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Role of memory errors in quantum repeaters
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We investigate the influence of memory errors in the quantum repeater scheme for long-range quantum
communication. We show that the communication distance is limited in standard operation mode due to
memory errors resulting from unavoidable waiting times for classical signals. We show how to overcome these
limitations by (i) improving local memory and (ii) introducing two operational modes of the quantum repeater.
In both operational modes, the repeater is run blindly, i.e., without waiting for classical signals to arrive. In the
first scheme, entanglement purification protocols based on one-way classical communication are used allowing
to communicate over arbitrary distances. However, the error thresholds for noise in local control operations are
very stringent. The second scheme makes use of entanglement purification protocols with two-way classical
communication and inherits the favorable error thresholds of the repeater run in standard mode. One can
increase the possible communication distance by an order of magnitude with reasonable overhead in physical
resources. We outline the architecture of a quantum repeater that can possibly ensure intercontinental quantum

communication.
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I. INTRODUCTION

From all fields of quantum information science, quantum
communication is most likely to reach a commercial appli-
cation first. For long-distance communication one faces the
problem that quantum channels like optical fibers are noisy
and lossy, and both the output and the fidelity of the quantum
information sent decrease exponentially with distance. Since
quantum information cannot be amplified, standard tech-
niques from classical communication technology cannot di-
rectly be used to overcome this problem. In principle, quan-
tum error correction techniques can protect the quantum
information while it is sent through a channel [1]. However,
the small tolerable error rates limit the length of the channel
drastically before error correction must be applied. Hence,
one would need a large number of segments to cover a cer-
tain distance. The requirements on the quality of measure-
ments and local operations are also very stringent (107#), far
below experimentally achievable accuracy today.

Entanglement can be a resource to overcome this prob-
lem. If party A holds one part of a maximally entangled pair
of qubits, and party B the other part, quantum information
can be transferred by teleportation [2]. When these parties
are far away from each other, and channels and local opera-
tions are noisy, the problem arises how to distribute the en-
tangled pairs among them.

The quantum repeater [3,4] (see also [5-11]) is a solution
to this problem based on entanglement purification [12-19]
and entanglement swapping [2,20]. The distance L between
the parties A and B is divided into smaller segments such that
one can send parts of maximally entangled pairs through the
channel that do emerge with sufficiently high fidelity for en-
tanglement purification. Noisy local operations and measure-
ments do not allow to purify one single maximally entangled
pair from several copies, but the fidelity can be increased for
remarkably high errors in the local operations and measure-
ments on the order of percent [4]. Via entanglement swap-
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ping, segments are connected, establishing entangled pairs
over larger distances. Observe that the connection process
again decreases the fidelity such that one may connect only a
few segments before the entanglement can no longer be in-
creased by purification. The key ingredient of the quantum
repeater is to use the combination of purification and en-
tanglement swapping in a nested scheme, i.e., on different
repeater levels. After few connections are made, the resulting
pair is again purified by several copies obtained in the same
way. Then the sequence ‘“‘connection and repurification” is
repeated until one has reached the desired distance between
the parties. Most importantly, the physical and temporal re-
sources needed for the quantum repeater scale only polyno-
mially with the distance between parties A and B. The details
naturally depend on the errors, the specific purification pro-
tocol, and the repeater metaprotocol, i.e., the distribution and
number of repeater stations and their individual setup. The
repeater protocols range from the standard protocol [12,13],
where all pairs needed in the process are created initially as
an ensemble (maximal physical, minimal temporal re-
sources), over the “Innsbruck protocol” [4] (physical re-
sources scale logarithmically with the distance) to the “Har-
vard protocol” [5] with minimal physical resources (two
qubits per repeater station) but maximal temporal resources.
For practical purposes minimal physical resources are desir-
able since it is hard to control or even establish a large num-
ber of interacting quantum systems. In this light, one would
tend to prefer the last two of the protocols above.

While in previous investigations the influence of noise in
channels and in local control operations has been extensively
studied, memory errors have not been included in the analy-
sis so far. It was implicitly assumed that (almost perfect)
local memory is available by some means. If this assumption
is valid, as can, e.g., be ensured by using local encoding to
actively maintain quantum information, one obtains a scal-
able scheme that allows for quantum communication over
arbitrary distances with polynomial overhead. However, all
repeater schemes require the storage of pairs before they are
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further processed, and the influence of imperfect memory
needs to be studied. In particular, at high repeater levels
when long-distance pairs are processed, the waiting times
can be significant. Estimated times to establish an entangled
pair over, say, intercontinental distances are of the order of
the decoherence times of the best known memory systems
today, making the consideration of memory errors a neces-
sity. In this paper we address the problem of memory errors
in quantum repeaters. Specifically we investigate (i) the lim-
its of the quantum repeater with memory errors when run in
standard mode (error detection mode), where we show that
memory errors lead to a limited communication distance; (ii)
ways to reduce or overcome memory errors by using deco-
herence free subspaces or local encoding for storage; (iii) an
operational mode for the quantum repeater, the error correc-
tion mode, which in principle allows one to overcome the
limitations of memory errors, however, suffers from low er-
ror thresholds; (iv) a blind operation mode and hybrid archi-
tectures that allow one to increase the possible communica-
tion distance by an order of magnitude, without changing
favorable error thresholds.

The paper is organized as follows. In the next section we
briefly describe the building blocks of a quantum repeater,
entanglement purification, and swapping. We sketch different
repeater protocols and present the error model we will use. In
Sec. IIT we apply the error model, especially memory errors,
to the quantum repeater. We derive the limits for communi-
cation distance when no memory-enhancing techniques are
used and discuss error thresholds. As a possible way to over-
come the limitations due to memory errors, a direct solution
is to reduce or even eliminate them, which we discuss in Sec.
IV. If no perfect quantum memory is available, we show in
Sec. V that blind mode is an alternative way to relax the
limitations of the quantum repeater. We then outline possible
architectures for a quantum repeater in Sec. VI, and summa-
rize our results in Sec. VIL.

II. BASIC PRINCIPLES

We start with some notations, present purification proto-
cols, entanglement swapping and repeater protocols for both
a repeater in error detection as well as in error correction
mode [21], and introduce the error model we are going to
use.

A. Notation

Throughout the paper we will speak of two spatially sepa-
rated parties A and B, who share certain entangled pairs of

qubits between them. We denote these pairs by
ABy,...,ANBy, i.e., A holds the qubits Ay, ...,Ay, while B
holds By, ...,By. Whenever it is not clear from the context

on which system an operator is acting, we specify it with a
sub or superscript. An operation is called local if it acts only
on A’s or only on B’s qubits, e.g 142 s a local
> 25 Y eNoT
controlled-NOT (CNOT) operation with qubit A; as control and
A, as target [22]. By Py, we denote a projector onto the states
|®). Furthermore, o; denote the Pauli operators, explicitly,

o0o=1, oy=0,, 0,=0,, 03=0,. The Bell states are denoted by
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|®)=1® 0| ®*) with [D*)=1/12(]00)+|11)).

Instead of the usual Bell states we often take their graph
state equivalents [23], which we call graph Bell states. The
graph state basis for two qubits defined in the basis |0)., |1),
(eigenbasis of the Pauli o, operator) and in the basis |0),, 1),
(eigenbasis of the Pauli o, operator) is

|00) == 2712(|00),, + |11),,),

01)¢ = 27"2(|01)., + [10).,),

[10)g = 2712(|00),, - |11),,),

[11)g = 27"2(|01),, — | 10}.,).

Expressions like |00),, mean |0),® |0),. The graph state basis
is related to the standard Bell basis |k;,k,)z by a Hadamard
operation in B. When the basis is clear from the context we
will omit the label G. If such a state is, for example, the first
pair shared between A and B we write |00)?;'B I

We will consider density matrices that are diagonal in the
graph state basis,

1

> N lknka)k,
kyky=0

and we will sometimes write p=2,1(1,k2=0 N, iy Pk, With a
projector

Py k, = ki ko) ko

We denote by (m;,m,) a possible shift of the basis, i.e. a
permutation of the basis vectors. That is,

E Nyl Kt © 1y ko @ mo)ky @ my,

ky.ky

where @ will always mean addition modulo 2. We remark
that, without loss of generality, any density matrix can be
brought to a graph-diagonal form without changing the diag-
onal coefficients by applying appropriate sequences of
(probabilistic) local operations. To be precise, these opera-
tions correspond to the stabilizing operators of the given
graph, in our case K|,K,,K|K,,1 with K;=0,® 0,, K,=0,
® o, [24]. Permutations of basis vectors can be achieved by
local unitary operations of the form ¢”'"'¢”2. Note that the
state p results from sending one part of a graph state |k;,ky)
through a Pauli-diagonal channel

3

Elp) = E Pioipo;,
i=0

with po=Ngo, P1=N10, P2=N11, and p3=N;.
Later, we will use the Werner states [25]

pw(x) = x|00)5{00| + (1 — x)/41

= Fl00)(00] + (1 - F)/3 X liptifl (1)
i,j#0,0

with F=(3x+1)/4, which are uniquely defined by the quan-
tity F, the fidelity, whereas more general graph diagonal
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states are usually only fully specified by all diagonal coeffi-
cients. We call the largest of these the fidelity, and we will
often omit the other coefficients in the discussion. This sim-
plification is justified since the purification protocol we will
use produces states close to particular graph diagonal states,
so called binary mixtures \gp|00)5{00| +X0|10)5(10|. Here,
Nio=1—-Ng such that binary mixtures are also specified by
only one coefficient.

B. Entanglement purification

Entanglement purification allows one to produce from
several noisy copies of an entangled state a few copies with
high fidelity by means of local operations and classical com-
munication. For perfect operations, the fidelity can, in prin-
ciple, be brought arbitrarily close to unity. However, many
purification steps are required for nearly perfect pairs, so
that, in practice, only some finite fidelity is achievable (“fi-
nite” meaning smaller than one). If the local operations re-
quired in the purification process are noisy themselves, then
even in principle no perfect pairs can be obtained. At this
stage, what matters to us is that in practice no protocol will
produce perfect, maximally entangled pairs. Besides the
maximal fidelity we can reach, there is also some minimal
fidelity we need for the purification process. This minimal
fidelity depends on the protocol we use for the purification,
and it is called the purification threshold.

A number of different protocols exist, which differ in their
purification range (i.e., the set of states they can purify), the
efficiency, and the number of copies of the states they oper-
ate on [24]. We present two-way entanglement purification,
i.e., a purification protocol using two-way classical commu-
nication, namely the DEJIMPS protocol [13], and also one-way
entanglement purification based on Calderbank-Shor-Steane
codes.

1. Two-way entanglement purification

We take a recurrence protocol for purification, where we
consider the DEJMPS protocol [13] since it has a very good
efficiency in terms of convergence speed and robustness. Re-
markably, the fidelity of states can be significantly increased
even if errors in operations and measurements are on the
order of percent. For the moment, however, we consider per-
fect operations and measurements, and generalize the formu-
las later when we will have introduced our error model. The
protocol operates on two entangled pairs, and can be viewed
as a generalization of the recurrence entanglement purifica-
tion protocol introduced in [12]. We slightly modify the pro-
tocol as compared to the original work such that it purifies
graph diagonal Bell states rather than Bell states. This corre-
sponds, however, to a simple change of local basis which
does not modify the protocol as such. The protocol consists
of the following steps:

(i) depolarization of the density matrix to graph diagonal
form; in fact this step need not be executed since off-
diagonal elements do not influence the change in the diago-
nal elements and converge to zero upon iteration of the pro-
tocol;
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(ii) local basis change [0),— 5(|0),—i[1),), |1),— 5(]1),
=i[0).) in A and [0),— 5(0),+i[1),)., [1),— 5 (| 1),+1]0),) in
B; the effect of this basis change on two graph Bell states is,
omitting an irrelevant phase factor,

b1 x0)[y1,y2) = X120 @ x2)[y 1,31 © yo):

(iii) appgcation of bilateral local CNOT operations
USIA2 @ USE P, such that

b1 x0)[y1.y2) = X1 @ y)lxa.y1.x0 © yo):

(iv) local measurement of qubit A, [B,] in the eigenbasis
of o, [o,] with corresponding result (—=1)%2 [(—1)%], where
6.6 €{0,1}

(v) decision: keep the state p, p, if the measurement re-
sults indicate a successful purification round. This decision
requires two-way classical communication between the par-
ties A and B.

We let the protocol act on the tensor product of two graph
diagonal states py g, Pa,B, with coefficients Nk, and w; ;o
respectively, which have bases shifted by (m;,m,) and
(n;,n,), respectively, i.e., on

1
p= 2

ky.ko.j1:j2=0

)\kl,kzlujl,jzpk]@ml,kzeamz,jl@n],jz@nz' (2)

After steps (i)—(iv), qubits A, and B, will be in the state
1

p= 2

ky:koj1:j2=0

kl,kzl'l’_/l,jz 5HBE .k @k, D) DjrOm SmyBn Dny

X Pkl@j1€BmlEBnl,kl€Bk2€Bml®m2’

where ¢ is the Kronecker delta. The condition for a success-
ful purification step relates the measurement outcomes {5, &
and the basis shifts in the following way: {, ® &=m;®m,
@n;®n,. In case this condition is fulfilled, we arrive at a
simple expression for (p,)ilvizz:)\’{piz’ namely,

1 1

!

)\i1®m1®n1,52®m1®m2 = NkEO )‘kl,k,@izﬂkleail,k,eail@iZ, 3)
=

where  N=Z; i N'=(Noo+N11) (roo+ H11) +(Nor+Nio) (tor
+u0) is a normalization constant that quantifies the prob-
ability to obtain the corresponding measurement results. The
normalization is independent of the basis shifts. While the
basis shifts do not play a role in the present discussion of the
DEJMPS protocol, they will become crucial when running the
repeater in a blind operational mode, Sec. V.

The DEIMPS map, after a successful step, always drives
the states closer to a binary mixture like M\ 00)00|s;
+X;0/10)(10|. The map is also most effective on binary mix-
tures, and least effective on Werner states p(x)=x/00){00|;
+(1-x)/41.

There are two distinct purification strategies for which we
can use the DEJMPS protocol: regular entanglement purifica-
tion and entanglement pumping.

a. Regular entanglement purification. First, we could
imagine to an ensemble consisting of several copies of some
elementary, noisy pair of qubits. Whenever we perform a
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successful purification step on two such pairs, the resulting
pair of higher fidelity goes to the next purification round,
otherwise it is discarded. In the DEJMPS map we have in this
case )\f.,’:):,u,gl'(') in every round n, and the (attractive) fixed
point of the map is a perfect graph Bell state. In practice, we
cannot do infinitely many steps to reach this fixed point, let
alone that errors are present that prevent one to approach this
fixed point even in principle. We call this purification strat-
egy “regular entanglement purification.” The drawback of
this strategy are the many qubit pairs we need to prepare and
keep ready-to-use during the process. The number of pairs is
exponentially growing with the number of purification steps
we wish to perform.

b. Entanglement pumping. Second, we can always use
identical, elementary pairs in each round to further purify the
pair we obtained from a previous successful step. If at any
time we are not successful, the whole protocol must be re-
started with two fresh elementary pairs. This strategy is
called entanglement pumping [4]. The advantage clearly is
that the physical resources (qubit pairs to be stored simulta-
neously) stay constant. We need not count elementary pairs
because they do not have to be stored but are consumed at
once. The elementary pairs can rather be recreated on de-
mand. With entanglement pumping, we have )\,('Z) * ,LLEZ), ex-
cept in the first round, and the ,u,f;:) are the same in every
round 7n in the DEIMPS map (3). Even infinite iteration will
not lead to maximally entangled pairs, but in practice (with
errors in the operations), the fixed point of the map can even
be closer to a maximally entangled pair than for the regular
entanglement purification [4]. Because one saves physical
resources at the expense of only a polynomial overhead in
time, entanglement pumping was favored in the most recent
designs of quantum repeaters [5,6]. The real drawback of
using entanglement pumping in the quantum repeater shows
up when we later include memory errors, where an—albeit
polynomial—overhead in time becomes a problem.

We remark that this is also the reason why we do not
consider nested entanglement pumping [26]. Nested en-
tanglement pumping has the same fixed point of the purifi-
cation map as regular entanglement purification. The number
of pairs grows only linearly with the nesting level at the
expense of a temporal overhead exponential in the number of
purification steps one performs on each nesting level. Al-
though the fixed point is (nearly) reached for about three
nesting levels, the additional temporal overhead make this
purification scheme unfavorable in the presence of memory
errors.

2. One-way entanglement purification

In his Ph.D. thesis [21], Aschauer introduced a general
scheme to construct entanglement purification protocols
from quantum error correction codes. In particular, for each
Calderbank-Shor-Steane (CSS) code that uses n physical qu-
bits to protect k qubits, one can construct an entanglement
purification protocol that operates on 7 initial copies of two-
qubit states and produces k purified pairs as output. As de-
scribed in [21], the purification protocols can either be run (i)
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in error correction mode or (ii) in error detection mode. In
case of (i), output pairs are kept deterministically and mea-
surements on remaining pairs are used to determine the re-
quired error correction operation. This operation mode only
requires one-way classical communication. For (ii), the in-
formation gathered in the measurement of (n—k) pairs is
used to decide whether the remaining pairs should be kept or
discarded. The ones that are kept have a higher fidelity than
before. This operational mode is the standard mode for re-
currence protocols as discussed above. Here, we will concen-
trate on (i), entanglement purification run in the error correc-
tion mode.

In the following we briefly review the work by Aschauer
[21]. We consider the situation where the sender, Alice,
wants to send quantum information to the receiver, Bob. To
this aim, Alice might either send a system, A, prepared in an
arbitrary state |W') to Bob or she might prepare a maximally
entangled state between two systems, send one to Bob and
use the other to teleport the state |[¥) to Bob. To protect the
quantum information from the errors that occur during the
transmission process, quantum error correction is used in the
first and entanglement purification in the second scenario.

In a quantum error correction protocol (we consider here
the case where the state of a single qubit is protected) Alice
prepares n auxiliary systems (denoted by A) in a state
lay, ... a,) 4, with a;€{0,1}. Then she applies the encoding
operation Uy 4, t0 A and the system A, prepared in the state
|W) and carrying the quantum information, and sends all sys-
tems to Bob. In the simplest case, where no errors occur
during the transmission, Bob receives the systems in the state
Upplar, .- a,)sW)p, He applies IJ;}B():UL’BO to decode
the quantum information and measures the auxiliary systems
in the computational basis. Finally, he will be left with a
system in the state | V).

Let us now consider an entanglement-based version of
this protocol. We make use of the fact that U, ® 15/®*),p
=1, ® UL|®*) 5 for any operator U. The idea is that Alice
prepares Bob’s system at a distance using an entangled state.
Suppose that Alice and Bob share n+1 maximally entangled
states, CI>+>§J§'|(I)+>AOBO, where A (B) denotes the first n sys-
tems of Alice (Bob), respectively, and A, (B;) denotes the
(n+1)th system of Alice (Bob). Alice applies Ug’ A, and tele-
ports the state |¥) to Bob with the help of the (n+1)th pair.
It is straightforward to verify that the remaining system is
then described by the state UB,BO|<I)+);?”1§0'J-|\I’)BO, where ;j de-
pends on Alice‘s measurement outcome. Thus, if Alice mea-
sures her auxiliary systems in the computational basis and
tells Bob the value of j, Bob can apply afo to be left with
exactly the same state as in the quantum error correction
model.

In order to include the errors that occur during the trans-
mission we describe the channel by the map &, with &,(p)
=37, pio'pa’ where 3, p,=1,p;=0 (see Sec. Il A). We in-
vestigate the case where all the errors occur independently
on each of the sent qubits. Thus, the map we consider is &
=&7"=3; pio'pa’, where i=(iy,...,i,), with i;e{0,...,3}
and p;= Pijs-sPi - In the first scenario the encoded message
is sent through this channel. Receiving the systems, Bob ap-
plies U' and measures the auxiliary systems. Alice sends Bob
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the classical information about {a,} which allows Bob to de-
termine the error syndrome with which he can correct the
error. In the second scenario one qubit of each maximally
entangled state is sent through the channel. Then the pairs
are purified to one pair which is highly entangled. This pair
is then used by Alice to teleport the state |¢) to Bob. Con-
sidering the purlﬁcatlon of the image of the map &, i.e.,
Ul =S\pic|)lidg, such that trR(PUE ))=E(P,), with
some auxiliary system R, it is stralghtforward to show that
applying entanglement purification and then teleportation is
equivalent to quantum error correction, where the message is
sent through the same channel. The minimal required fidelity
for this entanglement purification protocol, the purification
threshold, turns out to be more stringent than for two-way
classical communication [12,21] (F=0.8 as compared to F
>0.5 for a protocol using two-way classical communica-
tion). However, the advantage of error correction protocols is
that they are deterministic. Note that the one-way purifica-
tion protocols in [21] are based on the Bell |®*) state. One
could easily make them consistent with our graph basis by
applying local basis changes.

C. Entanglement swapping

Entanglement swapping [20] is the operation on two
maximally entangled qubit pairs, where a Bell measurement
is performed on one qubit of each pair with the result that the
remaining two qubits are afterward maximally entangled. If
the maximally entangled pairs are the graph Bell states A;B,
and B,C;, a Bell measurement on theélublts B, B, is, e.g.,
realized, e.g., by a CNOT-operation Usl, %2 followed by o,
measurements on qubits B, B, with outcomes (g, {3,, leav-
ing A, C; in the desired maximally entangled state up to a
local basis change that depends on the measurement out-
comes. We remark that classical communication is required
to perform a proper adjustment of the local basis at the final
state. Entanglement swapping can be viewed as a teleporta-
tion of the state of qubit B, to C;. If we assume that qubit C,;
is at some distance from A, and B,, B, are somewhere in the
middle, we will often call this swapping process a “connec-
tion” or a “link” because the goal of the quantum repeater is
to establish entanglement over larger distances, here between
parties A and C.

If both pairs are not maximally entangled, the teleporta-
tion will be that of an imperfect pair by imperfect means,
resulting in a decreased or even vanishing entanglement of
the final pair between A and C. We call this an imperfect
connection or imperfect link, and it is easy to understand that
the fidelity of a pair after L imperfect connections is decreas-
ing exponentially with L. To see this, consider nonmaximally
entangled pairs of Werner form, Eq. (1). Connecting two
such pairs by means of a Bell measurement as outlined
above results in a state that is diagonal in the graph state
basis, and has a reduced fidelity. After depolarization of the
resulting state and performing the required basis change de-
pending on the measurement outcome one obtains again a
Werner state py(x’) with x'=x?, i.e., the fidelity F’=(3x’
+1)/4 is reduced quadratically. The connectlon of L pairs
yields x’ =xL ie., an exponential decrease with L.

PHYSICAL REVIEW A 75, 032310 (2007)

If we consider two graph diagonal pairs of the form Eq.
(2), the resulting pair after the Bell measurement has coeffi-
cients

1

> Ny kyoiMh kyr (4

!
)\il ©mOn O Lp i ®MyOny S Lp,
ky.kp=0

where {p, {3, denote the outcomes of the Bell measurements
leading to a permutation of the output vector (which could be
undone by performing appropriate local unitary operations of
the form 0"7310'{32) Again, the resulting state is graph diago-
nal, but the basis is shifted by (m,;®n, ® {g,,m, Dny® Lp,),

an expression that depends on the initial basis shifts and the
measurement outcomes. As in the purification protocol, these
random basis shifts do not matter because one simply can
keep track of them without the need to actually correct them.
In fact, the same sequences of operations (i.e., the same pro-
tocol for entanglement swapping) can be applied, only the
basis of the resulting density matrix changes.

The scaling of the fidelity with the number of simulta-
neous links becomes even worse with imperfect operations,
which we have not considered yet. We will describe the map
resulting from imperfect connections later after introducing
our error model. For the moment we have seen that even
with perfect local operations we could only connect a few
pairs before the entanglement would vanish. This is where
the quantum repeater comes into play, whose repeater proto-
col determines where to interrupt the connection process and
to repurify the involved states. We turn to repeater protocols
in the following.

D. Repeater protocols

The repeater protocol governs which purification protocol
to use (e.g., DEJMPS), which purification strategy (regular;
pumping), and which “geometry.” By geometry we mean
where to place repeater stations and with which resources to
equip them depending on the purification protocol, the puri-
fication strategy, and the linking strategy, i.e., how many
stations to link after one purification round is complete. We
will describe some repeater protocols with two-way purifica-
tion protocols that have been developed to demonstrate func-
tionality of the quantum repeater (and which are not opti-
mized for any specific physical implementation).

1. Standard repeater protocol

The original repeater protocol [12,13] uses regular en-
tanglement purification where all required pairs are stored in
parallel and the number of purification steps on each level is
constant, say M. The total distance is divided into N=2"
segments, and after each purification round two segments
will be connected such that we have n repeater levels. The
time for the completion of the whole repeater process is
M(2™!'~1) in units of the time we need for the first purifi-
cation step, and we have neglected gate operation times and
the times we need for connections. While the total time is
already determined by the standard repeater protocol, the
physical resources depend on the initial, elementary pairs,
the purification protocol, and the errors. In this scheme the
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physical resources are very demanding since all pairs ever
used in the process are created right at the beginning and the
required resources (i.e., total number of pairs) are given by
R=(M+1)". Despite the fact the required resources (i.e., par-
allel channels or pairs to be stored) grow only polynomially
with the distance, since R can be rewritten as R=N©°g M+l
the overhead can be substantial.

2. Innsbruck protocol

The Innsbruck protocol [4] is based on entanglement
pumping using the DEJMPS-purification protocol. As in the
standard repeater protocol the total distance is divided into
N=2" segments. On the lowest repeater level, elementary
pairs are purified, and once they have reached some suffi-
ciently high “working” fidelity, always two adjacent pairs are
connected throughout the chain. The resulting pairs of lower
fidelity must be stored, so every second repeater station
needs an extra qubit for storage. On the lowest level the
process of purification and connection is repeated and the
resulting low fidelity pair is used to purify the one that is
stored. Iteration leads to a high fidelity pair over twice the
initial distance. The whole scheme is repeated on higher and
higher repeater levels, and we need again extra storage qubits
on every 4™, 8 etc., repeater station. The physical resources
hence grow logarithmically with the distance. Compared
with the standard repeater protocol, the physical resources
have been drastically reduced at the expense of a polynomial
overhead in time [4]. Purification now takes place sequen-
tially, where new elementary pairs at each repeater level need
to be recreated using the same physical resources, and one
hence needs to wait until the new elementary pair arrives. In
addition, a failure in the purification process on any repeater
level means that the pair in question has to be discarded, and
the stochastic process to rebuild it must be started again from
the lowest level. Note that this means extra waiting times for
pairs on higher repeater levels that depend on the supply of
pairs from the level where the failure occurred. As pointed
out above, these waiting times become significant when we
include memory errors.

3. Harvard protocol

From a practical point of view it is desirable to use the
minimum of physical resources since many qubits are hard to
control and to store. In that respect the Harvard protocol [5],
a variant of the Innsbruck protocol, is the most advanced
since it uses the minimum possible number of two qubits at
each repeater station. This reduction of physical resources
compared to the Innsbruck protocol is possible because the
capacities of some repeater stations were not fully used in the
Innsbruck protocol, but are now fully activated by an inge-
nious setup. We will not describe this setup here in detail, but
merely note that the price for minimal resources is (a) con-
nection of up to five pairs at once (among them three el-
ementary ones) and (b) even longer waiting times for high-
level qubits in case of failure. Point (a) implies that we need
tighter error thresholds because otherwise five connections
may lead to a fidelity below the purification threshold. From
point (b) follows that the limits of the Innsbruck protocol,
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which we are going to derive when we include memory er-
rors, also hold for the Harvard protocol.

4. Protocols using purification by error correction

In principle the above protocols could also use entangle-
ment purification by error correction. But the purification
range determined in [21] is already small for protocols run in
a concatenated way, which is the equivalent of regular en-
tanglement purification in the error detection mode. An
equivalent to entanglement pumping was not discussed, but
the purification ranges would certainly be very small if not
vanishing. Memory errors would thus render both ap-
proaches useless very soon. Later, we will show that we can
get rid of the problem with memory errors for the case of a
concatenated, error correction type purification. Hence, we
will only consider the equivalent of the standard repeater
protocol later.

E. Error model and purification and connection
with imperfect means

1. Error model

We conclude the section by presenting the error model we
are going to use in the rest of the paper. We emphasize that
the results we obtain and in particular the conclusions we
draw are independent of the details of the error model, but
are rather a consequence of unavoidable waiting times when
using the quantum repeater in one of its standard operational
modes. What may, however, differ slightly are the actual
numbers, where the white noise model we assume turns out
to provide a rather conservative estimate of the noise thresh-
old, in particular when compared to situations where one
particular kind of noise (e.g., phase noise) is dominant and
much better performance and error thresholds can be ob-
tained. We model imperfect operations on two qubits x; and
X, as a mixture of perfect operations and white noise:

0, (P) = PO () + (1-p)t,  ®tr, (). (5)

ideal

where OXI’XZ’ the ideal two-qubit operation, has probability p,
and the two-qubit white noise has probability 1 —p. The mea-
surements are based on imperfect projections described by
positive operator valued measure elements Py=7|0){0|+(1
= )[1)(1] and P,=n|1)(1[+(1-7)|0)0.

Finally, we use local depolarizing channels to describe
memory errors, i.e., local white noise. On a single qubit the
depolarizing CP map reads

3

(Dp)()) = q(Dp+[1-g(0V4 2 oy poy» (6)
ky=0

with ¢g(f)=e ™" and k is the inverse decoherence time.

On a graph-diagonal, two-qubit density matrix p
=21]¢1,k2:o Nkt ko) ky kol the map is

1

(DM e D))= X [N 4+ (1= AAIP; 4 .
K ky=0

()
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Now, we rederive the DEJMPS map and entanglement swap-
ping for imperfect operations and measurements of the above
form.

2. Purification with imperfect operations and measurements

When we include the errors in operations and measure-
ments, the DEJIMPS map, Eq. (3), is modified. Intuitively it is
clear that the errors in the measurements, 7, will mix the
results of a successful step with those of an unsuccessful
step, while the errors in the operations, p, will introduce
white noise. The modified formula is

N
il ®m1®nl,i2®ml@m2

1{1-p>
=—| ——+ P2 [+ (1 - p)?]eeIobcs
N 8 a=0

1
X[27(1 - 7])]616%2@522 )\kl,kleaizﬂkleail,kleail@izeaa)-
k=0

(8)

Again, {,, & are the measurement outcomes of step (iv). The
normalization N =E,»l’,~2 N\’ represents the probability for a
successful purification step, where the criterion for success,
{H® &=m ©my,®n; D n,, also remains the same.

As before, initial basis shifts of the two pairs simply lead
to a different basis shift on the resulting pair. This fact re-
mained true because we can still commute the local basis
shifts through the Clifford operations and the Pauli errors. In
this sense, local basis shifts still only lead to a re-
interpretation of what successful measurement outcomes are.

3. Entanglement swapping with imperfect operations
and measurements

So far we have concentrated on entanglement purification.
The second part of the repeater protocols is the linking of
farther apart stations when stations in between perform (im-
perfect) entanglement swapping on two pairs of graph diag-
onal states. With the error model from above, we expect that
the measurement errors lead to an admixture of the results of
the other measurement outcomes, and that the errors in the
operations lead to an admixture of white noise. The modified
version of Eq. (4) is

N .
i1 ®m O ®Lp i, ®mySn,®{p,

I
1 _p av. a AN
==+ 2 () (1= L - )
a,b=0
1
x 2 N @i, 0a,ky@iy0bMk, ky» )
ey ky=0

where (g, {p, are still the outcomes of the Bell measure-
ment, and Vv is the logical OR, A the logical AND. Note again
that initial basis shifts of the pairs merely result in a different
basis shift of the linked pair, where the shift is now random-
ized by the measurement outcomes.
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III. LIMITS OF THE QUANTUM REPEATER

In this section we show how uncorrected errors in
memory limit the maximal distance over which entangled
pairs can be created. First, we study the repeater in standard
mode, then in error correction mode.

A. Limits of the quantum repeater in standard mode

As mentioned, the standard scheme for the quantum re-
peater uses two-way classical communication to reveal
whether purification steps have been successful or not, and
only in the first case the resulting pair is kept for further
processing. Otherwise, the process must be started anew. The
classical signal needs time to cover the distance between the
repeater stations, and this time increases on higher repeater
levels, where the stations are further apart. On higher re-
peater levels the signal time dominates by far all other times-
cales such as the gate operation time. During the time needed
for the classical communication, the quantum systems have
to be kept in some quantum memory where they are subject
to memory errors. If this quantum memory is not perfect,
there is a distance between parties A and B that cannot be
exceeded in the standard quantum repeater scheme because
during the time the classical signals need to cover this dis-
tance the fidelity of the entangled pairs drops below the pu-
rification threshold. Naturally, this maximal distance depends
on memory errors, but also on the errors and the repeater
protocol, where now protocols needing less femporal re-
sources are favored.

In previous work, repeater protocols were developed in a
kind of “bottom-up” strategy. With chosen error models (ex-
cept memory errors) and purification protocols one created a
certain base module that ensured the functionality of purifi-
cation and entanglement swapping, and made sure that this
module could be repeated on higher levels with polynomial
scaling of time and physical resources. One can keep this
point of view when one includes strategies to reduce or
eliminate memory errors. This will be discussed in Sec. IV.
On the other hand, when memory errors are present, then the
maximal distance is a constraint and it is more natural to
adopt a “top-down” approach. Given a distance between the
parties A and B the question is, can we reach it and what
resources does it cost us?

Our goal in this section is to determine the maximal dis-
tance that different repeater protocols can achieve. As a first
step, we look at the purification range of the DEJMPS protocol
on different repeater levels. We will assume throughout that
the distance between two repeater stations is 10 km, such
that a classical signal needs 0.333X 107 s to travel. Further,
each higher repeater level doubles this distance and hence
also the signal time. We include all errors presented in the
last section into the analysis of the purification range. In a
second step, we simulate the full quantum repeater, where we
concentrate on the standard and Innsbruck protocol having in
mind that the Harvard protocol cannot perform better than
the Innsbruck protocol in terms of thresholds and reachable
distance.
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1. Limits of DEJMPS purification protocol on different
repeater levels

In the standard schemes we must wait for the classical
signals to cover the distance between the repeater stations in
question before we can do the next purification step. We
want to determine the purification range of the DEIMPS map,
Eq. (8), on different repeater levels when memory errors are
present. The purification range lies between a lower fixed
point of this map [27], which we call the purification thresh-
old, and some upper fixed point.

The purification range of this map is hard to determine
analytically. For fixed parameters, a numerical analysis is
straightforward, and can be used to analyze the performance
of the protocol and in particular the influence of memory
errors. Note that we are not considering the whole repeater in
the following, but isolated repeater levels. To determine the
purification range on some level we iterate the map several
times (strictly speaking one would need an infinite number of
times). Between each application of the map we let the in-
volved states decohere for a certain amount of time. We also
choose some initial state, and the purification threshold de-
pends on that state. For regular entanglement purification,
the upper fixed point of the map is independent of the initial
state, while for entanglement pumping it strongly depends on
the initial state.

Here, we do a general treatment of the quantum repeater,
and hence we do not use parameters of any specific, physical
setup. Since we would like to obtain tolerable errors for local
operations and measurements on the order of percent we
choose p=7=0.99. As coherence time we assume k~'=1s.
The coherence time has a strong influence on the purification
range and even more on the whole quantum repeater, and we
will demonstrate this fact in the discussion of the repeater.
With repeater stations that are about 10 km apart, such that
the signal time on repeater level 1 is #,=0.333 X 10~ s, the
waiting time for a signal on the nth level is 2"~ X 1, since we
assume that each level doubles the distance. The memory
error, Eq. (7), will hence act for at least a time 2"~' X ¢, on
the nth repeater level between every purification step. We
neglect gate operation times that, on higher levels, are domi-
nated by the classical signal times. To test the purification
ranges of the DEJMPS map on different repeater levels we are
going to use this minimal waiting time.

As initial states for the DEIMPS protocol we take Werner
states py(x), Eq. (1), on each repeater level. We make this
choice here and in the rest of the section, because we want to
stay consistent with our error model, i.e., we also assume the
channels through which we establish pairs to be subjected to
white noise processes. Usually this is not true, e.g., in optical
fibers we find a dominance of dephasing noise, but it is the
worst choice we can make for the DEJMPS protocol, so we are
definitely not being overoptimistic. Note that any noise
model for channels can be brought to white noise form with-
out changing the channel fidelity [28].

In Table I we give purification regimes for different re-
peater levels. The second column lists the purification thresh-
old for regular entanglement purification. The third column
gives the maximal reachable fidelity in this case, whereas in
the fourth column we give the maximal reachable fidelity
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TABLE 1. Purification regimes. The first column displays the
repeater level where we assume a doubling of distance with each
level. The second column contains the lowest possible fidelities of
Werner states that can still be purified and the third column contains
the fidelity to which they can be purified. The last column shows the
maximal achievable fidelities of states that are purified by entangle-
ment pumping with Werner states of fidelity 0.8.

Repeater Max. fidelity
level Min. fidelity Max. fidelity (pumping)
1 0.5276 0.985870 0.882761
2 0.5276 0.985778 0.882689
3 0.5278 0.985595 0.882545
4 0.5280 0.985227 0.882257
5 0.5284 0.984491 0.881682
6 0.5292 0.983017 0.875948
7 0.5310 0.980056 0.878236
8 0.5344 0.974090 0.873666
9 0.5417 0.961958 0.864609
10 0.5575 0.936728 0.846823
11 0.5965 0.880294 0.812544
12

using entanglement pumping with initial Werner states of
fidelity 0.8. Naturally the data will vary if one inserts the
actual parameters of some physical setup, but there will al-
ways be some maximal distance, which, with the chosen
parameters, lies between repeater level 11 and 12, corre-
sponding to about 10 000—20 000 km between the most re-
mote stations. That the maximal distance corresponds to
these repeater levels is intuitively clear, since the signal time
on the 12th level is 2! X1,~0.07 s which begins to ap-
proach the order of the decoherence time x!'=1s. The
maximal distance will go down drastically for a repeater us-
ing the Innsbruck protocol (or other qubit-saving but time-
consuming) protocols. But this distance will also go down
for the standard repeater protocol when there are only a finite
number of purification steps and imperfect links between re-
peater stations.

When we relate these results to the whole quantum re-
peater we realize the following.

(a) The standard repeater protocol uses regular entangle-
ment purification, but only a few steps on each level as op-
posed to the infinitely many steps we apply to determine the
purification range. Hence, there will be a dependence on the
initial, lowest level state. But this dependence is weak and
becomes less and less significant on higher levels, where
more and more purification steps have been executed. Since
the upper fixed point of the purification map for regular en-
tanglement purification is independent of the initial state it
translates into a general upper bound for the maximal reach-
able fidelity of any repeater run in error detection mode—
with the exception of blind operation, see Sec. V.

(b) Repeater protocols based on entanglement pumping,
e.g., the Innsbruck protocol, start with some initial state on
the lowest level, and, again, the dependence on that initial
state becomes weaker on higher levels. Note, however, that
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TABLE II. Quantum repeater with standard repeater protocol
and operational and memory errors included. For the parameters of
errors and initial states see the text. The first column displays the
repeater level. Level 1 corresponds to about 10 km, and we as-
sumed a doubling of distance with each level. The second column
contains the resources, i.e., the qubit pairs, needed to reach the
corresponding level. The values in the third column are the fidelities
we obtain on these levels.

Repeater level Resources Max. fidelity
1 15 0.956246
2 151 0.981122
3 1480 0.983974
4 1.44 % 10% 0.983830
5 1.40 % 10° 0.983086
6 1.37 X 10° 0.981557
7 1.36 X 107 0.978481
8 1.36 X 108 0.972266
9 1.42x10° 0.959568
10 1.61x10'0 0.932962
11 2.19x 10! 0.873666
12

in the repeater process the DEJIMPS map drives the states
closer to binary mixtures, on which it afterward operates
more efficiently. That is, higher repeater levels get states
close to binary mixtures as their initial pumping states. The
situation can be completely different when we determine the
fixed points of the purification map and always use the same
initial pumping state that is far from a binary mixture and
closer to Werner states. Hence, these fixed points do not say
much about the repeater, but they still illustrate the influence
of the memory errors in a simple way.

2. Maximal distance of different repeater protocols

Now we have assembled all tools to analyze the quantum
repeater operated in error detection mode with different re-
peater protocols. We do not simulate the repeater, but use the
success probabilities of the purification steps to estimate the
physical or temporal resources we need. In this way we ob-
tain average values for the performance of the repeater and
do not explore the worst cases when the purification on some
level fails unusually many times.

For the standard repeater protocol where all pairs are ini-
tially prepared and then processed in parallel we expect to
get a maximal distance close to the one where purification is
no longer possible (see Table I). On the one hand, there is the
advantage that purified pairs from lower levels are already
closer to a binary mixture such that the purification threshold
is better than for Werner states. On the other hand, the im-
perfect linking of pairs is additionally decreasing the fidelity.
With the same choices for the parameters as above, and ex-
ecuting three purification steps on each level, we obtain
Table II showing the repeater levels, the resources (qubit
pairs) needed, and the maximal fidelity we reach. The re-
sources are easy to compute. Let pl[.l] be the probability to
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FIG. 1. (Color online) Maximal repeater level and fidelity F as
function of the operational and measurement errors (1-p=1-17).
The distance on repeater level 1 is 10 km; every level (L2 to L12)
doubles this distance. Dark lines have decoherence time « '=1 s,
light lines have x~'=0.1s. Solid lines are a lower bound on the
maximal distance for a repeater run with the Innsbruck protocol and
with initial Werner states of fidelity 0.8 on level 1. Dashed lines
show the limits of the purification map, which are an upper bound
on any repeater run in error detection mode (with the exception of
blind mode, Sec. V). For a more detailed discussion see text.

succeed in the ith purification step on the /th repeater level.
These probabilities correspond to the normalization factor in
the DEJMPS map, Eq. (8). On average we need 2/ pl[.l] pairs to
get one purified pair for round i+ 1. For three steps, we need
23/ H?: 1 pl[.l] pairs on level /, and for the whole repeater with n
levels we need 2*/(IT}_ 112, pgl]) qubit pairs. We see that the
maximal distance corresponds to repeater level 11, i.e., about
219 10 km= 10* km where we get a fidelity of about 0.87.
This distance is intercontinental, but the resources required
are ridiculously high (hundreds of billions), and no optimi-
zation can change this order of magnitude significantly.

The Innsbruck protocol, which uses entanglement pump-
ing for the purification, will profit even more from the fact
that the states used to pump are close to binary mixtures on
higher levels as compared to the pumping with Werner states
(worst case, see Table I). However, the protocol saves physi-
cal resources (logarithmic scaling with distance) at the ex-
pense of polynomial temporal overhead [4]. This means that
pairs on higher levels do not only have to wait for the clas-
sical signals that determine whether they have undergone a
successful purification step, but also for all lower levels to
produce a pair they can be purified with. While the temporal
resources, the waiting times, scale polynomially with dis-
tance, any waiting time enters in the exponent of the deco-
herence map, Eq. (7), so this poses a severe restriction on the
maximal distance.

In Fig. 1 we plotted the error rates (1 —p)=(1-7) against
the maximal repeater level (L1 to L6, and L1 to L10, respec-
tively) and the maximal fidelity F thereon for the Innsbruck
protocol (solid curves). The upper curve (dark, solid) corre-
sponds to a decoherence time k'=1s, the lower to «!
=0.1 s (light, solid). The initial states were Werner states of
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fidelity 0.8. Before we go into details, let us examine the key
features of these curves. (a) On the left, we are in a regime
that is dominated by the errors in operations (1 —p) and mea-
surements (1— 1), where we set p= 7 for convenience. In this
regime, a decrease in the error rate quickly leads to higher
repeater levels that we can reach. (b) On the right, where the
errors are already small, the curve is dominated almost en-
tirely by the decoherence time «~!. Naturally, a larger deco-
herence time allows for higher maximal repeater levels. In
this regime we can decrease the error rates by orders of mag-
nitude and still gain almost nothing. Note, however, that
once the error rates are below 107 other schemes (concat-
enated CSS codes, quantum repeater in error correction
mode) become available.

In the following we explain the details of the simulation
and rules under which the plot was created. First, we esti-
mated the waiting times in a conservative way. The waiting
time of a qubit pair on some repeater level is the time this
pair has to wait either until the classical signal arrives telling
us whether a purification step was successful, or until the
lower levels have produced the next pair for purification
(whichever takes longer). In our conservative estimate we
simply add both times, that is, we wait until we get the
signal, then start to build up a new pair. Decoherence affects
the qubit pairs during these waiting times. With our conser-
vative estimate we establish a lower bound on the maximally
reachable distance and fidelity telling us that we can expect
to reach these levels with certainty for the Innsbruck proto-
col. Better estimates of the waiting times will shift the solid
curves upward, but not very much: We usually gain at most
one level with a better estimate. When we change the initial
state on the lowest level (from the Werner states with fidelity
0.8 we used) we affect the curves only slightly. A higher
fidelity for the initial Werner state (or a shape closer to a
binary mixture) shifts the curves upward, and the difference
becomes smaller in the region where the decoherence time
dominates the plot. A lower fidelity shifts the curves down-
ward, and there will be a point where we lose the whole
curve when we drop below the purification threshold of the
first level. Second, for each point in the plot, we optimized
the number of purification steps executed on each level. We
call this the purification strategy in the following. The aim of
the optimization is to reach the highest level possible. The
rule when a jump from some level / to a level /+1 occurs is
the following. Assume that by some purification strategy X
that is optimal for level / we have reached a certain fidelity
F[l] Then we connect two pairs with this fidelity and get
some pair with reduced fidelity F (11 o0 the next level with-
out doing any purification on level [+1. If by some, usually
different, purification strategy Y, which really does purifica-
tion on level /+1, we can produce a level /+1 pair with
fidelity F ¥+1]>Fg+l], then the point in the plot moves to at
least level /+1, where we repeat the test. If we cannot find
such a Y, then the point is drawn on level / with fidelity Fgg].
Consider such a level-/ point obtained by strategy X. Another
technical restriction is that we do not allow to execute more
purification steps on level / than we did on level /-1 in the
strategy X. The reason is that once we cannot go to a higher
level, we do not have to try to save time anymore and we
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FIG. 2. (Color online) Maximal repeater level and fidelity F as
function of the operational and measurement errors (I1-p=1-17).
The distance on repeater level 1 is 10 km; every level (L2 to L10)
doubles this distance. The decoherence time is k™' =1 s, the curve is
a lower bound on the maximal distance for a repeater run with the
Innsbruck protocol and with initial Werner states of fidelity 0.9 on
level 1, showing a weak dependence on the initial fidelity as com-
pared to Fig. 1. Additionally the fidelity was required to finally be
above 0.9 on every level and all its lower levels in the repeater.

could in principle do infinitely many purification steps on
level [, but this would—while increasing the fidelity—
drastically diminish the rate with which we create pairs.
Changing the above rules would alter the jumping points and
fidelities, but for every reasonable restrictions the effects
would not matter much. We remark that similar optimization
strategies of the number of purification steps at the different
repeater levels were performed by the Harvard group [30].

The dashed lines in Fig. 1 are the fixed points of the
DEJMPS map obtained in the way discussed in Sec. [IT A 1,
where the dark, dashed line corresponds to «'=1s, and the
light, dashed line to k'=0.1 s. Take, e.g., the point at (1
—p)=0.01 in the upper dashed curve. There we find the value
of level 11 from Table I. As explained in Sec. III A 1, these
curves are absolute upper bounds on any repeater run in error
detection mode—with the exception of blind mode that we
discuss later. Generally speaking, when we run the repeater
with the standard repeater protocol, i.e., with regular en-
tanglement purification, we will be close to the upper bound;
when we run it with the Innsbruck protocol using entangle-
ment pumping, we will be close to the lower bound. Other
entanglement pumping protocols, like the Harvard protocol,
can, and likely will be, even below the lower bound valid for
the Innsbruck protocol.

When we look at the fidelities in Fig. 1 we see that they
can be very low, and we might ask whether this is not a
drawback. However, there are two things to say about this.
First, even final pairs with these low fidelities can be used,
e.g., for communication purposes. Under certain conditions,
an eavesdropper is factored out by the purification process
[31] such that the pairs, though of low fidelity, are private.
Second, we simply did not ask for pairs of higher fidelity and
optimized for distance only. If, say for quantum teleporta-
tion, we need pairs of higher fidelity, we add this requirement
to the rules. In Fig. 2 we added the rule that on any level and
on all levels below it the fidelity must finally have been
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above 0.9. For the same initial conditions compared to Fig. 1
this additional restriction would mean that the curves would
move downward. In Fig. 2 we changed the initial fidelity of
the Werner states to 0.9 to comply with the new rule, so we
cannot assert this claim by directly comparing the two plots.
However, with the changed initial fidelity we support the
claim that such a change does not have a strong influence on
the curves. This, we can check by comparing the plots.

Let us sum up the key message. If we use a repeater
protocol with entanglement pumping, which we do to avoid
unmanageably large qubit numbers, and demand tolerable
errors of one percent, then we cannot reach intercontinental
distances. From Fig. 1, at a value of 1-p=0.01, we read off
a maximal level of 5 for a decoherence time of 1 s, and 3 for
0.1 s. If we assume better initial states and better estimates of
the waiting times than our conservative ones, we might
reach, say, level 7 in the first case. But 20 10 km
=640 km is still not intercontinental. There are two ways to
overcome this problem: Trivially, one can try to improve the
error rates or the decoherence time (see Sec. IV). One
reaches intercontinental distances, e.g., for a decoherence
time of 1 s and error rates increased by one order of magni-
tude, namely 0.001. Second, one can combine protocols. On
higher levels one can, e.g., switch from the Innsbruck proto-
col to the standard repeater protocol at the expense of larger
physical resources. We will come back to the question of
such repeater architectures in a later section.

Note that decreasing the errors by another order of mag-
nitude, to 10™*, does not give us much further advantage.
However, at this error rate different strategies become avail-
able, and we will now turn to one of these, the repeater in
error correction mode.

B. Limits of the quantum repeater in error correction mode

In error correction mode, the repeater is limited both by
the memory errors and the very stringent thresholds for op-
eration fidelities. The first limit can be completely removed
(see Sec. V) and we discuss it only shortly. The second limit
remains, and we present the results for thresholds below.

1. Limits by memory errors

If we use purification via error correction in some repeater
protocol instead of purification via error detection we still
have to wait for the classical one-way signal to arrive in
order to know which correction operation to apply. Concern-
ing waiting times during which memory errors occur we gain
nothing in this way. On the contrary, since purification
ranges are much smaller than for error detection schemes
[21], we have the following situation. We need higher fideli-
ties in operations and measurements (at least 10™) and are
still sooner out of the game than in the error detection re-
peater protocols. This seems like a lose-lose situation, but we
will show in Sec. V that we can overcome the problem of
waiting times completely for a repeater in (concatenated) er-
ror correction mode, while this is not true for a repeater in
error detection mode. For the discussion of threshold limits
we will hence already assume that memory errors are absent,
or, more precisely, absorbed into lowered operation fidelities.
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2. Threshold limits

Even when memory errors do not have to be taken into
account explicitly, the threshold limits of operation and mea-
surement fidelities for the whole repeater must be derived
from the thresholds for entanglement purification and con-
nection. As pointed out in Sec. II B 2, one can construct en-
tanglement purification protocols from CSS codes using only
one-way classical communication (i.e. the protocols run in
error correction mode). Transmitting several copies of an en-
tangled state through noisy channels and purifying them us-
ing a single step of such an entanglement purification proto-
col results in a single copy with increased fidelity, which can
then be used to transmit quantum information via teleporta-
tion. As shown in Sec. II B 2, this procedure is in fact
equivalent to encoding quantum information into several qu-
bits using this CSS code, transmitting the encoded state
through the noisy channel and performing error correction
(decoding) at the receiver station.

If we perform several purification steps, i.e., use output
states of the previous purification round as input states for
the next purification round, we can establish a similar
equivalence, this time to concatenated error correction CSS
codes. The number of purification steps corresponds to the
number of concatenation levels of the code. This equivalence
also holds when taking noise (of the form we consider here)
in local control operations into account. As a consequence,
entanglement purification protocols in error correction mode
and quantum error correction (QEC) schemes have the same
thresholds with respect to tolerable channel noise and noise
in local control operations. In particular, thresholds for toler-
able noise in local control operations for QEC have been
estimated to be of the order of 107%, leading to the same
threshold for the corresponding one-way entanglement puri-
fication protocols. This number has to be compared to a tol-
erable noise of the order of several percent for entanglement
purification protocols with two-way classical communica-
tion, i.e., run in error detection mode. Aschauer [21] explic-
itly investigated the performance of entanglement purifica-
tion protocols constructed from specific CSS codes in the
presence of noisy local control operations for a simplified
error model. He finds that the threshold for noise in local
control operations (in his error model) is almost ten percent
when using two-way classical communication, while it is of
the order of 0.5 percent for one-way purification protocols.
Also the tolerable channel noise (i.e., minimal required fidel-
ity) is significantly lower for one-way purification protocols
as compared to two-way protocols.

Notice that thresholds for entanglement purification, to-
gether with the influence of noise on the connection process,
determine the maximal length of the elementary segments in
the quantum repeater, and also the threshold for the total
repeater protocol. This threshold is even more stringent than
the threshold for entanglement purification. In particular,
when using one-way entanglement purification protocols,
one needs to use elementary segments with smaller distance
(i.e., more repeater stations), and the threshold for the re-
peater protocol will be significantly more stringent (by a fac-
tor of about 20-100) as compared to thresholds for the quan-
tum repeater based on two-way entanglement purification.
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We finally remark that the equivalence between entangle-
ment purification protocols and QEC schemes based on CSS
codes carries over to the whole repeater protocol, where also
entanglement swapping is involved. It turns out that estab-
lishing an entangled pair using the repeater protocol, i.e., by
a nested sequence of entanglement purification and entangle-
ment swapping operations, and using the pair to teleport an
unknown quantum state is in fact equivalent to transmitting
the quantum state in an encoded form through the noisy
channel using a specific concatenated CSS code. Strictly
speaking, this equivalence only holds for noise channels
which are diagonal in the Pauli basis, however, this is exactly
the noise model we consider here. The essential property one
uses is that coding and decoding operations for CSS codes,
and hence also all involved operations in the entanglement
purification protocol, are Clifford operations. It follows that
Pauli operators can be commuted through the coding and
decoding operations as well as through the noise maps (if
they are Pauli diagonal) and simply become a different Pauli
operation corresponding to a (correctable) basis change.
These Pauli operations appear either due to different out-
comes in Bell measurements of the connection process, or
due to required correction operations after establishing the
error syndrome in a certain purification step. The communi-
cation scheme that is equivalent to the quantum repeater cor-
responds to using a concatenated CSS code. Concatenation
comes, on the one hand, from several purification steps per-
formed at a fixed repeater level, and, on the other hand, from
the concatenated scheme of the quantum repeater to establish
entangled pairs over larger and larger distances. The latter
concatenation translates to a specific way in which error cor-
rection is performed at different repeater stations. At certain
repeater stations, e.g., at the final station error correction at
all nesting levels is performed, while at intermediate repeater
stations error correction is done only up to a fixed concat-
enation level. For instance, at the second repeater station,
only error correction at the lowest concatenation level is ex-
ecuted, while at the middle repeater station (at half the dis-
tance) error correction is applied up to the second highest
concatenation level.

IV. REDUCING MEMORY ERRORS

As we have seen in the previous section, memory errors
limit the possible communication distance when using a
quantum repeater run in standard mode. The actual achiev-
able distance crucially depends on the quality of local
memory, characterized by the coherence time, as is evident,
e.g., from Fig. 1. If one aims to achieve quantum communi-
cation over some fixed distance, say intercontinental dis-
tance, then it is sufficient to ensure that quantum memories
of sufficiently high quality are available. There are various
strategies known to increase coherence times, including
quantum systems with extremely weak coupling to the envi-
ronment, decoherence free subspaces [32], dynamical deco-
herence free subspaces [33], or topologically protected quan-
tum memory [34]. Some experimental proposals for a
quantum repeater take these strategies into account [6,8,9],
where, e.g., a quantum repeater with qubits in a decoherence
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free subspace has been proposed in [6]. Coherence times of
up to 20 s have been demonstrated experimentally [35] for
qubits in decoherence free subspaces. Although coherence
times are long in this case and might be sufficient for prac-
tical purposes, they are not infinitely long, which would be
required for communication over arbitrary distance. Further
reduction of memory errors may be possible, at the price of
increased complexity and eventually reduced error thresh-
olds of the repeater protocol.

The complete elimination of the influence of memory er-
rors seems only possible when using strategies from fault
tolerant quantum error correction, where concatenated error
correction codes are used to obtain a perfect quantum
memory [36], leading to error threshold estimates of the or-
der of 1073, Notice that the problem of storage of quantum
information is less demanding than the problem of process-
ing (encoded) quantum information as it is required in fault
tolerant quantum computation. When using concatenated
CSS codes, only Clifford operations are required for storage,
and thus one might expect less stringent error thresholds. The
whole repeater protocol as such can still be applied in the
standard fashion, and the distance between repeater stations
is the same as in the case where memory errors are disre-
garded. This distance is essentially given by the minimal
required fidelity of the two-way entanglement purification
protocol. Clearly the thresholds on noisy local control opera-
tions for the whole repeater scheme are now determined by
the more stringent thresholds for quantum memory. How-
ever, not at all repeater levels perfect quantum memory is
required. At lower repeater levels, no quantum memory is
needed. At higher repeater levels, the required storage time
(and hence the required coherence time) gets larger, and high
fidelity quantum memory is needed, where the effort to pro-
duce the required fidelity increases with the repeater levels.
The complexity of the protection mechanism also increases,
and so does the requirement on the fidelity of local control
operations. Finally, at a certain repeater level, concatenated
error correction codes need to be used that provide perfect
quantum memory, and threshold results for such schemes can
then apply.

When concatenated error correction codes are used for
local memory, it is important to note that the repeater proto-
col based on two-way entanglement purification (error detec-
tion mode) is still inequivalent to sending encoded quantum
information through a noisy quantum channel by using again
some concatenated code. For instance, the repeater stations
need to be much closer in the latter case, leading to a sig-
nificant overhead and possibly also to more stringent thresh-
olds.

V. QUANTUM REPEATER IN BLIND MODE

In this section we consider a blind operational mode for
the quantum repeater to overcome or lessen the limitations
due to memory errors. Blind operation of the quantum re-
peater works for both error detection mode as well as error
correction mode. In the first case, blind mode can add some
additional repeater levels on top of the ones possible other-
wise with reasonable overhead, in the second case it enables
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the quantum repeater to create entanglement over arbitrary
distances, albeit with lower thresholds.

A. Blind error detection mode

We show that the DEIMPS protocol can be executed
blindly [29], i.e., without waiting for classical communica-
tion, at the price of an exponentially decreasing success
probability. Entanglement swapping can also be performed
blindly such that the whole repeater can run in blind mode, at
least on a few levels where the additional resources, which
are required to counteract the exponentially decreasing suc-
cess probability, stay reasonably low.

1. Blind purification

Blind two-way purification is a variant of the standard
entanglement purification in error detection mode. The only
difference is that one does not wait for any classical signal to
arrive, which would tell whether a purification step was suc-
cessful, and thus eventually operates on “bad” pairs. In fact,
any basis shift of input states only leads to (i) a re-
interpretation of what is called a successful purification step
and (ii) a new basis shift of the resulting density matrix. In
this sense, the basis shifts do not matter, and the same se-
quence of operations (i.e., the same protocol) can be used,
regardless of the initial basis shifts.

This is most evident in Eq. (3), where entanglement puri-
fication with perfect local control operations is described. It
is straightforward to see that also for noisy local operations
(of the form we consider here), these properties are kept, Eq.
(8), because basis shifts (corresponding to o, operations) can
be commuted through noise maps that are diagonal in the
Pauli basis.

This implies that, in principle, several purification steps
can be performed without knowing the required correction
operations. Only the interpretation of the obtained measure-
ment outcome, and hence the decision whether the purifica-
tion step was successful or not, requires knowledge of basis
shifts, and hence classical communication. Clearly, if several
purification steps are performed blindly in such a way, the
resulting pair is only useful if it turns out that in fact all steps
correspond to successful purification steps. The success
probability for the total procedure thus goes down exponen-
tially with the number of purification steps. If the operations
were perfect, the success probabilities would converge to one
since also the fidelity converges to one, and the total success
probability need not necessarily go down exponentially. With
errors in the operations and measurements, on the other
hand, the maximum reachable fidelity and thus the maximum
success probability for a purification step is bounded away
from one, and exponential decay of the total success prob-
ability follows.

2. Blind swapping

The maps for connection (entanglement swapping) do not
require any specific form of the input states. Also imperfect
connection processes can be performed on two pairs with
arbitrary basis shifts, leading to a new pair with a new basis
shift depending on measurement outcomes and the initial
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TABLE III. Required additional resources pg)lt when operating
the quantum repeater in blind operational mode under the assump-
tion that M =3 purification steps with constant success probability
Psuc are required. Number of additional repeater levels is given by
m, and the communication distance is increased by a factor of 2™.

Peuc=0.95 Psuc=0.9
m=1 Proy=1.17 Proy=1.37
m=2 Prp=2.52 Py =6.66
m=3 Pib=254.6 Pra=8.7x10*
m=4 Pb=27%x10" Pry=4.4X 10"

basis shifts. Again, this is evident from the description of the
connection process when local operations are perfect [see
Eq. (4)]. The property is kept for noisy operations if the
noise is Pauli diagonal, Eq. (9), since then we are again
dealing with Clifford operations only.

3. Blind repeater protocol

Since both entanglement purification and swapping can be
done blindly in the two-way, error detecting scenario the
whole repeater can be operated in blind mode. Operating the
repeater blindly, one can sidestep the problem of memory
errors due to the long waiting times for classical signals. A
new limit is set by the gate operation time, which, for en-
tanglement pumping, still accumulates. While in principle
the new maximal distance is infinite when operating the re-
peater with standard entanglement purification where all
pairs are available in parallel, and very large for the proto-
cols based on entanglement pumping, the success probability
of the whole repeater goes down exponentially with distance.
Consider the following example. We assume that three puri-
fication steps at each repeater level are required, M =3, and
consider the scaling of the required resources when operating
m repeater levels blindly. We also assume that only two pairs
are connected before repurification. This leads to an increase
of the distance by a factor of 2. For simplicity we say that
each purification step succeeds with a certain fixed success
probability pg,. (the success probability depends on the fidel-
ity of the initial pairs and hence is strictly speaking different
for different purification steps, however, we neglect this ef-
fect since the overall scaling behavior will not be affected by
this simplifying assumption). In this case, the total success
probability that all involved purification processes up to re-
peater level m were successful is given by

m—1ym
ptot=p£12m . )’
and thus on average 1/p,, copies of the whole setup (i.e.,
parallel channels) are required to obtain on average a single
pair at the end of the procedure. Alternatively, one can say
that the rate of the resulting pairs is decreased by a factor
Piwor- Table III illustrates that up to three additional repeater
levels, m=3, lead to a reasonable overhead, while for m
>3 the overheads explode and become completely imprac-
tical. For m=3, the possible communication distance is in-
creased by a factor of 8, i.e., almost an order of magnitude.
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We remark that when fewer purification steps M at each
repeater level are required, or more than only two elementary
pairs can be connected before repurification, one can in-
crease the communication distance even further. One may
even design the repeater scheme in such a way that at higher
repeater levels (where blind mode is used) fewer purification
steps M are required. In this case in principle more additional
repeater levels can be added while keeping the overhead
moderate (for smaller M), and each additional repeater level
not only allows one to double the distance but to increase it
by a factor of L (if L elementary pairs can be connected),
leading to a total gain of a factor of L™. For instance, if M
=2 and L=3, three repeater levels, m=3, yield an overhead
factor of about 40 if pg,.=0.95, while the communication
distance is increased by a factor of 33=27. Thus a gain of
about an order of magnitude in distance with overhead of
order 10 seems possible, where in some favorable situations
even higher gains can be expected.

Because of the exponentially small success probability,
blind mode is not a solution for the whole repeater in error
detection mode. However, for practical purposes one may
still use blind mode on a few of the topmost repeater levels
at the cost of a reduced production rate of entangled pairs. In
this sense, the parameter m above corresponds to the addi-
tional repeater levels that are operated blindly, while low
repeater levels are operated in the standard way. These last
levels should be run in the parallel, standard repeater mode,
since for protocols using entanglement pumping the classical
signals will usually have arrived before a new pair is ready
from lower levels, and it would be disadvantageous to oper-
ate blindly and to ignore the information available.

B. Blind error correction mode

In this subsection we describe a possible solution to over-
come the limitation of communication distance due to
memory errors. This solution is due to the fact that the re-
peater can be unconditionally run blindly in error correction
mode, i.e., there is no exponentially small success probabil-
ity, when special error correcting codes, CSS codes, are used.

1. Blind purification and entanglement swapping

Again, the key point is that the entanglement purification
protocols can also be used if the initial bases of the pairs are
shifted. More precisely, since the coding and decoding net-
works are based on CSS codes, all unitary operations applied
in the purification protocol are Clifford operations. There-
fore, any basis shift (described by some Pauli operation ap-
plied to the state before coding and decoding) can be com-
muted through the network, still leading to a (different) Pauli
operation corresponding to a (different) basis shift. Only the
interpretation of measurement outcomes when attempting to
detect an error syndrome, and the final basis shift, may differ.
In this sense, the classical information on measurement out-
comes are not really required when performing the protocol,
as the required operations are independent of eventual basis
shifts. Only at the end of the procedure, when a final basis
shift or correction operation needs to be determined, the clas-
sical signals containing all measurement outcomes are
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needed. That is, the purification protocol can be run blindly.
The connection process by entanglement swapping is the
same as in the two-way, error detecting scenario and can
hence be performed blindly.

2. Blind repeater protocol

Since both entanglement purification by error correction
and the connection process by entanglement swapping can
be executed blindly the whole repeater can be run in blind
mode. The main difference to the error detection mode is the
following. Recall that in the error detection mode the purifi-
cation process is probabilistic, and the total success probabil-
ity hence goes down exponentially with the number of puri-
fication steps, whereas in error correction mode the
purification is deterministic. Since entanglement swapping is
also deterministic, the whole repeater can be run in blind
error correction mode without restrictions. In particular this
means that there are no true waiting times if concatenated
error correction is used, where, similarly as in the standard
repeater protocol, all pairs involved in the process are created
in the very beginning. With true waiting times we mean
times other than gate operation times because memory errors
occurring during gate operations can be absorbed into a low-
ered gate fidelity. Hence, entangled pairs over arbitrary dis-
tances can be generated in this way. However, the limiting
factors are the very stringent error thresholds (see Sec.
I B 2) and the huge number of qubits one would need.

We remark that despite the equivalence of the repeater run
in (blind) error correction mode with direct transmission of
quantum information using a certain concatenated CSS code,
there is an advantage of the quantum repeater in a different
respect. In particular, when one considers the time required
to establish an entangled pair over distance N, the repeater
scheme allows one to do this in log, N time steps where each
time step corresponds to the time required for quantum com-
munication over the distance of an elementary segment 7.
Although the pair produced in this way is unknown at this
stage until classical information arrives (which requires a
time of order Nt,, where ¢ is the time for classical commu-
nication over one segment), it can nevertheless already be
used for teleportation or for key distribution as outlined be-
low. On the other hand, using error correction to protect
transmitted quantum information corresponds to sending the
information sequentially through quantum channels, leading
to a communication time of Nr.

The difference in the communication time can be signifi-
cant. Even when taking the additional classical communica-
tion into account, the repeater scheme may offer still advan-
tages, in particular in situations where 7, > ¢,. This is already
the case when transmitting photons through optical fibers
and using free-space classical communication, however, the
effect is much more evident when considering quantum in-
formation transport, e.g., by means of electron transmission.
Such a repeater scheme is discussed in [33], where entangle-
ment between distant quantum dots is generated by trans-
porting electrons via charge control, connecting entangled
pairs and repurifying them. In this case, entanglement can be
used to perform teleportation-based gates between far distant
qubits, providing an important element for a scalable fault
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tolerant quantum computer architecture based on charge con-
trolled quantum dots.

C. Using unknown entangled pairs

In both blind modes, error detection as well as error cor-
rection mode, the basis shift and hence the correct interpre-
tation or the required correction operation remains unknown
as long as all the measurement results from purification steps
and connection processes are not known at the end node.
Still, the entangled pairs produced in such a way can be
useful, although one does not know the state that actually is
at hand. This can only be determined at a later stage after all
classical signals arrive.

First, one may assume that memory errors are only rel-
evant at intermediate repeater stations and other ways of pro-
tecting quantum information are available at starting and end
points. Such an assumption is in some sense natural, as keep-
ing produced entangled pairs as a resource requires a quan-
tum memory anyway. In addition, even if (almost) perfect
memories are available, technologically they might be diffi-
cult to realize and thus one may assume that at intermediate
repeater stations memory errors play a role, while at end
nodes memory errors can be avoided.

Second, one may use the resulting entangled pair for tele-
portation of an unknown quantum state, thereby realizing
high-fidelity quantum communication. However, the correc-
tion operations required in the teleportation protocol now do
not only depend on the measurement outcomes in the tele-
portation process, but also on the basis of the used Bell pair
(and hence on all intermediate measurement outcomes in the
generation of the Bell pair). In this sense, a quantum memory
is required again (at least at the end node), such that the
teleported quantum state can be restored and further pro-
cessed.

Third, one may use the resulting pair for quantum cryp-
tography, i.e., to establish a secret key between A and B. In
this case, measurements are performed to either run a tele-
portation based version of a protocol such as the BB84 pro-
tocol [37], six-state protocol [38], Singapore protocol [40],
or alternatively the E91 protocol [39]. From now on, all in-
formation is classical, and storage of quantum information is
no longer required. The additional information about the ba-
sis of the involved entangled pair (i.e., the outcomes of all
measurements involved in the repeater protocol) may arrive
at any later stage, and only lead to a re-interpretation of the
measurement outcomes (i.e., the used measurement basis).
Eventually, the yield of the key-distribution protocols is re-
duced since not all measurement bases can be used to estab-
lish a key, however, key generation will still be possible.

We remark that the possibility to operate the repeater in
such a blind mode may also have consequences on the prac-
tical realization of such a device. For the repeater operated in
standard mode, it is usually argued that there should be fly-
ing qubits (usually photons) that are mapped on static qubits
(atoms, ions, solid state devices, atomic ensembles) and vice
versa. The flying qubits are used to distribute entanglement
over noisy quantum channels, while static qubits are used to
store and process quantum information at different repeater
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stations. However, as for a repeater operated in such a blind
mode there is no longer a need to store qubits, the procession
(i.e., error correction, measurements) might be performed
right away on the flying qubits. In this way, one could avoid
the (technically demanding) interfaces between flying and
static qubits. What remains is the requirement to process the
qubits, i.e., to perform appropriated unitary operations for
coding, decoding, and measurements.

VI. REPEATER ARCHITECTURE

While the quantum repeater in error correction mode of-
fers a solution to achieve infinite communication distance,
the stringent error thresholds and huge physical resources
needed make it unfavorable for practical implementations.

The most reasonable architecture of a quantum repeater,
solely using error detection mode, could be the following.
On the lowest levels, where classical signalling time is still
short, one should employ a repeater protocol using entangle-
ment pumping for purification. In this way, one saves physi-
cal resources. Which protocol to use exactly depends on the
physical resources available, and one should always fully use
the available resources to save time. Once one cannot go
further with this first protocol, one can switch to a protocol
that operates on many copies in parallel, like the standard
repeater protocol. In addition, techniques to reduce memory
errors can be applied at higher repeater levels. Finally, when
even the capabilities of that protocol and improved quantum
memories are exhausted, one may change to operate the sec-
ond protocol in blind mode on the topmost levels. The re-
quirements for the physical resources become very demand-
ing for the last two stages.

The principal constraints are the distance over which one
wants to establish an entangled pair, the physical resources
available, and the parameters of the errors that will occur.
Given these, the building of the quantum repeater is then an
intricate engineering and optimization problem that has to
deal with questions like: Which purification protocol do we
use? Which working fidelity is best or how many purification
steps do we perform on some repeater level? Which repeater
protocol do we use and when do we switch to another? In
theory this optimization can be very complicated since all
these questions are dependent on each other, but in practice
one will most likely also be limited in the ways one can
optimize the working processes.

We want to make one last remark on the reuse of qubits.
In the standard repeater scheme, most qubits, when they have
been measured, do nothing until the repeater has completed
its cycle. But one can immediately reuse any qubits that are
no longer involved in the repeater process. Assume we add
one more qubit at each repeater level, say n qubits, then we
can run a “second wave” right after operations on the lowest
level are performed under the same initial conditions we
found before. If we add n—1 qubits on each repeater level,
i.e., n(n—1) qubits in total, then the “first wave” will be
complete when we start the nth, since the repeater in stan-
dard mode needs n time steps for completion when there are
n repeater levels. Then, the wave n+1 can use again the
qubits of the first wave. In this way all qubits are used at all
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times, and for the price of the very demanding resources we
get at least a very high bit rate that is only limited by the gate
operation time.

VII. SUMMARY

We have studied the quantum repeater subject to memory
errors. We have shown that memory errors imply that the
standard operation mode of the repeater, error detection
mode, can establish entangled pairs only over some maximal
distance. To overcome this restriction, a direct solution is to
reduce or correct memory errors by using methods to in-
crease coherence times or a local quantum memory based on
concatenated error correction codes. However, the complex-
ity and requirements on accuracy of local control operations
increase with the distance, and the error thresholds for quan-
tum memory determine the error thresholds of the quantum
repeater. Alternatively, one can run the repeater in error cor-
rection mode. We showed that this operation mode is equiva-
lent to the protection of quantum information with concat-
enated quantum codes and has again unfavorable error
thresholds. If one wants to benefit from the much higher
thresholds of the standard mode using two-way entanglement
purification and does not have the capability to correct
memory errors, one has to accept some maximal distance
and questions like scalability are no longer an issue (top
down view). In their place are now questions about engineer-
ing and optimization. As an additional tool of practical im-
portance, we described an operation mode for the repeater
called blind mode, which can help to push the limits for the
maximal distance farther. In particular, one can increase the
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communication distance by an order of magnitude with only
modest overhead in physical resources. With a given error
model we analyzed different repeater protocols, the resources
they require, and the maximal distance over which they can
distribute entangled pairs. We suggested a general architec-
ture for the quantum repeater that switches protocols accord-
ing to demand.

We finally also mention that free-space, satellite-based
quantum communication [41] over long distances has been
discussed as an alternative approach to the (ground-based)
quantum repeater. At present it is not clear whether techno-
logical difficulties can be overcome in this proposed scheme.
Notice, however, that elements of the quantum repeater and
the schemes discussed here may be adopted to enhance
satellite-based schemes as well. Very recently, the problem of
memory errors in a quantum relay [42] has been addressed in
[43], where it was shown how to use multiplexing to increase
the yield. However, this investigation does not solve the
problem of memory errors in the full quantum repeater as
discussed here. To summarize, while intercontinental quan-
tum communication with entangled pairs, created by the
quantum repeater, seems to be out of reach today, the per-
spective that this goal can be realized in the foreseeable fu-
ture is still very promising.
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