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Quantum key distribution �QKD� can be used to generate secret keys between two distant parties. Even
though QKD has been proven unconditionally secure against eavesdroppers with unlimited computation power,
practical implementations of QKD may contain loopholes that may lead to the generated secret keys being
compromised. In this paper, we propose a phase-remapping attack targeting two practical bidirectional QKD
systems �the “plug-and-play” system and the Sagnac system�. We showed that if the users of the systems are
unaware of our attack, the final key shared between them can be compromised in some situations. Specifically,
we showed that, in the case of the Bennett-Brassard 1984 �BB84� protocol with ideal single-photon sources,
when the quantum bit error rate �QBER� is between 14.6% and 20%, our attack renders the final key insecure,
whereas the same range of QBER values has been proved secure if the two users are unaware of our attack;
also, we demonstrated three situations with realistic devices where positive key rates are obtained without the
consideration of Trojan horse attacks but in fact no key can be distilled. We remark that our attack is feasible
with only current technology. Therefore, it is very important to be aware of our attack in order to ensure
absolute security. In finding our attack, we minimize the QBER over individual measurements described by a
general POVM, which has some similarity with the standard quantum state discrimination problem.
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I. INTRODUCTION

One important practical application of quantum informa-
tion is quantum key distribution �QKD� �1–3�, which gener-
ates secret keys between two distant parties, commonly
known as Alice and Bob. The advantage of QKD is that it
has been proven unconditionally secure even when an eaves-
dropper, Eve, has unlimited computation power allowed by
the law of quantum mechanics �4–9�. On the other hand,
security proofs are only as good as their assumptions that
real-life QKD systems may not accomplish due to imperfec-
tions. This may open up new attacks for Eve. Moreover,
given a combination of imperfections, Eve may try to mix
and pick the best �perhaps a combined� eavesdropping strat-
egy to maximize her chance of breaking a QKD system. It is
thus important to construct a catalog of known attacks
against practical QKD systems. Moreover, it is imperative to
study specific defenses against proposed attacks. Notice that
implementations of defenses may open up new security loop-
holes. It is not enough to say that defense strategies exist in
principle. One must also battle test them thoroughly in ex-
periments to see if they are of any good in practice. We
remark that the construction of generally agreed theory of
eavesdropping attacks and defenses in realistic “plug-and-
play” systems is, in fact, a five-year goal in the U.S. funding
agency ARDA’s quantum cryptography roadmap �10�.

Practical difficulties associated with phase and polariza-
tion instabilities over long-distance fibers have led to the

development of two bidirectional QKD structures: the plug-
and-play autocompensating QKD structure �11� and the
Sagnac QKD structure �12,13�. In both cases, one of the
legitimate users, Bob, sends strong laser pulses to the other
user, Alice. Alice encodes her information on the phase of
the strong pulse, attenuates it to a single photon level, and
then sends it back to Bob. Because Alice allows signals to go
in and go out of her device, this opens a potential backdoor
for Eve to launch various Trojan horse attacks, which are any
attacks that involve more than just passive attacks. Trojan
horse attacks performed by sending probe signals into
Alice’s and Bob’s equipments have been analyzed in Ref.
�14�; Trojan horse attacks exploiting the detector efficiency
mismatch have been analyzed in Ref. �15� and also by us
�16�. In this paper, we propose a specific type of Trojan horse
attack, which we call the phase-remapping attack aiming at
the bidirectional QKD system using phase coding. We show
that, when Alice and Bob are unaware of our attack, the final
key shared between them can be compromised in some situ-
ations. Also, our attack is feasible with only current technol-
ogy. Therefore, it is very important for Alice and Bob to be
aware of our attack when using the plug-and-play QKD sys-
tems or the Sagnac QKD systems and to correctly identify
which situations are secure and which are not.

In the following, we first describe in Secs. II and III how
phase remapping is performed in the two QKD systems
implementing the Bennett-Brassard 1984 �BB84� protocol
�1�, and then we illustrate situations in which the final keys
can be compromised, both in the perfect-single-photon-
source case and in the weak-coherent-state-source case. For
the perfect-single-photon-source case �Sec. IV�, we aim to
find the smallest quantum bit error rate �QBER� under the
phase-remapping attack and show that it is lower than the
known QBER threshold under which secret keys can be dis-

*Electronic address: cffung@comm.utoronto.ca
†Electronic address: bqi@physics.utoronto.ca
‡Electronic address: tamaki@will.brl.ntt.co.jp
§Electronic address: hklo@comm.utoronto.ca

PHYSICAL REVIEW A 75, 032314 �2007�

1050-2947/2007/75�3�/032314�12� ©2007 The American Physical Society032314-1

http://dx.doi.org/10.1103/PhysRevA.75.032314


tilled when Trojan horse attacks are not taken into account.
We formulate our problem as minimizing the QBER over an
individual measurement described by a general POVM. For
the weak-coherent-state-source case �Sec. V�, we demon-
strate three specific eavesdropping strategies with the phase-
remapping attack �two of them are also combined with the
fake signals attack �15�, which exploits detection efficiency
mismatch between two detectors� that lead Alice and Bob to
wrongly believe that they can distill secret keys at positive
rates but in fact no secret key can be generated. We finally
conclude in Sec. VI.

II. PHASE-REMAPPING ATTACK IN SAGNAC QUANTUM
KEY DISTRIBUTION SYSTEMS

The basic structure of the Sagnac QKD system �13� is
shown in Fig. 1. Here, to simplify our discussion, we neglect
Bob’s phase modulator. Note that we use an acoustic-optic
modulator �AOM� as a phase modulator on Alice’s side. The
input laser pulse is split by the fiber coupler into S1 and S2,
which go through the fiber loop clockwise and counterclock-
wise, respectively. Note that the AOM is placed in the fiber
loop asymmetrically, with fiber lengths L1 and L2 on the two
sides. For the first order diffracted light, the AOM introduces
a frequency shift equal to its driving frequency �due to Dop-
pler effect�. The phase of the diffracted light is also shifted
by an amount which is equal to the phase of the acoustic
wave at the time of diffraction �17�. S2 and S1 arrive at the
AOM at different times with the time difference t2− t1
=n�L2−L1� /C=n�L /C. Here, n is refractive index of optical
fiber and C is the speed of light in vacuum. The phase dif-
ference between S1 and S2 after they go through the fiber
loop is

�� = ��t2� − ��t1� = 2�f�t2 − t1� = 2�n�Lf/C . �1�

By modulating the AOM’s driving frequency f , the relative
phase between S1 and S2 can be modulated. This is the basic
mechanism of our AOM-based phase modulator.

In the standard BB84 protocol, Alice can encode phase
information �0,� /2 ,� ,3� /2� by modulating the AOM with
frequency �f0 , f0+�f , f0+2�f , f0+3�f�. From Eq. �1�, the
phase difference depends on both the AOM frequency f and
the fiber length difference �L. So, in principle, Eve can build
a device similar to Bob’s except with different fiber length
and launch an “intercept-and-resend” attack.

Suppose Eve uses her device to send laser pulses to Alice.
Unaware that the pulses come from Eve, Alice shifts the light
frequency by one of the values �f0 , f0+�f , f0+2�f , f0

+3�f�. By choosing a suitable fiber length difference L2

−L1, Eve can remap the encoded phase information from
�0,� /2 ,� ,3� /2� to �0,� ,2� ,3��, where � is under Eve’s
control. This is illustrated in Fig. 2.

III. PHASE-REMAPPING ATTACK
IN PLUG-AND-PLAY SYSTEMS

In a plug-and-play QKD system �11�, the information is
encoded on the relative phase between a signal pulse and a
reference pulse. The phase modulator inside Alice is sup-
posed to be activated in such a way that only the signal pulse
is modulated while the reference pulse is not. Unfortunately,
in current QKD systems, Alice does not monitor the arrival
times of the two pulses. Instead, she just uses one of them as
the trigger signal to determine when she should activate her
phase modulator. In this case, Eve can time shift the signal
pulse so that it will arrive at the phase modulator on its rising
or falling edge and thus will be partially modulated �see Fig.
3�. �The LiNbO3 waveguide-based phase modulators used in
current QKD systems have rise times ranging from 100 ps to
1 ns.� Therefore, the relative phase between the signal pulse
and reference pulse will be smaller than what it is supposed
to be. In principle, by carefully controlling the amount of
time shift, Eve can remap the encoded phase information
from �0,� /2 ,� ,3� /2� to �0,� ,2� ,3��, where �� �0,� /2�.

IV. UPPER BOUND ON THE QUANTUM BIT ERROR
RATE OF PHASE-REMAPPING ATTACK WITH

A PERFECT SINGLE-PHOTON SOURCE

We have described the possibility of Eve changing the
phase difference � between the states sent by Alice in two
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FIG. 1. Schematic diagram of the Sagnac QKD system employ-
ing an AOM-based phase modulator: LD—pulsed laser diode;
Cir—circulator; C—2�2 coupler; SPD1, SPD2—single photon
detector.

BB84 states new states

FIG. 2. The phase difference between the four states sent by
Alice is changed by Eve to �. In standard BB84 states, �=� /2.
�Note that the states are drawn so that orthogonal states are � /2
apart in the diagram but are � apart in the actual phases.�

p/2

p/4

t i m e

FIG. 3. The dashed line is the original signal pulse intended to
be modulated at the middle of the phase modulator’s response to
have a phase of � /2. Eve time shifts the pulse to the one in the solid
line. This pulse now arrives at the middle of the rising edge and
acquires a phase of � /4 instead.
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practical QKD systems. The important question is: is this
ability of Eve harmful to Alice and Bob in any way? As we
show in this section, Eve can use this ability to compromise
the final key shared between Alice and Bob under some situ-
ations in the perfect-single-photon-source case. We show this
by considering Eve launching a specific intercept-and-resend
attack that is optimized for the phase difference � that she
has chosen for Alice’s states. Note that any intercept-and-
resend attack completely breaks the security of any QKD
protocol, meaning that Alice and Bob cannot establish a se-
cret key of any length �18�. Thus, we want to show that our
intercept-and-resend attack leads to situations that Alice and
Bob �wrongly� believe that they can generate a secret key.
The QBER is often used as a measure to judge whether a
secret key can be generated in a QKD experiment. The
QBER can be obtained by Alice and Bob in a QKD experi-
ment by publicly testing the error rates in a random subset of
the transmitted bits. They use the QBER to determine the
amount of eavesdropping on the channel and whether to pro-
ceed with the key generation process. Therefore, we want to
show that our intercept-and-resend attack causes a QBER
that is lower than what is tolerable without any Trojan horse
attacks. In this case, there is a range of QBER’s that is secure
without any Trojan horse attacks but is now insecure with
our Trojan horse attack. If Alice and Bob are unaware of our
Trojan horse attack and treat these situations as secure, then
their final secret key is compromised and Eve has some in-
formation on it. In the following, we first consider an
intercept-and-resend attack preceded by the phase-remapping
operation. In this attack, Eve’s measurement is optimized
and the resent states are the BB84 states. We then consider
three extensions to the attack strategy by optimizing over the
resent states and/or combining the phase-remapping attack
with the fake signals attack �15�. In all cases, we show that
the final key can be compromised if no Trojan horse attack is
considered.

A. Simple intercept-and-resend attack with phase remapping

We consider the BB84 protocol with a perfect single-
photon source and detectors. Note that any QBER lower than
20% is tolerable in the BB84 protocol without any Trojan
horse attacks �19–21�, meaning that a secret key can be dis-
tilled. Thus, we aim to construct an intercept-and-resend at-
tack that produces a QBER lower than this. The intercept-
and-resend attack we consider here is similar to the one
considered earlier by us �22�. Here, we optimize the attack to
the phase difference between Alice’s states, �, which is set
by Eve.

The four states sent by Alice have phases 0, �, 2�, and 3�,
where the phase offset is set to be zero for simplicity and
without loss of generality. We assume that Eve uses the same
detection scheme as Bob does. Thus, for a state with phase �,
Eve detects the bit values “0” and “1” with probabilities
cos2� �

2
� and sin2� �

2
�, respectively. To facilitate the analysis,

we denote Alice’s four states as

��̃k� = cos	 k�

2

�0z� + sin	 k�

2

�1z� , �2�

where k=0, . . . ,3 are the indices for the four states, and
�jz� , j=0,1 are the eigenstates of the Z component of the
Pauli matrix. Similarly, �jx�= ��0z�+ �−1� j�1z�� /�2, j=0,1 are
the eigenstates of the X component of the Pauli matrix. Here,
��̃0� and ��̃2� represent bits 0 and 1 in one basis, whereas ��̃1�
and ��̃3� represent bits 0 and 1 in the other basis. Note that
the normal BB84 states have the phase difference �=� /2;
we denote the BB84 states as ��k�.

We consider the following intercept-and-resend attack by
Eve: Eve captures the state sent by Alice, ��̃k�, and perform a
POVM measurement on it. The POVM consists of five ele-
ments, �Mvac ,Mi : i=0, . . . ,3�, with Mvac+�i=0

3 Mi=I. For the
outcome corresponding to Mvac, Eve sends a vacuum state to
Bob, whereas for outcome i, she sends the BB84 state ��i� to
Bob.

For a fixed phase difference �, we want to favor Eve by
minimizing the QBER caused by this attack over the POVM
elements. This QBER minimization problem is similar to the
quantum state discrimination problem �23�, where a given
state is to be identified among a set of known states. In our
case, since the four states are not linearly independent, un-
ambiguous discrimination �meaning error free� is not pos-
sible �24�. In the standard ambiguous state discrimination
problem, the total probability of incorrectly identifying the
state �i�j Tr�Mi��̃ j�
�̃ j�� /4 is minimized subject to �i=0

3 Mi

=I, where the division by four is due to Alice sending one of
the four states with equal probabilities. On the other hand, in
our problem, the quantity to minimize is the QBER, which is
the error rate on Bob’s measured signals, not Eve’s error
probability. We find the QBER as follows. Consider M0 first.
When M0 occurs, Eve sends ��0� to Bob. If Alice actually
sent ��̃0�, then there is no error. However, if Alice actually
sent ��̃2� and Bob uses the measurement basis ���0� , ��2��
�only the cases that Alice and Bob use the same basis are
considered�, then Bob always gets an error and thus the
QBER is 1; on the other hand, if Alice actually sent ��̃1� or
��̃3� and Bob uses the measurement basis ���1� , ��3��, then
the QBER is only 1/2. Therefore, the �unnormalized� QBER
for the M0 case is � 1

2Tr�M0��̃1�
�̃1��+Tr�M0��̃2�
�̃2��
+ 1

2Tr�M0��̃3�
�̃3��� /4. Comparing this with the total error
probability of the state discrimination problem, we see that
here different penalties are incurred for different incorrectly
identified states. To form the final QBER, we need to add the
�unnormalized� QBER for the other Mi’s and normalize the
sum with the probability of Eve causing clicks on Bob’s
detectors, giving us

QBER =

�
i=0

3

Tr�MiLi�

�
i=0

3

Tr�MiBi�

, �3�

where

Li =
1

2
��̃1+i�
�̃1+i� + ��̃2+i�
�̃2+i� +

1

2
��̃3+i�
�̃3+i� , �4�
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Bi = �
k=0

3

��̃k�
�̃k� . �5�

We minimize the QBER over positive Mi’s �see Appendix A
for details�. Note that it is not necessary to impose the con-
straint �i=0

3 Mi�I, since any solution to this unconstrained
problem can always be scaled down sufficiently to satisfy
this constraint. Also note that normalization of the QBER is
necessary since we allow Eve to get an inconclusive result
and send a vacuum state to Bob �i.e., we allow Mvac to be
nonzero�. This is in contrast to the standard ambiguous state
discrimination problem where all results have to be conclu-
sive.

In general, Eve’s action is a solution to some optimization
problem, minimizing some general penalty function. The
QBER and the total error probability in the standard state
discrimination problem are two special cases of such general
penalty functions. In our Trojan horse attack problem, we use
the QBER as the objective function since Alice and Bob can
determine this value experimentally and use this value to
estimate the amount of eavesdropping on the quantum chan-
nel.

Figure 4 plots the smallest QBER induced by this attack
against the phase difference � �top curve�. This curve is
achieved by Eve resending only the states �0z� and/or �1x� to
Bob. Due to the symmetry in their phase-remapped states
��̃0� and ��̃3�, the resultant QBER’s are equal �see Fig. 5�.
Also, it turns out that the QBER caused by resending the
states �1z� or �0x� is higher than this curve in the range of �
shown in the figure. We observe that this QBER curve ap-
proaches 15.5% as the phase difference � approaches zero.
Note that there is a discontinuity at �=0. When the phase

difference is exactly zero, all four states sent by Alice are
exactly the same. Thus, Eve cannot learn anything about Al-
ice’s bits. In this case, Eve can either send random states to
Bob �in which case the QBER is 1

2 � or send only vacuum
states to Bob �in which case the QBER is undefined since
Bob did not have any click�. The source of this discontinuity
is that we allow Eve to get an inconclusive result and send a
vacuum state to Bob �i.e., Mvac�0�. Note that in practice,
one may restrict Eve’s strategies by requiring a certain mini-
mum detection probability at Bob’s side, meaning that Eve
has to resend some states to Bob with a minimum probabil-
ity. As a consequence, Eve may launch our attack only at
phase differences � larger than some small finite value, in
which case, the discontinuity at �=0 is irrelevant. In the
standard state discrimination problem, no inconclusive result
is allowed and thus the error probability approaches 1/2 as �
approaches zero with no discontinuity.

We can understand the behavior of the top curve in Fig. 4
at small � by considering a suboptimal intercept-and-resend
strategy for Eve. Let us consider that Eve is only interested
in finding a good M0 and assigns M1=M2=M3=0. Since ��̃2�
causes the largest QBER of 1 �whereas ��̃1� and ��̃3� cause
only 1/2�, Eve chooses M0 to be a projection onto a state
orthogonal to ��̃2� �see Fig. 5�. Thus, the probabilities of M0
occurring when Alice sent ��̃0�, ��̃1�, ��̃2�, and ��̃3� are
sin2�2���, sin2����, 0, and sin2����, respectively. Here, we
denote ��=� /2. Using sin�x�=x for small x and Eq. �3�, the
QBER is � 1

2��2+ 1
2��2� / �6��2�= 1

6 =16.7%. Note that this
value is just a little bit greater than the QBER of 15.5% of
our optimal attack strategy plotted in Fig. 4. Also note that
Mvac is equal to ��̃2�
�̃2� with a probability of occurrence of
1−3��2 /2 �it is 3��2 /2 for M0�, thereby introducing a dis-
continuity in QBER at �=0.

The significance of Fig. 4 is that there is a range of phase
differences � that causes the QBER to go below 20%, which
is shown in Refs. �20,21� to be a tolerable QBER in the
BB84 protocol when Eve does not have the ability to change
the �. This proves that Eve’s ability to change the phase
difference between Alice’s states is helpful to Eve in break-
ing the security of BB84 protocol. Specifically, when Alice
and Bob are unaware of our Trojan horse attack, Eve can
learn some information on the final key shared by Alice and
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B
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Phase remapping only

Phase remapping� fake signals

FIG. 4. QBER upper bound of Trojan horse attacks for BB84.
The top two curves correspond to the phase-remapping attack only
whereas the bottom two curves correspond to the combination of
the phase-remapping attack and the fake signals attack of Ref. �15�
�with efficiency mismatch of 0.08�. The QBER of the two solid
curves are obtained by minimizing over the POVM measurement
by Eve for each phase difference � and assuming a fixed state sent
to Bob. The QBER of the two dashed curves are obtained by mini-
mizing over the POVM measurement by Eve and the state sent to
Bob for each phase difference �. Note that the QBER values ap-
proach some minimum values �15.5%, 14.6%, 10.1%, and 5.79%�
as the phase difference between the states approaches zero.
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FIG. 5. A suboptimal strategy for Eve. She chooses M0

= �	�
	� where �	� is a state orthogonal to ��̃2�. This strategy
causes a QBER of 16.7%.
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Bob. This can be seen as follows: Suppose Eve launches this
attack and induces a QBER of, say, 15.6%. Since this is
lower than 20%, which is when the key distillation technique
in Ref. �19� is applicable, Alice and Bob decide to apply this
technique to distill a final key. On the other hand, the result
of Ref. �18� says that no secret key can be established be-
tween Alice and Bob when Eve launches an intercept-and-
resend attack. Thus, the final key shared by Alice and Bob is
not completely secret and Eve has some information on it.

It is important that the transmittance �which is the fraction
of Alice’s signals received by Bob� in the case of Eve
launching this attack is similar to that when Eve is not
present and the system is in normal operation, since, other-
wise, Bob may be able to notice Eve’s intervention by ob-
serving the unusually low transmittance. Obviously, the
quantum channel loss directly affects the transmittance. In
our intercept-and-resend attack, Eve can avoid her signals
experiencing the quantum channel loss. Specifically, she can
perform her measurement at the output port of Alice, and
send her measurement result classically to her ally located at
Bob’s side. Her ally then resends a signal, based on the mea-
surement result, to Bob. In this way, no channel loss is ex-
perienced by Eve �assuming that the classical channel is per-
fect�. However, this does not mean that the transmittance in
our attack is one. This is because, based on Eve’s measure-
ment result, she occasionally sends a vacuum state to Bob,
thus reducing the transmittance. In a typical experimental
setup �25�, the loss in the fiber is about 0.2 dB/km. Thus,
with a 100 km-long fiber, the transmittance is about
10−�0.2�100�/10=0.01. In our intercept-and-resend attack that
minimizes the QBER, it can be shown that for �
� /20,
transmittance greater than 0.01 can be achieved. From Fig. 4,
when �=� /20, the QBER is about 15.6%. This means that
Eve can induce the same transmittance as in the normal op-
eration of the system and still she can learn some informa-
tion about the final key shared by Alice and Bob.

We remark that the POVM �Mvac ,Mi : i=0, . . . ,3� of our
intercept-and-resend attack is feasible with current technol-
ogy since each POVM element Mi is a projection onto some
state and can be implemented as one direction of an orthogo-
nal projection. Thus, multiple orthogonal projections can be
arranged to realize the projections of the POVM element Mi.

B. Attack extensions

We may further improve our attack by allowing Eve to
send arbitrary states to Bob with an arbitrary number of
POVM elements. Note that changing the states sent to Bob
only affects the penalty values in the QBER �i.e., the three
coefficients appearing before the three states in Eq. �4� are
affected�. By using a similar analysis as in Ref. �22�, we
obtain a QBER of 14.6% in this case, about 1% lower than
the case of Eve sending BB84 states to Bob. The QBER
upper bound with this improvement is shown in Fig. 4 as the
second curve from the top.

We may combine our phase-remapping attack with an-
other Trojan horse attack proposed in Ref. �15� �a fake sig-
nals attack�, to obtain even further improvement on the
QBER upper bound. In the fake signals attack, Eve takes

advantage of the detector efficiency mismatch by time shift-
ing the signals entering Bob’s detector package. Essentially,
by time shifting the arriving signal from the normal arrival
time, the efficiency of the detector for detecting “0” becomes
different from the efficiency of the detector for detecting “1”
�see Fig. 6�. Eve may make use of this difference in the
efficiencies to her advantage. Reference �15� proposed a spe-
cific intercept-and-resend attack with a fixed measurement
�the normal BB84 measurement in the X and Z bases� and
fixed resent states �the normal BB84 states but with the time
shifted� and showed that it is possible to compromise the
QKD system if Alice and Bob are unaware of this attack.
Here, we combine our phase-remapping attack with the fake
signals attack. Specifically, Eve performs phase remapping
of Alice’s states �which is also achieved by time shifting�,
measures Alice’s output signals, and resends to Bob some
signals having the arrival time shifted from the normal ar-
rival time. We may proceed to compute the QBER upper
bound by minimizing the QBER over arbitrary POVM mea-
surements but with the same resent states as those proposed
in Ref. �15� �e.g., when Eve detects the state ��̃0�, she re-
sends the ��� state time shifted to a location where the de-
tector for bit “0” has a higher efficiency�. The QBER is the
same as Eq. �3� but with different Li and Bi for this attack.
For example, those corresponding to sending the ��� state
are

L0 =
1

2
�1�t0���̃0�
�̃0� + �1�t0���̃1�
�̃1� +

1

2
�0�t0���̃2�
�̃2� ,

�6�

B0 =
1

2
��0�t0� + �1�t0�����̃0�
�̃0� + ��̃2�
�̃2��

+ �1�t0����̃1�
�̃1� + ��̃3�
�̃3�� , �7�

where �0�t0� ��1�t0�� is the efficiency of the detector for bit
“0” �“1”� at time t0. This combinational attack results in the
third curve from the top in Fig. 4, with the assumption that
the efficiency mismatch between the two detectors �i.e.,
�1�t0� /�0�t0�� is 0.08. Furthermore, by minimizing the

Timet0 t1

SPD0
SPD1

T0

FIG. 6. Efficiencies of two detectors. When Eve time shifts the
signals to arrive at Bob at time t0 �t1�, the efficiency of detector
SPD0 �SPD1� is higher than that of detector SPD1 �SPD0�.
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QBER over the measurements and also the states resent by
Eve, we obtain the bottom curve in Fig. 4, with the same
efficiency mismatch. As shown in the figure, there is consid-
erable improvement in the QBER upper bound by combining
with the fake signals attack. Note that the fake signals attack
alone corresponds to the end points of the bottom two curves
at �=� /2 �the QBER values are 12.3% and 9.82%�. Moving
along the bottom curve, we see that by combining with our
phase-remapping attack, the QBER upper bound decreases
significantly from 9.82% to 5.79%.

Our phase-remapping attack and also the fake signals at-
tack work against not only on the BB84 protocol, but also on
the Scarani-Acin-Ribordy-Gisin 2004 �SARG04� protocol
�26�. We have plotted an analogous figure for the SARG04
protocol in Fig. 7. The methods for obtaining these curves
are similar to that for the BB84 protocol. In this figure, we
have also used the efficiency mismatch of 0.08 for the fake
signals attack. We remark that the tolerable QBER for the
SARG04 protocol is 19.9% �22� when Alice and Bob are not
aware of any Trojan horse attacks. Similar to the conclusion
for the BB84 protocol, since, as shown in Fig. 7, the QBER
values induced by our phase-remapping attack together with
the fake signals attack for a large range of phase difference �
are below the tolerable QBER, the security of the SARG04
protocol can be compromised.

V. PHASE-REMAPPING ATTACK WITH A WEAK-
COHERENT-STATE SOURCE

In this section, we consider the phase-remapping attack
when a weak-coherent-state source is used, which is in con-
trast to Sec. IV where a single-photon source is assumed.
Here, we aim to show that there exist some situations where

a normal postprocessing would lead Alice and Bob to
wrongly believe that the secret key generation rate is positive
but in fact it is zero. In order to ensure that no secret can be
extracted, we again make Eve perform the time-shifting op-
eration to achieve phase remapping followed by an intercept-
and-resend attack as in Sec. IV. This time, however, Eve may
perform additional operations before her intercept-and-
resend attack. Since there can be more than one photon in a
signal pulse traveling from Alice to Bob, Eve may perform a
quantum nondemolition �QND� measurement to determine
the number of photons in the signal and then an intercept-
and-resend attack that may be dependent on the photon num-
ber. However, in the three strategies that we will discuss
below, Eve does not need to perform such a QND measure-
ment. Indeed, our three strategies are feasible with current
technology. In any case, any entanglement carried by any
signal from Alice to Bob is destroyed by Eve’s attack, re-
gardless of the number of photons in the signal, since an
intercept-and-resend attack corresponds to an entanglement-
breaking channel. Therefore, the secret key generation rate
must be zero �18�.

On Alice and Bob’s side, we adopt a specific postprocess-
ing step after the sifted key is obtained. Specifically, Alice
and Bob establish security using the result of Gottesman-Lo-
Lütkenhaus-Preskill �GLLP� �9� �which assumes the worst-
case estimations for the proportion of the single-photon sig-
nals and their QBER� and they optionally perform two-way
classical post processing �using B steps �19��. However, the
two-way postprocessing step in Ref. �19� cannot be applied
directly, since a single-photon source is assumed there,
whereas we are considering a weak coherent-state source
here. Instead, we apply the two-way post-processing tech-
nique for weak coherent-state sources proposed by us in Ref.
�27� �although decoy states are used there, we will directly
apply the technique without decoy states here�. Afterwards,
they perform standard error correction and privacy amplifi-
cation to distill the final key. We summarize a QKD model
for realistic setups, a key generation rate formula for a weak-
coherent-state source, and a two-way postprocessing proce-
dure using B steps for a weak coherent-state source in Ap-
pendix B. This background material will be used later in this
section.

Let us construct three specific examples in which Eve can
successfully trick Alice and Bob into believing that a secret
key can be generated. We adopt a model in which all imper-
fections are attributed to Eve �as in Refs. �9,28,29�� or,
viewed from a different perspective, Eve can control the
quantum channel and the detectors. In both examples, she
treats all signals with two and more photons as single-photon
signals and performs an intercept-and-resend attack on all
nonvacuum signals. In the intercept-and-resend attack, we
assume for simplicity that Eve’s measurement only identifies
the states ��̃0� and ��̃3� and resends some arbitrary states to
Bob �39�. The intercept-and-resend attack is optimized for
the phase difference � that Eve has chosen to remap Alice’s
four states. Note that it is not difficult to construct intercept-
and-resend attacks specific to signals of certain numbers of
photons in a similar way as that for the single-photon signals.
The first example demonstrates the phase-remapping attack
alone with a weak-coherent-state source. The second and
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�����
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����������
8

Π
�����
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Phase difference between states, ∆
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0.3

0.35
Q

B
E

R

Phase remapping only

Phase remapping� fake signals

FIG. 7. QBER upper bound of Trojan horse attacks for the
SARG04 protocol. The top two curves correspond to the phase-
remapping attack only whereas the bottom two curves correspond
to the combination of the phase-remapping attack and the fake sig-
nals attack of Ref. �15�. The QBER of the two solid curves are
obtained by minimizing over the POVM measurement by Eve for
each phase difference � and assuming a fixed state sent to Bob. The
QBER of the two dashed curves are obtained by minimizing over
the POVM measurement by Eve and the state sent to Bob for each
phase difference �. Note that the QBER values approach some
minimum values �23.7%, 22.7%, 11.6%, and 11.3%� as the phase
difference between the states approaches zero.

FUNG et al. PHYSICAL REVIEW A 75, 032314 �2007�

032314-6



third examples illustrate mixed attack strategies that combine
the phase-remapping attack and the fake signals attack; and
these two examples differ in whether or not Eve fine tunes
her attack strategy to match the overall gain and the overall
QBER �see Appendix B for their definitions� with the normal
operating values.

A. Strategy one

In this strategy, Eve performs phase remapping followed
by intercepting Alice’s signal and resending only the states
�0z� and �1x� �with equal probabilities� to Bob �39�. This strat-
egy produces the following overall gain and overall QBER,
respectively,

Qsignal = pdarke
−
 + �C1 + �1 − C1�pdark� �1 − e−
� , �8�

Esignal = � pdarke
−
/2 + �C1e1 + �1 − C1�pdark/2� �9�

�1 − e−
� � /Qsignal,

where pdark is the dark count probability, e1 and C1 are, re-
spectively, the QBER and the conclusive probability of the
intercept-and-resend attack for the single-photon case. If
there is no detection error �i.e., edetector=0 and it is the case in
this example�, e1 can be computed from Eqs. �3�–�5� or ex-
tracted from the top curve of Fig. 4 for a particular phase
difference � �since the top curve of Fig. 4 is achieved by Eve
resending only the states �0z� and/or �1x� to Bob�. On the
other hand, if edetector is not zero, we need to incorporate it in
the calculation of e1, which can be easily done.

Note that both states �0z� and �1x� sent by Eve to Bob
cause the same QBER’s and the same gains on Bob’s side
�since their phase-remapped states ��̃0� and ��̃3� in Eq. �2�
are symmetrical �see Fig. 5��. The conclusive probability C1,
which is also the probability that Eve resends the states �0z�
and �1x�, is equal to C1=Tr��M0+M3�B� /4, where M0 and
M3, with M0+M3� I, are the POVM elements for resending
the two states obtained by minimizing the QBER e1, and B
as given in Eq. �5� is the density matrix sent by Alice to Eve.
Also, we assume that Eve always sends a strong pulse to
Bob, which is reflected in the exclusion of Bob’s detector
efficiency �Bob in Eqs. �8� and �9�, C1, and e1.

Since Alice and Bob use only the result of GLLP to en-
sure security, the mean photon number 
 they use may be
very small. �In contrast, when the decoy-state method
�28–34� is used to ensure security, the mean photon number
may be high, e.g., on the order of 1.� Suppose that the mean
photon number is 
=8�10−4 and three B steps are used by
Alice and Bob. We use the QKD model parameters shown in

Table I to compute the overall gain and the overall QBER
from Eqs. �8� and �9�. We can then compute the key genera-
tion rates using Eq. �B14� for various distances, as shown in
Fig. 8. The important point is that there is a range of phase
differences �0.12���0.75� where the key generation rates
are positive, but in fact no key can be generated since Eve’s
intercept-and-resend attack corresponds to an entanglement-
breaking channel �18�. This means that the final keys gener-
ated in this range are insecure. The key generation rate out-
side this range is zero with this particular strategy. In contrast
to this strategy, the two strategies that we describe next com-
bine the phase-remapping attack with the fake signals attack
�15�.

B. Strategy two

This strategy combines the phase remapping attack with
the fake signals attack �15�. Specifically, in this strategy, Eve
performs phase remapping followed by intercepting Alice’s
signals and resending a time-shifted single-photon signal of
arbitrary state to Bob. Note that one crucial difference be-
tween this strategy and strategy one is that here Eve takes
advantage of the efficiency mismatch of the detectors by
time shifting her signals sent to Bob. To simplify the analy-
sis, we assume that Eve always sends single-photon signals
to Bob �in which case the ratio of the efficiencies is the
largest �cf. Eq. �B3�� and double clicks due to multiple pho-
tons of arbitrary states are avoided�. We compute the overall
gain and the overall QBER by using Eqs. �8� and �9�, respec-
tively. Here, we also assume that Eve only resends when she
detects ��̃0� and ��̃3� �as in strategy one�; and thus the resend-
ing probability is C1=Tr�M0B0+M3B3� /4 where Bi is from
Eq. �7�. We allow Eve to resend arbitrary states to Bob; thus
e1 can be extracted from the bottom curve of Fig. 4 for a
particular phase difference � �if the efficiency mismatch is
0.08� or computed from Eqs. �3�, �6�, and �7�, and the corre-
sponding equations for L3 and B3.

TABLE I. Simulation parameters. Here, � is the channel loss
coefficient, �Bob is the detector efficiency, edetector is the detection
error probability, pdark is the dark count rate, and f is the error
correction inefficiency �see Appendix B for details�.

� �dB/km� �Bob edetector pdark f
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FIG. 8. Key generation rates at various distances. We use the
QKD model parameters shown in Table I to compute the overall
gain and the overall QBER from Eqs. �8� and �9�. The key genera-
tion rates are then computed using Eq. �B14� with three B steps for
various distances. Here, the key rates should be zero �since Eve
launches an intercept-and-resend attack� but are positive in the
range 0.12���0.75, meaning that the keys generated in this range
are insecure.
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We assume Alice and Bob use only the result of GLLP to
ensure security and no B step is used. We use the QKD
model parameters shown in Table I and 
=8�10−4 to com-
pute the overall gain and the overall QBER for this strategy.
We then compute the key generation rates using Eq. �B14�
for a few cases, and the result is tabulated in Table. II. Here,
we assume that when Eve detects ��̃0� ���̃3��, she time shifts
the signal to arrive at Bob at time t0 �t1� as in Fig. 6 and we
assume symmetry between the two detectors such that
�0�t0�=�1�t1�=�Bob and �1�t0�=�0�t1�, where �i�t� is the ef-
ficiency of detector i at time t. As shown in the table, the key
generation rates are positive but should be zero since this
strategy is an intercept-and-resend attack strategy �18�.
Therefore, the final key Alice and Bob distill is compromised
by Eve. Note that the key generation rates of this strategy are
higher than that of strategy one. One drawback of this strat-
egy is that the overall gain and the overall QBER induced by
Eve may be quite different from what Alice and Bob may
expect in a normal situation. To overcome this, we discuss a
third strategy below that matches the induced gain and
QBER with the normal operating values. Nevertheless, with
this example, we have demonstrated that our phase-
remapping attack in combination with the fake signals attack
can compromise the security of the QKD system if Alice and
Bob are unaware of the attack strategy.

C. Strategy three

In this strategy, Eve also performs a combination of the
phase-remapping attack and the fake signals attack �15� as in
strategy two, but here she adjusts the parameters of her at-
tack to match the overall gain and the overall QBER with
what Alice and Bob would expect in normal cases. Alice and
Bob may have some idea on the parameters of their system
and may have certain expectations on the overall gain and
QBER. Thus, Eve needs to adjust her attack in order to simu-
late a normal situation. She does this by altering the dark
count probability of Bob’s detectors �as stated before, we
assume that the detectors are under Eve’s control� and chang-
ing the resending probability in the intercept-and-resend at-
tack. Other than these two adjustments, strategy three is oth-

erwise the same as strategy two. In this strategy, the overall
gain and overall QBER are, respectively,

Qsignal = Y0e−
 + ��C1 + �1 − �C1�Y0��1 − e−
� , �10�

Esignal = �Y0e−
/2 + ��C1e1 + �1 − �C1�Y0/2��1 − e−
��/Qsignal,

�11�

where Y0 is the dark count probability Eve chooses �which
can be different from the normal dark count probability pdark�
and 0���1 is the resending probability for conclusive re-
sults. The other variables are the same as in strategy two.

We assume that the normal situation is produced by the
QKD model parameters shown in Table I and 
=8�10−4.
From these parameters, the normal operating values of the
overall QBER and the overall gain can be computed from
Eqs. �B12� and �B13�. Eve then chooses the phase difference
�, the dark count probability Y0, and the resending probabil-
ity � for a fixed efficiency mismatch to match the overall
QBER induced by her �Eq. �8�� and the overall gain induced
by her �Eq. �9�� within 10% of the normal operating values.
We assume that Eve does not interfere with the detection
error probability; thus, we still have edetector=0 as in the nor-
mal situation and the QBER of the single-photon signals, e1,
is computed as in strategy two. We show in Table III two
instances in which Eve’s combination of the phase-
remapping attack and the fake signals attack achieves posi-
tive key generation rates.

In both instances, Alice and Bob simply use the postpro-
cessing steps from GLLP and no B step to distill secret keys
as described earlier, with the QKD model parameters shown
in Table I and 
=8�10−4. In this example, both the normal
situation and the hostile situation look similar to Alice and
Bob. The normal situation arises when Eve is not present
while the hostile situation arises when Eve launches this at-
tack strategy. Since both situations give rise to the same
overall QBER and overall gain, Alice and Bob are unaware
of which situation they are in and thus distill keys at the
same key generation rate in both situations. However, no
secret key can be generated in the hostile case, since it cor-
responds to an entanglement-breaking channel �18�. Thus, if

TABLE II. Key generation rates for strategy two, in which Eve
combines the phase-remapping attack with a fake signals attack.
The first column is the efficiency mismatch of the two detectors
�related to the fake signals attack�; the second column is the phase
difference between the states sent by Alice chosen to maximize the
key generation rate �related to the phase-remapping attack�; the
third column is the key generation rate for the phase difference in
the second column. The rates in brackets correspond to the case of
only the fake signals attack without the phase-remapping attack.
Note that there is some improvement in the key rates by combining
both attacks. We used a mean photon number of 
=8�10−4.

�0�t0� /�1�t0� � Key rate

0.0667 1.02 8.921�10−7 �2.610�10−7�
0.04 1.31 1.622�10−6 �1.457�10−6�
0.03 1.41 2.038�10−6 �1.968�10−6�

TABLE III. Two situations in which Eve’s attack produces the
same overall gain and overall QBER as that produced in a normal
situation described by the parameters in Table I. Here, Eve fine
tunes her attack by adjusting the phase difference �, the dark count
probability Y0, and the resending probability � for some distance
and some efficiency mismatch between the two detectors. We as-
sume that Alice and Bob perform the postprocessing steps from
GLLP and no B step as described in Appendix B. The fact that the
key generation rates, computed using Eq. �B14�, are positive means
that Eve has successfully compromised the final keys. We used a
mean photon number of 
=8�10−4.

Distance �km�
�0�t0�

�1�t0�
� Y0 � Key rate

88.0 0.04 1.31 1�10−9 0.096 4.057�10−8

87.0 0.03 1.41 1.8�10−8 0.1 5.838�10−8
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Alice and Bob are unaware of the Trojan horse attack, they
may generate keys that are compromised by Eve.

Note that the values of the dark count probability Y0 in
Table III are lower than the normal value given in Table I.
While lowering the dark count probability may be difficult to
achieve in practice, Eve may realize this strategy by increas-
ing the dark count probability in the normal situation instead.
In addition, we point out that dark count probability on the
order of 10−9 has been attained experimentally �35�; thus, the
values of the dark count probability Y0 shown in Table III are
realistic. We also note that the discontinuity in Fig. 4 at �
=0 does not manifest as a problem in this attack for the
weak-coherent-state source. This is because the phase differ-
ence � is chosen to match the overall QBER and gain with
some normal operating values. In normal scenarios, � is set
to some nonzero value.

We remark that although the key generation rates in the
three examples may not be very significant, they do raise the
awareness that the Trojan horse attack we propose can be
detrimental to Alice and Bob.

VI. CONCLUSIONS

We have proposed a realistic Trojan horse attack, the
phase-remapping attack, for two-way quantum key distribu-
tion systems implementing the BB84 protocol. We have
shown that, when Alice and Bob are unaware of our attack,
there are situations in both the perfect-single-photon-source
case and the weak-coherent-state-source case that the final
key shared between them is compromised and Eve has some
information on it. Specifically, for the perfect-single-photon-
source case, when the QBER is larger than 14.6%, Alice and
Bob may distill a compromised key. For the weak-coherent-
state-source case, we have given three examples �two of
which are combined with a fake signals attack� in which the
final keys are insecure. Note that our attack is feasible with
only current technology and thus is highly practical for Eve
to implement. Therefore, it is important for Alice and Bob to
be aware of the possibility of our attack and to guard against
it by only generating a key when the QBER is low enough.

We remark that the fact that we demonstrated the insecu-
rity of a key guaranteed to be secure by some existing secu-
rity proofs does not imply that the proofs are incorrect. It is
because the Trojan horse attack we demonstrated corre-
sponds to performing operations and using information lying
outside the Hilbert space assumed in the proofs. These extra
operations and information are granted to us by the practical
implementations of the BB84 protocol. Thus, while a QKD
protocol may be unconditionally secure, a realistic imple-
mentation of it may open up security loopholes via extra
dimensions.

APPENDIX A: MINIMIZATION OF QBER

The normalized bit error rate is �cf. Eq. �3��

QBER =

�
i=0

3

�
j=0

1


jz�WiLiWi
†�jz�

�
i=0

3

�
ij=0

1


jz�WiBiWi
†�jz�

, �A1�

where Li and Bi are given in Eqs. �4� and �5� respectively,
and Wi

†Wi�Mi are the POVM elements. We want to mini-
mize QBER over the eight independent row vectors 
jz�Wi

each with two elements. At least one of the eight must be
nonzero, because otherwise all Wi would be zero and there
would be no qubits sent to Bob. Since QBER is not a sum of
eight independent ratios, i.e.,

QBER � �
i=0

3

�
j=0

1 
jz�WiLiWi
†�jz�


jz�WiBiWi
†�jz�

, �A2�

it may appear at first sight that the minimization of QBER is
not trivial. However, it turns out that we can minimize each
ratio independently and set QBER to be the smallest ratio by
assigning zeros to the other seven vectors. We show this by
the following claim:

Claim 1. Given two ratios,
a1

a2
and

b1

b2
, if

a1

a2
�

b1

b2
, then

a1

a2

�
a1+b1

a2+b2
.

Therefore, we consider separately minimizing each ratio,
which can be written as


cji�Bi
−1/2LiBi

−1/2�cji�

cji�cji�

, �A3�

where 
cji�= 
jz�WiBi
1/2 is a row vector with two elements.

The eigenvector of Bi
−1/2LiBi

−1/2 corresponding to the mini-
mum eigenvalue minimizes Eq. �A3�. The minimum eigen-
value among all i’s is the minimum QBER, which is the top
curve plotted in Fig. 4. It is not difficult to ensure that the
POVM elements satisfy �i=0

3 Wi
†Wi�I. Note that we can al-

ways scale the POVM elements �by the same factor� without
affecting the QBER. Thus, it is always possible to find a
scaling such that these POVM elements and an additional
one corresponding to sending a vacuum state to Bob add up
to identity.

APPENDIX B: REVIEW OF QUANTUM KEY
DISTRIBUTION MODEL AND KEY GENERATION

RATE FOR REALISTIC SETUPS

We first review a widely used model for realistic QKD
setup �see, e.g., Refs. �36,28��. This model is suitable for
fiber-based QKD systems. We then summarize the key gen-
eration rate from GLLP �9� and the B step �19,27,37�, for the
weak-coherent-state-source case.

Source. The source is a single-mode laser source. We as-
sume that the phase of each pulse is randomized. Thus, the
laser source emits pulses that are classical mixtures of the
photon number states with a Poisson distribution,

�
i=0

�



i!
e−
�i�
i� , �B1�

where 
 is the mean photon number.
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Transmission. The quantum channel is the optical fiber
and we quantify the loss in the optical fiber by the probabil-
ity that an input photon is lost at the end of the transmission.
Let � in dB/km be the loss coefficient of the optical fiber and
l be the fiber length in km. Then, the probability that the
input photon is not lost is equal to 10−�l/10.

Detection. We assume Bob is equipped with threshold de-
tectors. Since they are not completely efficient, there is some
chance that they do not produce a click even when there are
some photons present at the inputs. The probability that
Bob’s detector detects the presence of an input photon is
defined as Bob’s detection efficiency �Bob. Combining the
loss in the quantum channel and the inefficiency of Bob’s
detector, we arrive at the overall transmission efficiency, �. It
is the probability that a photon is detected given that one has
been sent, and is given by

� = 10−�l/10�Bob. �B2�

When the input signal contains more than one photon, the
signal is detected if at least one photon is detected. Thus, the
transmission efficiency for an n-photon signal is

�n = 1 − �1 − ��n. �B3�

When there is no input to Bob’s detector, there is a pos-
sibility that it generates a detection event. This is due to the
intrinsic detector’s dark counts, the background spray, and
the leakage from timing signals. We denote the probability of
this false detection event as the pdetector. Suppose that there
are two detectors in the system. We denote the probability of

false detection for the system as pdark=2pdetector�1− pdetector�.
When there is a double-click event, which occurs because

of dark counts or detection of a multiphoton signal, we im-
pose that Bob takes one of the bit values randomly �8,9�.
This is consistent with the so-called “squash operation” used
in the security proof of GLLP �9�.

More concretely, the security proof of GLLP assumes that
the squash operation is performed by Eve. This operation is a
mapping from a multiphoton state to a qubit state. Thus,
under this assumption, Eve always sends a qubit state to
Bob. In this paper, we directly apply the result of GLLP to
our calculations of key generation rates and therefore we
assume the squash operation without proof. We consider
two-way classical postprocessing in this paper and our
squash-operation assumption simplifies our analysis. We re-
mark that Koashi �38� has proved the security of one-way
classical post-processing type QKD for a threshold detector
model without requiring the squash-operation assumption.

Yield, QBER, gain. Let us define the yield Yn, QBER en,
and the gain Qn. The yield Yn is defined as the probability
that Bob detects a signal conditional on Alice’s n-photon
emission,

Yn � Pr�Detection by Bob�Alice sent n-photon state� .

�B4�

The yield is basically a sum of the probabilities of the error
events and the no-error events. The fraction of the error
events in the total probability is the quantum bit error rate en,

en � Pr�Bob’s result is incorrect�detection by Bob ∧ Alice sent n-photon state� . �B5�

The gain of the n-photon state is

Qn � Pr�Detection by Bob ∧ Alice sent n-photon state�
�B6�

=Yne−

n/n!. �B7�

The overall gain and the overall QBER are the weighted
averages of all the n-photon gains and QBER’s:

Qsignal = �
n=0

�

Yne−

n/n!, �B8�

Esignal =
1

Qsignal
�
n=0

�

enYne−

n/n!. �B9�

These two are parameters that Alice and Bob measure during
a QKD experiment and can be used to determine the key
generation rate �9�.

Normal situation: When Eve is not present, we assume
that signals are emitted by the weak-coherent-state source at

Alice’s side, travel through the optical fiber suffering some
loss, and reach Bob on his detectors. Under this situation, the
normal values for the yields and the QBER for BB84 states
can be obtained as

Yn = pdark�1 − �n� + �n, �B10�

en = �pdark�1 − �n�/2 + �nedetector�/Yn, �B11�

where edetector is a parameter representing the misalignment
of the detector setup. For the overall gain and the overall
QBER, their normal values are

Qsignal = pdarke
−
� + 1 − e−
�, �B12�

Esignal =
1

Qsignal
� pdarke

−
�

2
+ �1 − e−
��edetector� .

�B13�

Key generation rate. Once Alice and Bob have measured
the overall gain and the overall QBER, the key generation
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rate may be obtained by using a result in GLLP �9� as fol-
lows:

R =
1

2
rBQsignal�− f�Esignal�H2�Esignal� + ��1 − H2�ep��� ,

�B14�

where f�·� is the error correction efficiency as a function of
the QBER, H2�p�=−p log2�p�− �1− p�log2�1− p� is the bi-
nary entropy function, �=Q1 /Qsignal is the fraction of single-
photon states, ep is the phase error rate of the single-photon
states, and rB is the fraction of bits retained after B steps
�rB=1 if no B step is performed�. The factor of 1 /2 is the
fraction of bits retained after basis reconciliation for the
BB84 protocol. The first term in the bracket is related to
error correction, while the second term is related to privacy
amplification. In this equation, Q1 and ep are not directly
measured, but they may be bounded by assuming the worst-
case situation �9�. We may pessimistically assume that the
overall gain Qsignal is contributed by multiphoton signals as
much as possible, and all the errors come from single-photon
detection events, leading to Q1=Qsignal− pmulti and e1
=EsignalQsignal /Q1, where pmulti is the probability of Alice
emitting multiphoton signals. Before the postprocessing us-
ing B steps �which we describe next�, the phase error rate is
equal to the bit error rate for the single-photon states, i.e.,
ep=e1.

B step. Optionally, Alice and Bob may perform one or
more B steps by using two-way classical communications to
increase the achievable secure distance. The B step was ana-

lyzed in Ref. �19� for the single-photon source and in Refs.
�27,37� for the weak coherent-state source. Each B step in-
volves the following operations: Alice and Bob first ran-
domly pair up their bits, say x1 ,x2 on Alice’s side and the
corresponding y1 ,y2 on Bob’s side. They compute the pari-
ties of the pairs, x1 � x2 and y1 � y2, and publicly compare
them. If both parities are the same, they keep x1 and y1 and
discard x2 and y2; otherwise, they discard x1, x2, y1, and y2.
After each B step, the bit and phase error rates and the frac-
tion of the single-photon states change. We summarize the
update formulas for the changes after running one B step as
follows �27�:

�� =
�2�e1

2 + �1 − e1�2�
Esignal

2 + �1 − Esignal�2 , �B15�

Esignal� =
Esignal

2

Esignal
2 + �1 − Esignal�2 , �B16�

ep� =
2ep�1 − e1 − ep�

e1
2 + �1 − e1�2 , �B17�

e1� =
e1

2

e1
2 + �1 − e1�2 , �B18�

rB� = rB�Esignal
2 + �1 − Esignal�2�/2, �B19�

where the primed �unprimed� variables are the new �old�
values. After running some number of B steps, we may ob-
tain the key generation rate by using Eq. �B14�.
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