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We propose an efficient scheme to build an arbitrary multipartite Greenberger-Horne-Zeilinger state and
discriminate all the universal Greenberger-Horne-Zeilinger states using parity measurement based on dipole-
induced transparency in a cavity-waveguide system. A prominent advantage is that initial entangled states
remain after nondetective identification and they can be used for successive tasks. We analyze the performance
and possible errors of the required single-qubit rotations and emphasize that the scheme is reliable and can
satisfy the current experimental technology.
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In recent years, quantum information science �1� has
made rapid progress in entanglement preparation, scalable
quantum networks, and quantum communication in several
candidates including photons, atoms, quantum dots, etc. �2�.
Entangled states are an indispensable resource which is
widely applied in many aspects such as the quantum key
distribution �3�, quantum logic gates �4�, and so on. The
Greenberger-Horne-Zeilinger �GHZ� state is one of the most
important multiparticle entangled states for quantum infor-
mation processing and for addressing the Einstein-Podolsky-
Rosen �EPR� conflict of local realism with quantum mechan-
ics �5�. Several proposals have been put forward to generate
GHZ states in the cavity-QED realm �6–8�. On many occa-
sions, one needs to discriminate entangled states to post-
select relevant quantum operations to complete a given task.
A simple scheme has been presented to identify the two typi-
cal GHZ states from other variations under local flip opera-
tions using linear-optics elements �9�. Unfortunately, the
photons are absorbed by the detectors and the initial en-
tangled states are destroyed finally because of destructive
measurements. Therefore, nondestructive analysis of en-
tangled states is also an important and open problem
and more effective strategies are expected to overcome the
difficulties.

Very recently Waks et al. proposed an interesting method,
which was called dipole-induced transparency �DIT�, to gen-
erate and detect two-qubit entangled states in a cavity-
waveguide system �10�. They showed that when a dipole
�atoms, quantum dots, etc.� is placed in a drop-filter cavity,
the input field remains in the original waveguide; if, how-
ever, there is no dipole in the cavity, the input field is trans-
mitted to the another waveguide in the critical coupling �11�.
Surprisingly, such an effect is valid even in the low-Q regime
where the coupling strength between the cavity mode and the

dipole transition is much less than the cavity decay rate.
Thus the constraint condition on the strong coupling in the
cavity-dipole system is unnecessary and the conditions for
realizing this effect can be met in a more practical parameter
range for solid-state materials. Furthermore, they showed
that DIT can be used to generate entanglement between spa-
tially separated dipoles conditionally and to perform full
Bell-state measurement on two dipoles, which are extremely
useful for quantum repeaters �12�. A very interesting appli-
cation is that DIT can be used to perform a parity check for
two dipoles without destroying the states of the dipoles; that
is, one can check whether the states of two spatially sepa-
rated dipoles are the same �even parity� or different �odd
parity� through measuring the light fields in the waveguide.
This parity measurement is very useful for entanglement dis-
crimination because one can probe the information of the
qubits without destroying their states.

In this paper, we present a simple and efficient scheme
to generate an arbitrary multiqubit GHZ state and propose
a quite different scheme to thoroughly realize the identifica-
tion of universal GHZ states based on DIT in the cavity-
waveguide system. We also show how DIT can be used
to joint different chains of GHZ states. The feasibility
of our scheme is demonstrated with the reach of current
experimental technology.

Now let us discuss how to generate an arbitrary multiqu-
bit GHZ state using parity measurement based on DIT.
Figure 1 shows the schematic setups we are considering.
A cavity contains a single dipole emitter and is evanescently
coupled to up and down waveguides. Each dipole is assumed
to have three relevant energy levels: a ground state �g�,
an excited state �e�, and a long-lived metastable state
�m�. The photon detectors aeven and aodd are used to check
the parity of the dipoles. Waks et al. showed that DIT
can be used to generate an entangled state between two di-
poles �gm�− �mg�; here and in what follows, the normalized
factors are ignored for simplicity. We rotate the second di-
pole under a local transformation: �g�→−�m� , �m�→ �g�.
Thus, the above two-qubit state becomes �gg�+ �mm�. With
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this state and another qubit we can generate a three-dipole
GHZ state �ggg�+ �mmm� through a parity measurement. As
shown in Fig. 1�a�, we add a cavity in which the third dipole
is prepared in the state �g�+ �m� and the total state of the three
dipoles is

��g1g2� + �m1m2�� � ��g3� + �m3��

= �g1g2g3� + �m1m2m3� + �g1g2m3� + �m1m2g3� . �1�

Now we check the parity of the dipoles in the cavities C2
and C3 by injecting a probe field ��� into the waveguide
before the cavity C2. We find immediately that the total
state of the three dipoles will reduce to the former two terms
of the right-hand side of Eq. �1� if the states of the dipoles in
C2 and C3 are the even parity and we obtain a GHZ state
�ggg�+ �mmm�. On the other hand, if the dipoles in C2 and C3
are found in the odd-parity state, the total state collapses to
�ggm�+ �mmg�. We then carry out a local flip operation on the
third dipole, �g3�↔ �m3�, to obtain a three-dipole GHZ state
�ggg�+ �mmm�. Furthermore, as shown in Fig. 1�b�, we can
generalize this method to build a multidipole GHZ state of
an arbitrary length. Similar to the case of three dipoles, we
add a cavity-dipole subsystem in which the state of the di-

pole is ��g�+ �m�� and input a probe field to measure the
parity of the last two dipoles. For example, in order to
achieve an N-dipole GHZ state by using an �N−1�-dipole
GHZ state �g1g2¯gN−1�+ �m1m2¯mN−1�, we only need to
attach a cavity-dipole subsystem �the state of the dipole is
��gN�+ �mN��� to the terminal of the preceding �N−1� cavity-
dipole system and input a weak coherent field into the
fiber just before the cavity CN−1 which is used to check the
parity of the dipoles in the cavity CN−1 and CN. If the out-
come of the odd parity is obtained, we apply a local flip
operation on the dipole in CN, or else we do nothing. There-
fore, we will get an N-dipole GHZ state in a deterministic
way no matter whether the parity of the last two dipoles is
even or odd.

In addition, as shown in Fig. 1�c�, we can join two GHZ-
state chains which include N and M qubits, respectively, to
form a longer chain of GHZ states with �N+M� dipoles by
applying a parity measurement on the end qubits of the two
chains. When the parity of the two qubits in the neighbor
cavities AN and BM is even, we obtain a GHZ state with
�N+M� dipoles. If the parity of the end qubits is odd, we will
get the GHZ state by performing local flip operations on
each dipole of one of the two chains or checking the parity of
the end qubits again. Thus we can use parity measurements
to join two GHZ-state chains. These operations are ex-
tremely attractive for long-distance quantum communication
and quantum repeater.

Next let us show in detail how a universal GHZ state �9�
for matter qubits can be discriminated with parity measure-
ments and single-qubit rotations. It has been demonstrated
that the universal GHZ state with arbitrary number of pho-
tons can be effectively distinguished in the weak nonlinearity
regime �13�. The universal GHZ states with three dipoles are
given by

��±� = ��g1g2g3� ± �m1m2m3��/�2, �2a�

��1
±� = ��m1g2g3� ± �g1m2m3��/�2, �2b�

��2
±� = ��g1m2g3� ± �m1g2m3��/�2, �2c�

��3
±� = ��g1g2m3� ± �m1m2g3��/�2. �2d�

We adopt a two-step strategy to fulfill the analysis of a uni-
versal three-dipole GHZ state: �i� we can distinguish the four
classes in Eq. �2� from each other only through two parity
measurements; �ii� single-qubit rotation and a parity check of
three dipoles are used to separate two states in each class
with the relevant phase �. The setup is depicted in Fig. 2. In
the first step, we utilize DIT to measure the parities of the
dipoles in C1 and C2 and in C2 and C3, respectively. For the
first parity measurement, two mirrors are inserted into the
optical path to guide the probe beam ��1� to the detectors D1
and D4 and avoid the coupling between ��1� and the cavity
C3. Then for the second parity measurement, the mirrors are
removed and the probe beam ��2� is input just before the
cavity C2. The results of parity measurements are listed in
Table I. Four classes of universal GHZ states result in
different combinations of the photon detectors’ clicks:
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FIG. 1. �a� Generating a three-dipole GHZ state from a Bell
state by measuring the parity of the dipoles in C2 and C3. Each
dipole has three relevant energy level �g�, �m�, and �e�. The cavity
mode interacts with the transition between �g� and �e� resonantly.
�b� Generating an N-dipole GHZ state from an �N−1�-dipole GHZ
state by checking the parity of the last two dipoles. �c� Joining two
GHZ-state chains by measuring the parity of the end qubits of the
two chains.
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D1D2���±��, D4D2���1
±��, D4D3���2

±�� and D1D3���3
±��.

Next, in the second step, we perform single-qubit
unitary operations U on each of the dipoles: �g�→ ��g�
+ i�m�� and �m�→ ��g�− i�m��. For example, the states ��±�
evolve into

��+� → �g1g2g3� − �g1m2m3� − �m1g2m3� − �m1m2g3� ,

�3a�

��−� → i��g1g2m3� + �g1m2g3� + �m1g2g3� − �m1m2m3�� .

�3b�

The evolutions of ��1,2,3
± � are similar to �3�. The initial ��+�

and ��1,2,3
+ � �we call them ��� states� result in the total state

�ggg� � �gmm� � �mgm� � �mmg�; otherwise, ��−� and ��1,2,3
− �

�we call them ��� states� result in �mmm� � �mgg� � �gmg�
� �ggm�, where � means the coherent superposition of dif-
ferent product states of the dipoles. Apparently, in the case of
��� states, one or three dipoles are in �g� and two or zero
dipoles are in �m�, while, on the contrary, the states ��� lead
to one or three dipoles in �m� and two or zero dipoles in �g�.
Thus we design a very simple setup to separate the states ���
�see Fig. 2�b��. A weak coherent light goes through the
three cavities and ��� ����� makes the probe beam into
the even �odd� detector. So far, the eight GHZ states are
distinguished in a deterministic way. Finally, we can perform
the inverse transformation U−1 on each of the dipoles to re-
cover the initial GHZ states. The extension to the N-dipole
case is straightforward, and our two-step strategy is also
valid.

There are several inevitable factors that will reduce the
successful probability and the fidelity of entangled states.
First, in the presence of cavity loss, since a spontaneously
emitted photon reveals the “which-way” information of the
qubit, there is a trade-off between the fidelity of the final
state and the probability of a successful parity measurement
�14�. Second, we must consider a practical error in a single-
quibt operation in our scheme. In Fig. 3, we use a two-
photon Raman transition to control the coherent transfer be-
tween the two qubit states �g� and �m� �15,16�. To alleviate
the influence of spontaneous emission, the detunings be-
tween two optical fields and the corresponding dipole transi-
tions are large enough. The Rabi frequencies of the applied
fields are �1��2=�, the detunings are 	 �we assume that
two-photon detuning is zero�, and the spontaneous emission
rate of the excited state is 
. When 	�� ,
, the three-level
system is equivalent to the two-level qubit with the effective
Rabi frequency �ef f =�2 /	 between the metastable states �g�
and �m�. For the time of single-qubit operations T=� /4�ef f,
the fidelity of the unitary transformation U is
�1+e−�
/2	�2 /4. For example, for 	�200
, the fidelity is
larger than 99% and the error probability due to the decay
from the exited state Pe

sp1%. An appropriate candidate
may be a defect dipole cavity in a planar photonic cavity
coupled to a quantum dot �17�. For typical experimental pa-
rameters using quantum dots in photonic crystal cavities, we
set 
=1 GHz �18� and 	�200 GHz is easy to realize in the
experiments. The Rabi frequency � has no influence on the
fidelity of single-qubit gates, but determines the time of gate
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FIG. 2. �a� Separating the three-dipole GHZ state into four
classes by two successive parity measurements. For the first mea-
surement, the mirrors guide the probe field ��1� into the detector D1

or D4. For the second measurement, after the mirrors are removed,
��2� passes through C2 and C3 and clicks D2 or D3 to check the
parity of the dipoles in them. �b� After single-qubit rotations U on
three dipoles, a probe field is used to distinguish two states which
have a relative phase of � in the same class.

TABLE I. The results of photon detectors in two successive
parity measurements using DIT. According to this, eight GHZ states
are separated into four classes.

GHZ states
First parity

measurement ���1��
Second parity

measurement ���2��

��±� Even/D1
a Even/D2

��1
±� Odd/D4 Even/D2

��2
±� Odd/D4 Odd/D3

��3
±� Even/D1 Odd/D3

aWhich means the parity of the dipoles are even and the detector D1

clicks.

e

m
g

1Ω 2Ω

∆ γ

FIG. 3. Single-qubit rotation in two-photon Raman configura-
tion. The detunings between two optical fields and the dipole
transitions are large enough to cancel the exited state adiabatically.
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operations. In addition, in the case that the qubit in the cavity
is quantum-dot spin, conduction-band-hole Raman transi-
tions induced by laser field and cavity modes can be used to
realize arbitrary single-qubit rotations �19,20�. Third, when
the separation of the qubits is very large, which is very com-
mon in quantum networks, the photon loss in the waveguide
has a nontrival disadvantage that decreases the intensity of
the probe field and reduces the successful probability of the
parity measurement. But it can be overcome if we choose
probe fields with appropriate intensity and low-loss
waveguides.

In summary, we propose a novel scheme utilizing DIT to
generate the multiparticle entangled states and to discrimi-

nate all of the universal N-qubit GHZ states. These are useful
to quantum communication, quantum secret key sharing, and
quantum state tomography.
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