulsed state can thus be described by

1ph> fdeq}m(xL |XL> (40)

and

(WP = W) @ (W) = f dxpydx Vi (xp ) Win(xg0)

X |XL1 iX10)- (41)

The corresponding output states can be formulated using Eq.
(39) as

AEHEDY

Jj=L.R

dx, WY (x Dlx, (42)
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o= >

Jj.k=L.R

ldxkz‘l’om( x)lxxg),  (43)
where

\P(()Igl(x) f dx; ulph sx)Win(xp),

\I’g?(le,xkz):fdxildxiz’

ik
X “gpﬂ(le 23 X015 12) Vin(7 ) Win(x7,) -

The transmittance and reflectance of the atom-cavity system
for one- and two-photon input can be characterized by the
detection probabilities on the left and right sides of the cav-
ity, as given by

Pipn(j:d) =f |‘I’ (44)

PZPh(.]] k2; d) f ldxk2|\ljou[( l’xk2)|2 for j5k:L>R'

(45)

As mentioned in the Introduction, the performance of the
QND can be characterized in terms of efficiency and success
probability. The efficiency is defined as the probability that
the signal photon appears at the output when the detector D1
or D2 [Fig. 1(b)] detects an ancillary photon. Note that the
probability associated with detection of the arrival of the
signal photon is different from the probability related to de-
tection of the ancillary photon: the former is given by
Pypn(R1,L2;d)+ Py (R1,R2;d), while the latter is given by
adding Py,(R;d) to the former. The efficiency is thus given
by the former divided by the latter, i.e.,

Pzph(Rl,Rz,d) + Pzph(Rl,Lz,d)
Pion(R:d) + Pypn(R1,R2:d) + Pypyp(R1,L2:d)
(46)
This equation is obtained using Eqgs. (44) and (45). Likewise,
the success probability is defined as the probability that the

detector D2 or D3 detects an ancillary photon when the sig-
nal photon appears at output 1 or 2 [Fig. 1(c)], as given by

Py, (d) = Pyph(R1,R2:d) + Py (R1,L2:d). (47)

Eqnp(d) =

This equation holds when the state at the ancillary input port
A;, on each path [Fig. 1(b)] is a single photon state. This
condition gives the upper limit of the success probability.
Figure 4 shows the efficiency Eqyp(d) and success prob-
ability Pg,.(d) for the proposed scheme. The symmetric case
is that in which the pulse durations of the ancillary and signal
photons are identical, while the asymmetric case is that in
which the pulse duration of the ancillary photon is fixed at
40/T, corresponding to an ancillary photon transmittance of
0.49%. The efficiency can be increased to 100% by increas-
ing the pulse duration of the ancillary photon. However, the
success probability is simultaneously decreased to 0%. Con-
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FIG. 4. (a) Efficiency and (b) success probability of QND mea-
surement. Solid and broken lines denote symmetric and asymmetric
cases of pulse duration. The rate I' is the dipole relaxation rate
described by g2/ k, where g and « represent the coupling constant of
the atom-cavity system and the cavity decay rate, respectively.

sidering this trade-off relationship, the efficiency at a success
probability of 10% is 94.3%. A success probability of 8% is
obtained for pulse durations of 40/T" in the symmetric case.
In the asymmetric case, efficiency of 95.5% was obtained
with a success probability of 10% for pulse durations of
12.5/T (signal) and 40/T" (ancillary). The asymmetric case
thus relaxes the requirements for the signal pulse in the
QND. For example, efficiency of greater than 90% is achiev-
able over a wide range of signal photon pulse durations
while maintaining a success probability of around 10%. Fur-
thermore, the jitter of the signal photon is larger than the
pulse duration of the signal photon yet smaller than the pulse
duration of the ancillary photon. The asymmetric case there-
fore allows the arrival time and pulse shape of the signal
pulse to be determined by time-resolved photodetection of
the ancillary photon in conjunction with the output function
Eq. (39). Information on the pulse shape of the output signal
photon will become important when the signal photon is pro-
cessed with another photon.

When the pulse durations of the signal and ancillary pho-
tons are much longer than the radiative relaxation time 1/,
the output wave functions associated with the detection of
the ancillary photons, \P(RL)(le ,X1) and \P(RR)(le,sz),

out out
can be approximated by the nonlinear component
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JZdx | dxjub it (g x5 x] X)) Wi (x]) Wy, (x3). For simplicity,
if the pulse shapes of the signal and ancillary photons are
assumed to be rectangular and the pulse duration of the sig-
nal photon d, is set much shorter than that of the ancillary
photon d;, the nonlinear component can be expressed as
—(1/dy)e~T29ki=x2l This function indicates that the pulse
shape of the signal photon is not dependent on the detection
timing of the ancillary photon. For a Gaussian pulse shape,
the nonlinear component at x; =x, is described by a Gaussian
function. However, the conclusion remains the same as in the
rectangular case.

VI. DISCUSSION

One of the promising candidates for experimental realiza-
tion of the two-sided atom-cavity is a single quantum dot
exciton system coupled with the cavity mode of a photonic
crystal [21]. Such a system provides design capabilities for
temporal stability and reproductivity of the dipole coupling
with the cavity mode. For a transition frequency and oscilla-
tor strength of the exciton of v,=2.35X 103 GHz (0.97 eV)
and =100, the mode volume of a two-dimensional photonic
crystal is V,,=0.02 um?, with a coupling constant g of 0
~ 132 GHz. As the bad-cavity regime is typically k=4g, the
resultant radiative relaxation rate I' can take values of 0
~33 GHz. If the decoherence time of the exciton by
phonons is approximately 1 ns [22], the pulse duration of the
ancillary photon should be less than 500 ps in order to avoid
decoherence by phonons. Under this condition, the maximal
efficiency for the QND is 86% and the success probability is
20% in the symmetric case. As there is little difference be-
tween the symmetric and asymmetric cases in terms of effi-
ciency and success probability, the corresponding values for
the asymmetric case should be similar. Note that the effi-
ciency of 86% is a maximum, since the temporal evolution
of a single exciton dipole under interaction with phonons,
driven by weak coherent light with pulse duration of 500 ps
or more is unknown. This temporal evolution should there-
fore be investigated experimentally as part of future research.
It will also be necessary to conduct detailed theoretical
analyses of the decoherence time by phonons beyond the
independent boson model [20,23] in order to discuss effi-
ciencies of greater than 90%.

VII. CONCLUSION

A QND measurement scheme involving a two-sided
atom-cavity system for the detection of photon arrival in
entanglement sharing was proposed. The efficiency and suc-
cess probability of the scheme were estimated by analyzing
the responses of the two-sided atom-cavity system for one-
and two-photon input over a range of input pulse duration.
The conditions for improved QND performance were also
examined. Efficiency of up to 100% was found to be possible
by increasing the pulse duration of the ancillary photon, al-
though the success probability is simultaneously reduced to
0% in a trade-off relationship. For a success probability of
10%, with relaxation of the requirements for the signal pulse
in the QND, efficiency of 95.5% was obtained. In the case of
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signal photons with pulse duration of 12.5/1" and ancillary
photons with pulse duration of 40/T", the obtained success
probability was 10%. The success probability can be in-
creased to 100% by returning the signal photon to the input
when no ancillary photon is detected on the right side of the
cavity. Decoherence on the signal wave packet after detec-
tion of the ancillary photon is suppressed by choosing signal
and ancillary photon pulse durations much larger than the
radiative relaxation time of the atom cavity, in which case
the pulse shape of the signal photon is approximated by the
wave function (x)=\N-e" 291 where N is a normaliza-
tion factor.

The proposed QND scheme functions correctly even if the
ancillary photon is replaced with weak light described by the
superposition of vacuum and one-photon states. Therefore
the proposal is applicable not only for entanglement sharing
but also for general purification of a single-photon state. Re-
alization of the proposal scheme is therefore expected to
drive substantial progress in photon manipulation technol-

ogy.
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APPENDIX: DERIVATION OF EQ. (29)

In the temporal evolution under the total Hamiltonian
given by Eq. (27), the initial number of energy quanta is
always preserved. For example, the number of energy quanta
for a two-photon input is two, and this number is always
preserved even upon interaction with the atom-cavity sys-
tem. The possible states in the interaction of the V-type
three-level system with two distinguishable photons, Pho-
tonl and Photon2 are thus

19y ® |[F) @ |[Fi)
&) ® |[FO) ® |[FY)

&) @ |Fy @ |FY) for LI’ =1,2,3,

where
F) =10, .0, .0,
F) = 1,,.00, .0c, )
|F;(§)> = |Oam’ lkLm’OkRm>
and
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IFS) =0, ,0; .1

iy, )-
The state |Oam, 1 kLm’OkRm> denotes a state in which the cavity
mode a,, and all modes of the Rm: field ky,, are in the vacuum
state, and one mode of the Lm field k;,, is in the first excited
state, with the remaining states being the vacuum state. The
state |0am’OkLm’OkRm> denotes a state in which the cavity
mode a,, and all modes of the Rm field kg, and the Lm field
k;,, are in the vacuum state. The same holds for
|1am’OkLm’OkRm> and |Oam’0kLm’ Li, )

On the truncated Hilbert space composed of these states,

the matrix representation of the operators cﬁé’(_l) and &;6'(_2)
are given by
a6 =[e)&| @ [F)FY
® (IF§1’><F§”| + f | FE)FS
+ J dkgo| FS' W), (A1)

sl o (1P |kl

+ J dkpy|[FPNFD)) @ |FSOXFD). (A2)

To express the above operators as those acting on the Hilbert
space spanned by the state descriptions given by Eq. (28), we
start from expressing the quantum state of the V-type atomic
system as the quantum state of the two two-level atomic
systems where the Hilbert space is spanned by the basis
{lg1.g2).le1.82),|g1.€2),e1,e2)}. The V-type atomic system,
where the excited state is |£) or |&) or the superposition of
these states, does not emit two photons simultaneously. On
the other hand, the two two-level atomic systems in the
double excited state (|e;,e,)) emit two photons simulta-
neously. This difference implies that the quantum state of the
V-type system should be expressed as a quantum state in the
subspace spanned by the basis except for the double excited
state |e;,e,) of the two two-level atomic systems. The
ground state of the V-type atomic system |g) corresponds to
the ground state of the two two-level atomic systems |g;,g,).
From the viewpoint of single-photon resonant transition pro-
cesses, the allowed transition to and from either of the two
excited states |&) and |&,) corresponds to the transition to
and from either of the two excited states |e;,g,) and |g;,e»).
Using these correspondences, the operator |g)(&| in Eq. (A1)
is expressed as the operator |g,,g.){(e;,gs=|g:){e)| ®]g2)
X{(g»| on the Hilbert space of the two two-level atomic sys-
tems. Likewise, The operator |g)(&| in Eq. (A2) is expressed
as the operator |g;)(g;|®|g.){es|. The operators given by
Egs. (Al) and (A2) are then expressed by substituting these
expressions as
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aj 5 =g ey ® |F(11)><F(10)| @ |g2){g2]

o (1rrt« |

-0

o

dlepo| FSYFS|

+ f dkR2|F§3)><F§”|), (A3)

—o0

o

a56? =g )g)| ® <|F§1>><F§“| - f

—o0

dlep |FP)FP)|

| NN o e o Y

—o0

(Ad)

These operators can be expressed on the state descriptions
|kL]>|kR]>7 C]>, and |E]> f()rj=1,2 as
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[

a6V =|C\XE|| ® <|Cz><Cz| + > dki2|ki2><ki2|),

i=L.R J —
(A5)
ay6\? = <|C1><C1|+ > dki1|ki1><kil|)'
i=LR J —o
®[CXE,|. (A6)

The matrix representation of the interaction Hamiltonian
> jzl’zlflg) given by Eq. (29) is thus obtained by the above

intac

equations.
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