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Results on heat current, entropy production rate, and entanglement are reported for a quantum system
coupled to two different temperature heat reservoirs. By applying a temperature gradient, different quantum
states can be found with exactly the same amount of entanglement but different purity degrees and heat
currents. Furthermore, a nonequilibrium enhancement-suppression transition behavior of the entanglement is
identified.
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I. INTRODUCTION

Quantum thermodynamics �1,2� is starting to throw light
on the universal behaviors of nanosystems. Specifically, new
possibilities arising in nonequilibrium situations, with domi-
nant quantum coherences, are emerging �3�. Currently, non-
local quantum correlations �entanglement� are being consid-
ered in a vast variety of scenarios as they are key ingredients
for novel and nonconventional forms of communication, in-
formation processing, and computation. For potential large-
scale applications, where condensed matter systems are of
prime importance, thermal interactions with specific environ-
ments are unavoidable. Thus a clear connection between
quantum-information aspects and thermal magnitudes has to
be elucidated. Furthermore, the biological frontier of physics
imposes on one to address the question of quantum feature
survival in noisy as well as in nonequilibrium conditions �4�.

For quantum systems in contact with heat reservoirs at
unique and fixed temperature, the equilibrium thermal en-
tanglement has been extensively studied �5–8�. Until now,
most of the emphasis in the study of thermal entanglement
has been confined to equilibrium situations. Entanglement in
nonequilibrium quantum systems has been scarcely consid-
ered and thus a proper description of thermal entanglement
in the presence of matter and/or energy currents is still lack-
ing. Recently, Eisler et al. �9� calculated the von Neumann
entropy of a block of spins in a XX spin chain in the presence
of an energy current, showing that an enhancement of the
amount of entanglement due to an energy current is possible.
The energy current is modeled by adding an extra term to the
spin chain Hamiltonian for simulating a steady-state current
in a thermodynamic closed system. However, the issue of
entanglement behavior in true nonequilibrium conditions of a
thermodynamic open system remains untouched.

Two coupled qubits in thermal contact with different heat
baths is a system not only of theoretical interest but a com-
mon place in nanophysics. In semiconductor quantum dots
the transfer of quantum information between nuclear spins
and electronic spins has been recently considered �10–12�.
The nuclear spin is generally weakly coupled to its environ-
ment while the electronic spin is strongly coupled to a great
variety of degrees of freedom within the solid. In this way,
the effective environments are different for both kinds of

spins. Besides that, nuclear magnetic resonance techniques
allow the cooling of nuclear spins in a controlled manner
�13,14� without significatively affecting the electronic spins,
thus creating two reservoirs at effective different tempera-
tures. On the other hand, superconductor qubits can be easily
designed to be coupled to different environments. For in-
stance, inductively coupled superconductor flux qubits in
contact with two different environments have been recently
analyzed in Ref. �15�. The aim of the present paper is to
correlate thermodynamical nonequilibrium steady-state fea-
tures with entanglement properties of quantum nanosystems.
In doing so, we shall consider a quantum system in a non-
equilibrium condition for which the amount of entanglement
can be exactly evaluated: two interacting qubits �spins� in
contact with two heat reservoirs at different temperatures. In
this case, entanglement can be evaluated for any mixed state
by using the concurrence �16�. Indeed, the model system to
be considered in the present work should be useful for a
large variety of physical setups, aiming to explore the rela-
tionship between quantum informational entropy and ther-
modynamic entropy at the atomic scale. Whether one can
reveal universal features in irreversible processes of open
quantum systems is of great significance.

II. FORMALISM

The central quantum nanosystem is described by a Hamil-

tonian Q̂, interacting with two heat reservoirs which are as-
sumed to be in a permanent thermodynamical equilibrium at

�i=1/kBTi, i=1,2 �kB=�=1� with internal Hamiltonians R̂i.
The total Hamiltonian is then

Ĥ = Q̂ + R̂1 + R̂2 + Ŝ1 + Ŝ2, �1�

where the nanosystem is simultaneously coupled with both

reservoirs through terms Ŝ1 and Ŝ2. The nanosystem
+reservoirs is described by a density operator satisfying the

Liouville equation d�̂
dt =−i�Ĥ , �̂�. We assume that the cou-

pling strengths of the central quantum system to the reser-
voirs are weak so that the full density operator �̂ can be
expressed as �̂�t�= �̂�t��̂1�̂2 where each reservoir is described
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by its own canonical equilibrium density operator �̂i

=e−�iR̂i /TrRi
�e−�iR̂i� and �̂�t� is the reduced density operator

for the quantum system of interest. The couplings of nano-
system and reservoirs are written as

Ŝ1 + Ŝ2 = �
j=1

2

�
�

V̂j,� f̂ j,� = �
j=1

2

�
�

V̂j,�
† f̂ j,�

† , �2�

where the nanosystem operators V̂j,� are taken to satisfy

�Q̂ , V̂j,��=� j,�V̂j,� and the operators f̂ j,� act on the reservoir
degrees of freedom �j=1,2�. Within the framework of the
Born-Markov approximation �17�, the equation of motion for
�̂�t� is given by

d�̂

dt
= − i�Q̂, �̂�t�� − �

j=1

2

�
�,�

J�,�
�j� �� j,����V̂j,�,�V̂j,�

† , �̂��

− �1 − e�j�j,���V̂j,�,V̂j,�
† �̂�� , �3�

where the spectral density of the jth reservoir is

J�,�
�j� �� j,�� = �

0

�

d	ei�j,�	TrRj
��̂ j f̄ j,�

† �	� f̂ j,�� , �4�

with f̄ k,�
† �	�=e−iR̂k	 f̂ k,�

† eiR̂k	.
We will here be concerned with the simplest possible sce-

nario where clear relations between informational and ther-
modynamic entropies can be found. To set up our model
system in a general context, we consider a nanosystem com-
posed of two interacting qubits as described by the Hamil-
tonian

Q̂ = �

=1

2
�


2
�̂
,z + K��̂1

+�̂2
− + �̂1

−�̂2
+� + K��̂1,z�̂2,z, �5�

where �̂
,z and �̂

± denote Pauli matrices. The interqubit cou-

pling is ferromagnetic when K ,K�
0 and antiferromagnetic
when K ,K��0. This type of Hamiltonian encompasses three
well-known spin models: it turns into the isotropic
Heisenberg-like coupling for K=K�, the isotropic XX-like
model for K�=0, and the Ising-like model for K=0. The
eigenenergies and eigenstates corresponding to Eq. �5�
are 	s1
= 	0,0
�E1=−

�1+�2

2 +K��, 	s2
= 	1,1
�E2=
�1+�2

2 +K��,
	s3
=cos�� /2�	1,0
+sin�� /2�	0,1
�E3=
−K��, and 	s4

=−sin�� /2�	1,0
+cos�� /2�	0,1
�E4=−
−K��, with 


=�K2+
��1−�2�2

4 and tan �=2K / ��1−�2�. We consider each qu-
bit in contact with its own boson heat reservoir through a
term of the form

Ŝj = �̂ j
+�

n

gn
�j�ân,j + �̂ j

−�
n

gn
�j�*ân,j

† , j = 1,2, �6�

where ân,j
† creates an excitation in mode n of reservoir j with

a coupling strength gn
�j�.

The nonequilibrium steady-state density matrix �designed

simply as �̂ from now on� must satisfy d�̂
dt =−i�Q̂ , �̂�=0 in Eq.

�3�, which yields to L1��̂�+L2��̂�=0 where the Lindblad or
relaxation superoperators are given by

L j��̂� = − �
�=1

4

J�j������− V̂j,��̂V̂j,�
† + �̂V̂j,�

† V̂j,�

+ e�j���V̂j,�V̂j,�
† �̂ − V̂j,�

† �̂V̂j,��� − �
�=1

4

J�j��− ���

��− V̂j,�
† �̂V̂j,� + �̂V̂j,�V̂j,�

† + e−�j��

��V̂j,�
† V̂j,��̂ − V̂j,��̂V̂j,�

† �� �7�

for j=1,2. In the latter expression �1=E2−E3 , V̂j,1

= �� j,2 cos�� /2�+� j,1 sin�� /2��	s2
�s3	; �2=E2−E4, V̂j,2

= �−� j,2 sin�� /2�+� j,1 cos�� /2�� 	s2
�s4	; �3=E3−E1, V̂j,3

= �� j,1 cos�� /2�+� j,2 sin�� /2��	s3
�s1	; �4=E4−E1, V̂j,4

= �−� j,1 sin�� /2�+� j,2 cos�� /2��	s4
�s1	 and J�j��−���
=e�j��J�j�����. Two limiting cases can be easily analyzed: �i�
No interqubit coupling, K=K�=0 ��=0�, which leads to �1

=�4=�2 and �2=�3=�1. Each qubit reaches a local equilib-
rium with its own heat reservoir yielding to a direct product
form of the density matrix and thus no entanglement. �ii�
Coupled qubits, K ,K��0, in contact with two independent
reservoirs at identical temperatures, �1=�2=�. A reduced
density matrix results which has the thermodynamical ca-
nonical form for a system described by internal Hamiltonian

Q̂ at equilibrium with a thermal bath at inverse temperature
�, as it should be.

III. RESULTS AND DISCUSSION

Consistently with the Born-Markov approximation, we
adopt a Weisskopf-Wigner-like expression such as J�j�����
=� j����nj���� where � j���� depends on both the
nanosystem–jth-reservoir coupling strength and the reservoir
internal structure. On the other hand, nj����= �e�j�� −1�−1

denotes the thermal mean value of the number of excitations
in reservoir j at frequency ��. For the sake of simplicity, we
take identical and frequency independent couplings, thus
�1���=�2���=�.

From Eq. �7� the nonequilibrium steady-state density ma-
trix is obtained as given by the diagonal matrix �̂

=diag��1,1 ,�2,2 ,�3,3 ,�4,4� in the basis of eigenstates of Q̂.
Although it can be analytically expressed, we will not go
here into the details as its explicit form is cumbersome �18�.
Instead, we shall analyze some important special situations.

A. Symmetric case �1=�2=�

In this case �̂ can be written in terms of a simple universal

function e���=
n1���+n2���

1+n1���+n2��� �1 �energies and temperatures in

units of interqubit coupling K=1�. In the strong-coupling
case ��
1� we found

�1,1 =
e1

2

1 −

e2

2
�, �2,2 = 
1 −

e1

2
� e2

2
,
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�3,3 =
e1

2

e2

2
, �4,4 = 
1 −

e1

2
�
1 −

e2

2
� , �8�

where ej =e�� j� with �1=�4= 	�−1	 and �2=�3=�+1. In the
weak-coupling case ���1� the following interchanges have
to be made: �1,1↔�4,4 and �2,2↔�3,3. Thus, the nonequilib-
rium concurrence is C=2 Max�0, 	�3,3−�4,4 	 /2−��1,1�2,2�.

Let us first discuss the equilibrium �T1=T2=T� thermal
entanglement behavior for a system governed by Hamil-
tonian �5� �5–8�. An analytical expression can be found for

the equilibrium concurrence as Ceq�T�=
sinh�1/T�−1

2 cosh��1/2T�cosh��2/2T� .

This last expression is interesting because it implies a uni-
versal form �independent of �� for the sudden death of the
equilibrium concurrence at the temperature Tc=1.1346. For
�
1, the two-qubit concurrence decreases from 1 to 0 as the
temperature increases up to Tc; for ��1, the concurrence
increases from 0 to some maximum before vanishing at Tc. It
is also known that the concurrence decreases monotonically
as the qubit splitting increases for any temperature and van-
ishes exponentially with increasing �. All these features are
independent of the specific nature of the reservoirs.

The behavior of quantum states, for any qubit internal
splitting and reservoir temperatures, can be displayed in a
single plot e1-e2, as is shown in Fig. 1. Although the quan-
tum state variation is described by the same curve for � and
1/�, the border lines separating the entangled from the un-
entangled regions are different: the green curve corresponds
to �
1 while the red curve corresponds to ��1. The black
line represents equilibrium quantum states for both �=1/3 as
well as for �=3. The shifting of the quantum state with the
temperature gradient, �T=T1−T2, is depicted by the circles,
for the same average temperature TM = �T1+T2� /2=1. It is
evident that the temperature gradient shifts the state from the
entangled zone to the unentangled zone. However, this be-
havior can be reversed at low temperatures for ��1 as it is
to be discussed below.

In the linear nonequilibrium limit �LNEL� �T�1, the
concurrence can be written as C��T�=Max�0,Ceq�TM�
−
�T2� where the coefficient 
 is a function of the average
temperature as well as the qubit internal splitting. The equi-
librium concurrence is displayed in the insets of Figs. 2�a�
and 2�b�. In the strong-coupling limit ��
1� 
�0 thus the
concurrence is always a decreasing function of the tempera-
ture gradient �T. By contrast, in the weak-coupling limit
���1� there is a transition mean temperature for which 

changes the sign. Thus, a low-temperature region can be
found where 

0 for which a gradient temperature pro-
duces an increasing of the concurrence as compared with the
equilibrium case. The degree of mixing of the quantum state
can be characterized by the linear entropy as defined by SL
= �4/3��1−Tr��̂2��. The low-�T limit of the linear entropy
can also be expanded as SL��T�=SL,eq�TM�+
��T2

+O��T4�. The coefficient 
��0, for both interqubit cou-
pling cases, is also illustrated in Figs. 2�a� and 2�b�. Note
that while a temperature gradient can produce, in a limited
temperature interval, an enhancement of the concurrence it
always yields to a more mixed state. This result will permit
one to prepare a great variety of quantum states with practi-
cally any combination of entanglement and purity degree by
varying the temperature of only one heat reservoir.

0 0.5 1e(ω1)
0

0.5

1

e(
ω

2)

ε=3

ε=1/3

FIG. 1. �Color online� Quantum-state parameter space �e1 ,e2�.
The black line denotes equilibrium states. Green line: entangled-
unentangled border for �
1. Red line: entangled-unentangled bor-
der for ��1. Circles represent the state shift under a temperature
gradient from the same mean temperature TM =1. Blue circles: �
=1/3. Brown circles: �=3.
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FIG. 2. �Color online� LNEL coefficients 
 and 
�, denoting the
second order in �T variation of the concurrence and linear entropy,
respectively: �a� �=3, �b� �=1/3. Insets: equilibrium concurrence.
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The relationship between a nonequilibrium thermody-
namical quantity such as the heat current and a central quan-
tum information concept such as entanglement is now ad-
dressed. We start by calculating the heat current as J j

=Tr�Q̂L j��̂�� �19�, which in the symmetric case yields to

J1 =
1

4
��1�1 − e1��n2��1� − n1��1�� − �1 ↔ 2�� �9�

and J2=−J1=−J. In the LNEL �T�1, the Fourier’s law is
well verified—i.e., J=��T, with � the thermal conductance
depending on the qubit internal splitting and mean tempera-
ture �18�. The evolution of heat current and concurrence, as
�T increases, is illustrated in Fig. 3 �obviously J=0 for
�T=0�. Clearly, for temperatures for which 

0 �see Fig.
2�a�� an enhancement of the concurrence is possible by ap-
plying a temperature gradient. Based on this general concur-
rence’s behavior, we conclude that in the LNEL, J��T�
= �

�

	Ceq−C��T�	1/2 as is clearly observed in Fig. 3. A re-

markable point to be noted is the possibility of constructing
nonequilibrium quantum states with identical concurrence, as
that for the equilibrium case, but carrying a heat current. It is
also evident from Fig. 3 that the relation between heat cur-
rent and concurrence becomes independent of TM as the tem-
perature gradient increases. The correlation between quan-
tum linear entropy SL and concurrence is also shown in the
inset of Fig. 3, confirming the fact that a gradient tempera-
ture will always increase the mixing degree of the quantum
state. Although the amount of entanglement is small in those
cases, it can be significantly increased by distillation proto-
cols.

Any heat current produces an amount of thermodynamical
entropy proportional to the heat which is carried on and in-
versely proportional to the temperature of the reservoir from
which the heat is extracted �or injected�. Thus, the thermo-
dynamic entropy production rate in our system can be writ-
ten as dS /dt=J1�T1

−1−T2
−1� �20�. In the LNEL, the rate of

entropy production shows a linear dependence with the con-
currence as dS

dt = 2�


TM
2 	Ceq−C��T�	 as is shown in Fig. 4. The

entropy production rate, like the heat current and linear en-

tropy, is always different for two different values of �T cor-
responding, however, to the same amount of entanglement.

B. Nonsymmetric case �1��2

We first consider that the high-temperature reservoir �T1�
is in direct contact with the large splitting qubit �1 and the
low-temperature reservoir �T2� is in contact with the small
splitting qubit �2. Modifications to equilibrium values of
physical magnitudes such as the concurrence and the linear
entropy are now of first order in �T instead of order �T2, as
was the case for the symmetric setup. This implies that in the
LNEL J��T��	Ceq−C��T�	, as is illustrated in Fig. 5. Note
that at low temperature the possibility arises of finding up to
three quantum states with the same concurrence but carrying
different heat currents. Switching to the inverse connection
between qubits and reservoirs �T1↔T2�, the heat current de-
pendence on the concurrence is completely modified. In this
latter case, a high-temperature bath in contact with the low
splitting qubit, the heat current is substantially decreased but
the concurrence can be enhanced by the temperature gradi-
ent, as is shown in the inset of Fig. 5. We conclude that a
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FIG. 3. �Color online� Heat current J and concurrence evolution
for different mean temperatures TM. Inset: linear entropy and con-
currence. Each point corresponds to a �T value.
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FIG. 4. �Color online� Thermodynamical entropy production
rate and concurrence evolutions for different mean temperatures
TM. Each point corresponds to a �T value.
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FIG. 5. �Color online� Heat current J and concurrence evolution
for different mean temperatures TM in the nonsymmetric case, �1

=8 and �2=3. Inset �1=3 and �2=8. Each point corresponds to a �T
value.
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qubit splitting asymmetry brings an interesting new control
parameter for engineering nonequilibrium thermal quantum
states.

IV. CONCLUSIONS

In summary, we have demonstrated that under nonequilib-
rium thermal conditions a versatile scenario for tailoring heat
carrying quantum states with a well-specified amount of en-
tanglement is feasible. A temperature gradient has been
shown to produce increasing or decreasing entanglement de-

pending on the internal coupling strength within a nanosys-
tem. Physical realizations of the model system we addressed
are provided by a large number of physical systems such as
nuclear spins in quantum dots and superconducting qubits.
Therefore, the resulting insights can serve as useful recipes
for realistic quantum-information processors in noisy and
nonequilibrium environments.
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