
Information processing in generalized probabilistic theories

Jonathan Barrett*
Perimeter Institute for Theoretical Physics, 31 Caroline Street N, Waterloo, Ontario N2L 2Y5, Canada

�Received 25 May 2006; published 5 March 2007�

I introduce a framework in which a variety of probabilistic theories can be defined, including classical and
quantum theories, and many others. From two simple assumptions, a tensor product rule for combining
separate systems can be derived. Certain features, usually thought of as specifically quantum, turn out to be
generic in this framework, meaning that they are present in all except classical theories. These include the
nonunique decomposition of a mixed state into pure states, a theorem involving disturbance of a system on
measurement �suggesting that the possibility of secure key distribution is generic�, and a no-cloning theorem.
Two particular theories are then investigated in detail, for the sake of comparison with the classical and
quantum cases. One of these includes states that can give rise to arbitrary nonsignaling correlations, including
the superquantum correlations that have become known in the literature as nonlocal machines or Popescu-
Rohrlich boxes. By investigating these correlations in the context of a theory with well-defined dynamics, I
hope to make further progress with a question raised by Popescu and Rohrlich, which is why does quantum
theory not allow these strongly nonlocal correlations? The existence of such correlations forces much of the
dynamics in this theory to be, in a certain sense, classical, with consequences for teleportation, cryptography,
and computation. I also investigate another theory in which all states are local. Finally, I raise the question of
what further axiom�s� could be added to the framework in order to identify quantum theory uniquely, and
hypothesize that quantum theory is optimal for computation.
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I. INTRODUCTION

A question periodically raised is what is responsible for
the power of quantum computation �or cryptography, or in-
formation processing in general�? At a recent meeting in
Konstanz �1�, speakers referred to quantum entanglement;
the superposition principle; the exponentially growing size of
Hilbert space with the number of qubits; nonlocality and
contextuality; the possibility of continuous reversible trans-
formations between pure states; and what is known as the
sign problem in Monte Carlo simulations of certain types of
quantum systems �2�. It is perhaps unsurprising that there are
so many different answers. The problem is that the results of
quantum information theory are already well understood as
consequences of the quantum formalism, and it is not clear
that simply pointing to aspects of that formalism tells us
anything new. What we are really looking for is a better
understanding of the connections between information pro-
cessing and physical principles in general.

Such an understanding could be gained by studying infor-
mation processing in a broader range of theories than classi-
cal and quantum, where different physical principles may
hold. For any theory, whether it applies to Nature or not, one
can consider the information processing possibilities of this
theory, the differences from those of classical or quantum
theory, and attempt to trace these possibilities back to the
fundamental features of the theory. Some authors have in-
deed investigated unrealistic theories, with a view to under-
standing the relevant features �3–13�.

To make further progress along these lines, I introduce an
operational framework for probabilistic theories in which a

broad range of different theories can be defined. The frame-
work, described in Secs. II–IV, is based on that used by
Hardy in his derivation of quantum theory from simple axi-
oms �14�. The basic idea is that a state is represented as a
vector of probabilities of measurement outcomes. Transfor-
mations of a system must correspond to linear transforma-
tions of this vector. By including probabilistic, that is
normalization-decreasing, transformations, a unified account
of transformations and measurements can be given. Rather
than employ any of Hardy’s axioms, I introduce two assump-
tions that concern how separate systems combine to form a
joint system. The first is that operations on the separate sys-
tems commute �this implies a no-signaling principle�, and the
second is that the state of the joint system can be completely
specified by joint probabilities for local measurements. From
these assumptions a tensor product rule can be derived. This
removes at least some of the mystery from the quantum ten-
sor product rule and generalizes a derivation by Fuchs �15�.

The resulting framework includes classical probabilistic
theories, quantum theory, and many other theories besides.
The first thing one notices is that certain phenomena, usually
thought of as specifically quantum, are in fact generic. This
means that they either appear in all theories, or they appear
in all theories except classical theories, which emerge as a
very special case. As shown in Sec. V, these phenomena
include the nonunique decomposition of a mixed state into
pure states, a theorem concerning the disturbance of a system
on measurement, and the no-cloning theorem. �These obser-
vations are complementary to those of Ref. �13�, where it is
noted that similar properties hold in nonlocal but nonsignal-
ing theories.�

In addition to looking at generic properties of theories, it
is useful to analyze at least one or two interesting theories in
detail. These then provide well-understood examples that can
be contrasted with the classical and quantum cases. Thus the*Electronic address: jbarrett@perimeterinstitute.ca
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rest of this work is devoted to an analysis of two theories that
admit a particularly natural definition. The first of these al-
lows arbitrary correlations between measurements on sepa-
rated systems, as long as they are nonsignaling. I call it gen-
eralized nonsignaling theory �GNST�. The correlations
allowed by this theory can be more nonlocal than quantum
theory allows, and include the superquantum correlations
that have come to be known variously in the literature as
Popescu-Rohrlich �PR� boxes, or nonlocal machines
�16–26�. Popescu and Rohrlich raised the question of why
quantum theory does not allow these correlations. An inves-
tigation of a complete theory, with dynamics, that does in-
clude the correlations may help to answer this question. The
second theory allows the same states of single systems as
GNST, but does not allow any violation of Bell inequalities.
For this reason it is called generalized local theory �GLT�.

One of the interesting things about GNST is that there are
many direct analogs of quantum phenomena �in addition to
the generic phenomena mentioned above�. These include en-
tanglement, nonlocality, a form of contextuality, and the
Einstein-Podolski-Rosen �EPR� paradox. �Interestingly, a
quite different toy theory introduced by Spekkens displays
many of these phenomena too �11�.� However, there are also
differences with quantum theory. A central insight of this
work is that there is a tradeoff between the allowed states of
a theory and the allowed dynamics. This follows from the
simple fact that dynamics has to act in such a way that al-
lowed states are taken to allowed states. In the case of
GNST, the fact that all nonsignaling correlations are possible
means that the dynamics is highly restricted. In fact, I show
in Sec. VI that the dynamics of single systems in GNST is
essentially classical, corresponding to no more than relabel-
ings of measurements and outcomes. This result is extended
to transformations and measurements on simple kinds of bi-
partite systems �more complicated cases are still open�. GLT
is in some sense intermediate, with transformations on single
systems similarly simple, but with transformations on bipar-
tite systems including other possibilities.

These conclusions about dynamics have consequences for
information processing, discussed in Sec. VII. For example,
there is no teleportation in GNST, despite the existence of
highly nonlocal states that might have been thought to facili-
tate a task like teleportation. Key distribution is possible in
GNST and 1-2 oblivious transfer in both GNST and GLT.
Other cryptographic possibilities, such as key distribution in
GLT, or bit commitment in either theory, are open questions.
A natural circuit-type model of computation can be defined
for any theory in the framework. The states and dynamics
together in GLT are sufficiently restricted that computation
can be simulated efficiently by a classical computer. The
theorems concerning dynamics in GNST give evidence that
computation in this theory can also be simulated efficiently
by a classical computer �despite the existence of superen-
tangled states�. The fact that quantum theory, unlike GNST
and GLT, achieves such a harmonious balance of states and
dynamics leads to the following hypothesis that I leave open:
a quantum computer can simulate computation in any theory
in the framework with at most polynomial overhead.

Finally, two motivations are not directly connected with
information processing. On the face of it, most of the theo-

ries that can be written down in the framework described
suffer from similar interpretational problems as quantum
theory. For example, are pure states in one of these theories
best regarded as complete descriptions of individual reality,
as describing only ensembles, or as descriptions of agents’
degrees of belief? Although I do not do this in this paper,
consideration of these questions in a broader framework may
shed new light on the quantum theoretical problems. The
other motivation is to stimulate research into finding ways of
deriving quantum theory from physical principles �instead of
laying down a list of mathematical axioms, as per the stan-
dard textbook approach�. What principles could be used to
rule out the other theories described and leave only quantum
theory? One reason for deriving quantum theory from physi-
cal principles is that by modifying one or another of the
principles, we may discover new ways of going beyond
quantum theory.

II. A FRAMEWORK FOR PROBABILISTIC THEORIES

This section describes in some detail a general operational
framework in which probabilistic theories can be written
down. All theories in this framework share the following
features with classical and quantum theory.

�i� Local operations on distinct subsystems commute. In
the case of a bipartite system AB, for example, this means
that if an operation is performed on system A alone, and an
operation on system B alone, it does not matter what order
the operations were performed in.

�ii� The global state of a composite system is determined
by correlations between local measurements.

A. States and operations

Consider a laboratory containing preparation devices and
operation devices. Preparation devices prepare a system in a
given state and operation devices act on a system, in general
changing its state. When an operation device is used, there
may be several different outcomes, each occurring with some
probability. Each outcome is identified by a different macro-
scopic event �for example, a different light being illuminated
on the device, or a different position of a pointer�. Thus
operation devices serve to perform both transformations and
measurements. Given the state of a system, it should be pos-
sible to calculate the probabilities of measurement outcomes
for any measurement. Conversely, if the probabilities of mea-
surement outcomes for any measurement are known, then the
state is known.

Suppose that systems come in different types, where in
quantum theory, for example, the type of system corresponds
to the dimension of its Hilbert space. For each type of sys-
tem, there is some finite set F of measurements, each with a
finite number of outcomes, such that the state of the system
can be completely specified by listing the probabilities for
these outcomes. For example, in quantum theory, the state of
a spin-1 /2 particle can be specified by giving the probabili-
ties of obtaining spin-up on measuring in the x, y, and z
directions. Call the measurements in F fiducial measure-
ments and F the fiducial set. In general, there will be other
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measurements that can be performed on a system that are not
contained in the fiducial set �a measurement of spin in some
direction at 45° to the z axis, say�. The probabilities of out-
comes of these measurements can nevertheless be deter-
mined from the state. We ignore the possibility of states re-
quiring an infinite number of probabilities to be specified
�despite the fact that quantum theory includes infinite dimen-
sional systems and classical probability theory infinite
sample sets�. The set of fiducial measurements need not be
unique. In general it will be possible to find a different set
�perhaps involving a different number of measurements with
different numbers of outcomes� that also suffices to specify
the state.

This is essentially the framework described by Hardy
�14�, who introduced the term fiducial for the state-defining
measurements. �See also �15,27–29�, where the idea of rep-
resenting a state via probabilities for measurement outcomes
is also explored.� Unlike Hardy, we shall assume for conve-
nience that the degrees of freedom expressed in the state are
internal degrees of freedom, and that all measurements are
measurements of internal degrees of freedom. With respect
to spacetime degrees of freedom, systems behave classically,
having a definite position and velocity at all times. This
seems the most natural position to take given that we are
most interested in the information processing properties of
the different theories considered. However, it would be inter-
esting to extend this work, and to consider what Nature
would be like if all degrees of freedom, including those of
spacetime, were described by a theory like one of the ones
presented here �but extended to allow for infinite-outcome
measurements�.

The above is summarized by the following.
Assumption 1. The state of a single system can be com-

pletely specified by listing the probabilities for the outcomes
of some subset F of all possible measurements. These are the
fiducial measurements. These probabilities can be written ar-
ranged in a vector,

P� ��
P�a = 1�X = 1�
P�a = 2�X = 1�

]

P�a = 1�X = 2�
P�a = 2�X = 2�

]

]

� . �1�

P�a= i �X= j� is the probability of getting outcome i when
fiducial measurement j�F is performed on the system.

Normalization of the state would require that

	
i

P�a = i�X = j� = 1 ∀ j , �2�

where the sum ranges over all the values i that the outcome
can take for a particular measurement. It is convenient also
to give a meaning to unnormalized states �just as in quantum
theory it is sometimes convenient to write down unnormal-
ized density matrices�. Suppose that a system is prepared in
some �normalized� state and an operation performed with an

outcome i that is obtained with probability less than 1. There
is an unnormalized state associated with i, each entry of
which is the joint probability of getting i followed by a par-
ticular outcome for a subsequent fiducial measurement. This
implies that unnormalized states satisfy

	
i�

P�a = i��X = j� = 	
i�

P�a = i��X = j�� = c ∀ j, j� �3�

with 0�c�1. In the case described, c is the probability of
the outcome i. This idea generalizes to chains of operations,
thus operations should be defined on unnormalized states as
well as on normalized ones. Define

�P� � � 	
i

P�a = i�X = j� , �4�

where the right-hand side is independent of the choice of j.

The notation �P� � is used throughout and should not be con-
fused with more usual definitions of the norm of a vector.

Suppose that for each type of single system, the fiducial
measurements are fixed. A particular theory will specify, for

each type of system, a set of allowed vectors P� . These cor-
respond to physically possible states of a system, i.e., states
that can actually be prepared using one of the preparation

devices. There is no reason to suppose that all vectors P� that
can be written down can actually be prepared. For example,
in quantum theory, one cannot prepare a system that will
with certainty return the outcome spin-up for spin measure-
ments in both the z and x directions. Call the set of allowed
states S �where there is a different S for each type of system
but we suppress this dependence�.

Assumption 2. For each type of system, the set of allowed
normalized states is closed and convex. The complete set of
states S is the convex hull of the set of allowed normalized

states and 0� .

0� is the vector with all entries 0. The idea behind this
assumption is that it is always possible to toss a biased coin
and subsequently to be interested only in the joint probabili-
ties of getting given measurement outcomes along with
heads. In this way one can “prepare” unnormalized states. If

heads occurs with probability zero, the state 0� is prepared.
Convexity of S corresponds to the assumption that if it is
possible to prepare states P1 and P2, then it is also possible
to prepare any probabilistic mixture of the two states. One
may toss a coin, prepare either P1 or P2 depending on the
outcome, and then forget the outcome.1 Extreme points of S
apart from 0� are pure states. States that are neither pure nor

0� are mixed. Mixed states can be written as a convex sum of

pure states and 0� , but this sum need not be unique.
Notice from Eq. �3� that S lies in a subspace of the com-

plete vector space. In general, we allow for the possibility

that P� is an overcomplete description of the state of a system.
Thus there may be other linear constraints that apply apart

1The assumption is also stated in such a manner as to rule out
the possibility of an unnormalized state without a corresponding
normalized state.
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from Eq. �3� implying that S lies in a smaller subspace still.
When an operation is performed, each outcome is associ-

ated with a transformation of the state of the system, i.e.,
with a map from states to states:

P� → P� � = f�P� � . �5�

Some operations have only one outcome and the correspond-
ing transformation preserves normalization of the state �in
quantum theory, these are the trace-preserving completely
positive maps�. If an outcome occurs with probability �1,
then it is associated with a transformation that decreases the
normalization of the state �in quantum theory, these are trace-
decreasing completely positive maps�. In the most general
case, one could consider operations that change the system
into a system of a different type �just as in quantum theory
one sometimes considers completely positive maps between
Hilbert spaces of different dimension�. In this work I assume
that operations do not change the type of system, although
the appropriate generalization is not usually too difficult.

Consider a transformation acting on a system that is in a

mixed state, that is a state P� such that

P� = 	
i

qiP� i, �6�

where the P� i are allowed states and where 0�qi�1 and
	iqi=1. One way of preparing a system in such a state would

be to prepare a system in the state P� i with probability qi and

then to forget the value of i. In this case the transformed P�

must be the same convex combination of the transformed P� i,
that is

f�P� � = f
	
i

qiP� i� = 	
i

qif�Pi
� � ∀ Pi � S . �7�

It follows from this that the action of f on the set of allowed

states P� can be represented as

P� → M · P� , �8�

where M is a matrix, i.e., f is a linear map. This is not
completely obvious from Eq. �7�, since the equation involves
only convex combinations, and furthermore only applies for

those P� i�S. A rigorous proof is given in Appendix A.
An operation corresponds to a set of matrices �Mi.

2 The

unnormalized state associated with the ith outcome is Mi · P� ,
and the unnormalized probability of the ith outcome is

�Mi · P� � . �9�

For each type of system, a particular theory will specify a set
of allowed operations. Denote this set O. An element of O is
a set of transformations �Mi, and must be such that the
following holds.

Constraint 1.

0 �
�Mi · P� �

�P� �
� 1 ∀ i,P� � S , �10�

	
i

�Mi · P� �

�P� �
= 1 ∀ P� � S , �11�

Mi · P� � S ∀ i,P� � S . �12�

A further constraint is that each transformation Mi must re-
sult only in allowed states when it acts on a system that is
part of a larger multipartite system �see the next section�. The
following assumption results in some loss of generality but
also makes things simpler.

Assumption 3. For each type of system, there is a set T of
allowed transformations. A set of transformations �Mi is an
element of O if and only if Mi�T∀ i, and Eq. �11� is sat-

isfied. The set T includes the transformation that maps all P�

to 0� and is convex.
With this assumption, once T is given, a separate specifi-

cation of O is not needed. The reasons for convexity are
similar to those given for Assumption 2.

As mentioned above, the formalism of operations already
includes measurements. Sometimes one is not interested in
the state after measurement but only in the probabilities of
the different outcomes. In this case it is convenient to asso-
ciate with an operation �Mi a set of vectors �Ri such that

R� i · P� = �Mi · P� � ∀ P� � S . �13�

Such a set can always be found. For a normalized P� , the

probability of the ith outcome is then given by R� i · P� . It does

not matter if the vector R� i is not unique—this simply means
that different vectors can represent the same measurement
outcome. Denote by M the set of all sets �Ri such that Eq.
�13� holds for some �Mi�O. M is the set of allowed mea-
surements. Denote by R the set of allowed measurement

vectors, that is, the set of vectors R� such that R� · P�

= �M · P� �∀ P� �S, for some M �T.3 �Notation: R should not
be confused with R, the set of real numbers.�

2A note on terminology. I shall continue to use the term operation
to refer to the experiment with a number of different outcomes
corresponding to the set �Mi, and the term transformation to refer
to a single, in general normalization-decreasing, Mi.

3Recall that in quantum theory, an effect E is a positive operator

such that 0�E�1. R� vectors are essentially a generalization of the
effects to our framework. In the usual quantum formalism, an effect
can represent an outcome of a measurement on a quantum state �,
with the probability of the outcome given by Tr�E��. A set of ef-
fects Ei such that 	iEi= I, where I is the identity, is a positive
operator-valued �POV� decomposition of the identity, and corre-
sponds to a POV measurement.
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B. Multipartite systems

So far, the framework described is similar to that used by
Hardy as a starting point for his derivation of quantum
theory �although I have been more explicit about treating
transformations and measurements in a unified manner�.
Hardy narrows things down with various axioms. Rather
than adopt any of Hardy’s axioms, however, I introduce a
small number of nontrivial assumptions that concern how
systems combine to make multipartite systems. One reason
for this is that most questions of information processing do
not make sense without some notion of systems being com-
posed of separate subsystems. From these assumptions I de-
rive that systems combine according to a tensor product rule.
This is of independent interest since it sheds light on where
this rule comes from in quantum theory.

From hereon, the notion of a type of system is broadened.
Thus multipartite systems can come in different types, where
a particular type of multipartite system is composed of
nA single systems of type A, nB single systems of type B, and
so on. In all of this section, a system A or B refers to a
system of some specific type, that may itself be a composite
system.

Begin with the idea that, given a system A, it is possible
to identify some operations as operations on system A alone
and that, in particular, the fiducial measurements for system
A are operations on system A alone. �Without this, one might
say that we have no business speaking of separate systems in
the first place.�

Assumption 4. Local operations commute. Consider a
joint system composed of systems A and B. Suppose that an
operation is performed on system A alone with outcome oA
and an operation on system B alone with outcome oB. The
final unnormalized state of the joint system does not depend
on the order in which the operations were performed. In
particular, this implies that the joint probability of getting
outcomes oA and oB does not depend on the ordering of the
operations.

This assumption means that operations can be regarded as
performed simultaneously on systems A and B without am-
biguity. It also implies

Corollary 1. The no-signaling principle. If an operation is
performed on system A, it is not possible to get information
about which operation was performed by measuring system
B.

The proof of the corollary is straightforward. Suppose that
an operation is performed on system A first, followed by an
operation on system B. Whichever operation was performed
on system A, the marginal probability of outcome oB is equal
to the probability of oB in the case that the operation on
system B came first. The probability of oB is thus indepen-
dent of the operation on system A.

Assumption 5. The global state assumption. The global
state of a multipartite system can be completely determined
by specifying joint probabilities of outcomes for fiducial
measurements performed simultaneously on each subsystem.

Note that while the global state assumption is satisfied in
quantum theory and in classical probability theory, it need
not be satisfied in an arbitrary theory. For example, it is not

true in the case of quantum theory defined over a real Hilbert
space �30–32�. So this assumption has significant content.4

It follows from these two assumptions that the global state
of a multipartite system can be written in the form of a vec-
tor of joint probabilities. For example, for a bipartite system
AB, it will look like this:

P� AB ��
P�a = 1,b = 1�X = 1,Y = 1�
P�a = 1,b = 2�X = 1,Y = 1�

]

P�a = 1,b = 1�X = 1,Y = 2�
P�a = 1,b = 2�X = 1,Y = 2�

]

]

� . �14�

P�a= i ,b= j �X=k ,Y = l� is the joint probability of getting out-
comes i and j when fiducial measurements k and l are per-
formed on the two subsystems. The no-signaling principle
implies

	
j

P�a = i,b = j�X = k,Y = l�

= 	
j�

P�a = i,b = j��X = k,Y = l�� ∀ i,k,l,l�, �15�

	
i

P�a = i,b = j�X = k,Y = l�

= 	
i�

P�a = i�,b = j�X = k�,Y = l� ∀ j,k,k�,l . �16�

The reduced state for system A �analogous to the reduced
state in quantum theory, or marginal probabilities in classical
probability theory� is given by

4Arguably, this is not the case for the assumption that local opera-
tions commute, which may be regarded as part of the definition of
what we mean by an operation being on system A alone. Not wish-
ing to be dogmatic on this point, I have listed this principle with the
other assumptions. We should distinguish, however, the implied no-
signaling principle from the impossibility of superluminal signaling,
which is a contingent fact that as far as we know is true in our
universe. To see the difference, consider that in the nonrelativistic
quantum mechanics of particles, the no-signaling principle is valid,
yet superluminal signaling is possible. In the present framework,
the impossibility of superluminal signaling would imply an upper
bound on the velocity of systems and that Alice cannot carry out an
operation on Bob’s system if she is spacelike separated from it. But
I shall not use such notions, or indeed any notion of spacetime
structure.
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P� A =�
P�a = 1�X = 1�
P�a = 2�X = 1�

]

P�a = 1�X = 2�
P�a = 2�X = 2�

]

]

� , �17�

where

P�a = i�X = j� = 	
i�

P�a = i,b = i��X = j,Y = j�� . �18�

Here, a and X are the outcome and fiducial measurement for
the system whose reduced state is defined, and b and Y are
the outcome and fiducial measurement for the other system.
The no-signaling conditions of Eqs. �13� and �16� ensure that
the sum on the right is independent of the choice of j�.

As seen in the last section, a particular theory specifies a
set S of allowed states for each type of system. This applies
also for each type of multipartite system. There is, however,
a constraint.

Constraint 2. Suppose that P� AB�SAB, where SAB is the

set of allowed states for the joint system. Suppose that P� A is

the reduced state for system A corresponding to P� AB. Then

P� A�SA, where SA is the set of allowed states for system A.
That systems combine according to a tensor product rule

is asserted by the following three theorems. Proofs are in
Appendix B.

Theorem 1. Denote the vector spaces containing the vec-

tors P� AB, P� A, and P� B by VAB, VA, and VB, respectively. Then
one can identify

VAB = VA
� VB.

Theorem 2. Any P� AB�SAB can be written

P� AB = 	
i

riP� i
A

� P� i
B, �19�

with the ri real, P� i
A�SA and P� i

B�SB. Both P� i
A and P� i

B can be
taken to be normalized and pure.

Theorem 3. Consider a transformation on system A alone
defined by

P� A → P� �A = MA · P� A.

The transformation of the joint system is given by

P� AB → P� �AB = �MA
� I� · P� AB.

Recall that transformations include probabilistic transforma-
tions that decrease the normalization of the state. Thus an
immediate corollary of Theorem 3 is

Corollary 2. If a measurement is performed on system A

alone, with state P� A, the probability of a particular outcome
is given by

R� · P� A = �R� � I�� · P� AB. �20�

Here, I� is a vector representing the identity measurement,

that is I� · P� B= �P� B�∀ P� B�SB. The way things are set up, I�

is not unique but can always be taken to be
�1,…,1�0,…,0�0,…,0�¯�.

Much follows from these theorems and corollary.
Collapsed states. Suppose that an operation is performed

on a system A in a state P� A. Suppose that the operation has
outcomes i such that the final normalized state conditioned

on outcome i is given by P� i
A�Mi · P� A / �Mi · P� A�. The change

in the state of system A is analogous to the quantum-
mechanical collapse of the state vector. If systems A and B

begin in some joint state P� AB, and a measurement is per-
formed on system A, then the final state of system B, condi-
tioned on a particular outcome for the measurement, is also
unambiguously determined. Thus this “collapse” is also well-
defined “at a distance.” Typically, similar questions of inter-
pretation arise in theories in this framework as do in quan-
tum theory. Is this collapse a real process? A change in an
agent’s degrees of belief following her measurement? And so
on.

Entanglement and nonlocality. In Theorem 2, a joint state
of a system AB is written as a linear sum of direct product
states. Note that the theorem does not assert that a joint state
of AB can be written as a convex combination of direct prod-
uct states. In general, there will be joint states that cannot be
written in this form. These are the entangled states of the
theory. Entanglement is distinct from nonlocality, where the
latter means violation of a Bell inequality. Thus �i� there are
theories such as classical theories that have no entanglement
or nonlocality, �ii� there may be theories that have entangle-
ment but no nonlocality, and �iii� there are theories, such as
quantum theory and GNST developed below, that have both
entanglement and nonlocality, although these may not
coincide.5

Multipartite systems. The state of a multipartite system

can be written as a vector P� AB¯Z�VA � VB � ¯ � VZ. This
vector can be written as a linear sum of direct product states

	iriP� i
A

� P� i
B

� ¯ � P� i
Z, with ri�R, P� A�SA, and so on. A

transformation on system A alone takes the form M � I
� ¯ � I, and similarly for transformations on B , . . . ,Z alone.
These extensions of the above theorems follow, since those
theorems were stated for arbitrary bipartite systems AB and
included the fact that A and B may themselves be composite.

5It is clear that entanglement is necessary for nonlocality. But in
quantum theory there are entangled mixed states that are local
�33,34�, hence entanglement is not sufficient for nonlocality. In
GNST, on the other hand, entanglement and nonlocality do coin-
cide. This is because if one can write down a local model for a
particular state in GNST, then the model will itself define a convex
decomposition of that state into product states allowed by the
theory. This is not true in quantum theory because arbitrary local
models can employ probability assignments not corresponding to
any quantum state.
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Finally, recall that a theory, in addition to specifying the
set S of allowed states for each type of system, must also
specify the set T of allowed transformations.

Definition 1. A transformation on system A is well-defined

if �Mi
A

� I� · P� AB�SAB whenever P� AB�SAB, for all types of
system B.

This definition corresponds to the fact that in quantum
theory, allowed transformations must be completely positive
maps �and not, e.g., merely positive maps�. An obvious con-
straint is the following.

Constraint 3. For each type of system, all transformations
�T must be well-defined.

A natural assumption is the following.

Assumption 6. If P� A�SA and P� B�SB, then P� A � P� B

�SAB.
A final assumption that is convenient is the following.
Assumption 7. A theory first specifies a set S of allowed

states for each type of system �including multipartite sys-
tems�. All transformations that are well-defined are then al-
lowed transformations.

This assumption is indeed satisfied by all the theories con-
sidered below, including classical theories, quantum theory,
GNST, and GLT. It is nice because it means that a theory is
completely specified once the allowed types of system are
specified, along with the set S of allowed states for each
type. In this case, Assumption 7 defines the set T. The way
things are set up, each of the sets O, M, and R is in turn
defined by T. Assumption 7 also ensures that certain other
obvious constraints hold that do not then need to be stated
separately. For example, it implies that if M �T and N�T,
then M ·N�T. Along with Constraint 3, it implies that if
MA�TA, then MA � IB�TAB. Finally, Assumption 7, along
with Assumption 6 and Constraint 2, implies that if a proce-
dure consists in introducing an ancilla to system A, perform-
ing some joint transformation on A and ancilla and then
throwing away the ancilla, then the corresponding transfor-
mation on A alone is �TA.

The fact that transformations have to be well-defined
yields one of the main insights of this work. There is a rich
interplay between the set of allowed states, the allowed dy-
namics, and the information processing possibilities that a
theory offers. For example, if a theory is modified by enlarg-
ing the set of allowed states �adding supercorrelated states to
quantum theory, perhaps�, one might naively think that this
must increase the information processing possibilities. How-
ever, enlarging the set of allowed states may well have the
effect of decreasing the set of allowed transformations, in
which case the effect may well be the opposite.

III. A BRIEF NOTE ON AMBIGUITIES

There are a couple of points that deserve a mention here
in case it be thought that they cause problems �this section
may perhaps be omitted on a first reading�. First, two theo-
ries may be identical in their structure, that is the sets S, T,
O, R, and M of allowed states, transformations, operations,
outcomes and measurements, could be mathematically iden-
tical in each theory, yet the theories be different physically
because the mathematical objects are assigned to different

physical objects. For example, a particular preparation de-
vice could be associated with one state in one theory and
another state in the other theory.

Second, one theory could be made to look different, that
is have different sets S, T, O, R, and M, simply because
different measurement devices are chosen to correspond to
fiducial measurements. Thus in quantum theory the state of a
qubit could be specified by the probabilities for the outcomes
of spin measurements in the x, y, and z directions. The nor-
malized states in S are then a ball. Equally, the quantum state
could be specified by the probabilities for measurements in
the x, y, and n directions, where n� = �1/�2��x� +z��. In this
case, the normalized states in S are a nonspherical ellipsoid.
A fiducial set may even have different numbers of measure-
ments and outcomes. For example, any quantum state can be
expressed by giving the probabilities of the outcomes for a
single, informationally complete POV measurement �15�.
The important thing is that the outcomes of the fiducial mea-
surements in the new formulation are represented by linearly
independent vectors in the old formulation. Thus there is an
invertible matrix N such that the two formulations are related

by P� �=N · P� , R� �T=R� T ·N−1, and M�=N ·M ·N−1. The theory

makes the same predictions since R� � · P� �=R� · P� , and so on.
The first of these points means that in order to compare

the predictions of two theories, one has to know which
physical devices different preparations and operations corre-
spond to. But being primarily interested in the information
processing properties of theories, we can ignore this issue
and concentrate on the structure of the theories. The second
point ensures that we can do this unambiguously. The struc-
ture of a theory and the conclusions drawn for information
processing do not depend on which measurements are cho-
sen for the fiducial set.

IV. SOME DIFFERENT THEORIES

It is useful to see examples of theories that can be de-
scribed in this framework. The most important are classical
theories and quantum theory. Two others are GLT and GNST.
All of these theories satisfy Assumption 7, which means that
each is completely determined by the set S of allowed states
for each type of system.

A. Classical theories

Suppose that for some particular type of system, the fidu-
cial set can be chosen as a single measurement with d out-
comes, and that any �possibly subnormalized� probability
distribution over these outcomes corresponds to a �possibly
subnormalized� allowed state. In this case, the system is clas-
sical. A classical theory is one for which all systems are
classical. The most comprehensive classical theory is the one
for which there is a type of system for every d�1. For a
classical system, S is a simplex. Pure states are represented
by vectors e�i, with a 1 for the ith component and 0s else-
where. The state of a bipartite system of two classical sys-
tems is also represented by a vector from a probability sim-
plex, the entries being the joint probabilities for outcomes i
and j when the fiducial measurement is performed on each
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system. An allowed transformation M must map a pure state
e�i to another allowed state. It is easy to show that each entry
of M must be positive, and the sum of each column must be
�0 and �1. In the case that M preserves normalization, it is
a stochastic matrix.6 The set R is a hypercube.

Consider, for example, an ordinary die which can exist in

six different deterministic states. The P� vector is six dimen-
sional and gives the probabilities that the die’s uppermost
face is 1,2,…,6. An example of a measurement is one that
asks, is the uppermost face 1 or 2? The yes outcome corre-

sponds to the vector R� = �1,1 ,0 ,0 ,0 ,0�. The state of two
dice, A and B, can be written as a 36-dimensional vector,
whose entries are the probabilities for the uppermost faces
being 11,12,…,66.

Suppose that the reduced states of the two dice are given

by P� A= P� B= 1
6 �1,1 ,1 ,1 ,1 ,1�. One possible joint state com-

patible with P� A and P� B is a direct product,

P� AB = P� A
� P� B =

1

36�
1

1

]

1
� .

This corresponds to the two dice being uncorrelated. But
another possible joint state with the same reduced states is

P� ij
AB = �1/6 i = j ,

0 otherwise.
�

This corresponds to perfect correlation and obviously cannot
be written as a direct product. Of course there is no entangle-
ment or nonlocality in this theory.7

B. Quantum theory (in finite dimensions)

Quantum theory only allows certain types of system. For
example, there are no systems that can be described with two
fiducial measurements each with two outcomes. A qubit can
be described by three fiducial measurements with two out-
comes, e.g., spin measurements in the x, y, and z directions.
Once a set of fiducial measurements is chosen quantum

theory tells us what the allowed states P� are. In the simple
case of a qubit, the set of normalized states is the Bloch ball.

In the case of higher dimensional quantum systems it does
not appear to be so easily characterized �except via the usual
quantum formalism of course�. The transformations that are
well-defined, in the sense of Definition 1, correspond pre-
cisely to the trace-nonincreasing completely positive maps. It
is usually assumed that any such map corresponds to a physi-
cally possible operation, thus Assumption 7 is satisfied. Any

set of R� i with 0�R� i · P� �1∀ i∀ P� �S and 	iR� i · P� =1∀ P�

�S is a positive operator-valued measurement in the usual
formalism.

There is nothing new in the fact that quantum states can
be represented as real vectors and transformations as matri-
ces acting on these vectors. It is well known that Hermitian
operators in d dimensions form a d2-dimensional real vector
space, with an inner product given by Tr�AB�. Linear com-
pletely positive maps correspond to d2�d2 matrices acting
on this space. But the present framework does not corre-
spond exactly to this representation �e.g., it is possible that

P� · P� �1�, so it is useful to see an example. A qubit whose
state is spin up in the z direction can be written

P� =�
P�↑ �x�
P�↓ �x�
P�↑ �y�
P�↓ �y�
P�↑ �z�
P�↓ �z�

� =�
1/2

1/2

1/2

1/2

1

0

� ,

where P�↑�x� is the probability of obtaining spin up when
measuring in the x direction, and so on. It can now be veri-
fied that if, for example, spin is measured in the n direction,
where n� = �1/�2��x� +z��, then the up outcome corresponds to
the vector

R� = 
 1

2�2
,

− 1

2�2
�1

2
,
1

2
� 1

2�2
,

− 1

2�2
� .

This vector is not unique. Any vector R� �=R� +C� , where

C� · P� =0∀ P� �S, represents the same measurement outcome.
The unitary transformation usually written as the Pauli ma-
trix �z would correspond to

M =�
0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

� .

C. Generalized nonsignaling theory

Suppose that for any pair n ,k�1, there is a corresponding
type of single system, whose state can be described by a set

6In this work, a stochastic matrix is a not necessarily square ma-
trix, with non-negative entries, whose columns each sum to 1.

7There is nothing difficult in the preceding remarks. But part of
the aim of Sect. II B is to deflate the significance of the tensor
product rule for combining systems in quantum theory. Thus it is
useful to note that a similar rule arises quite naturally in what is
essentially classical probability theory. The quantum tensor product
rule does not have to be regarded, as it frequently is, as a mysteri-
ous replacement for the Cartesian product used in combining deter-
ministic classical states. If quantum states �even pure ones� are
more analogous to probabilistic classical states than anything
else—in other words if some version of the epistemic interpretation
of the quantum state is correct—then a tensor product rule is ex-
actly what one would expect. Thus one way of viewing the tensor
product is as evidence for the epistemic interpretation.
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of n fiducial measurements, each with k outcomes. Call this

an �n ,k� system.8 For a single system, allow any state P� ,

provided the entries of P� are between 0 and 1 and Eq. �3� is

satisfied. For multipartite systems, allow any state P� , pro-
vided entries are between 0 and 1, Eq. �3� is satisfied, and the
no-signaling conditions of Eqs. �15� and �16� are satisfied for
all bipartite splittings. The resulting theory is generalized
nonsignaling theory.

It is useful to see some examples of systems in this theory.
The simplest kind of single system has two binary fiducial
measurements. This type of system plays a role somewhat
analogous to that of a classical bit or a qubit, so from hereon
it is called a gbit �for generalized bit�. The space of possible
normalized states is shown in Fig. 1. There are four pure
states, which correspond to the four ways of assigning defi-
nite outcomes to the X=1 and X=2 fiducial measurements.
In the figure, these are represented by �1,1�, �1,2�, �2,1�, and
�2,2� where �1,2�, for example, is the state which returns a
=1 for the X=1 measurement and a=2 for the X=2 measure-

ment, and is also represented by P� = �1,0 �0,1�. Thus pure
states of single systems have a definite outcome for each
fiducial measurement—there is no uncertainty principle. As
noted in the figure, if the measurements X=1 and X=2 are
associated with spin measurements in the z and x directions,
then we can include possible states of a qubit in the diagram,
and these form a circle inscribed in the square. Qubits of
course have an extra degree of freedom, namely spin in the y
direction. For �3,2� systems the space of states is a cube, with
an inscribed sphere �the Bloch sphere� representing quantum
states.

Consider the possible transformations of a gbit �for sim-
plicity, restrict attention to those that preserve normaliza-
tion�. An allowed transformation will transform the square in
such a manner that all points remain in the square, otherwise

the transformation is not well-defined in the sense of Defini-
tion 1. The transformations of Figs. 2 and 3 are allowed. But
the transformation of Fig. 4 is not allowed. Transformations
in quantum theory are less restricted because the requirement
is only that points in the circle are transformed into points in
the circle. So a rotation of 	 /4, as in Fig. 4, is fine, and
indeed corresponds to the well-known 	 /8 gate.

It begins to look as if the dynamics of single systems in
GNST is rather simple. Indeed, this is the case. Section VI
contains a theorem that states that for single systems in
GNST, allowed transformations correspond essentially to
relabelings of measurements and outcomes, and probabilistic
combinations thereof. Thus in a sense, the dynamics is clas-
sical. Despite this, the dynamics does contain possibilities
that quantum dynamics does not. Consider a �3,2� system,
whose space of normalized states is a cube, with the quantum
Bloch sphere inscribed. A possible transformation is a reflec-
tion in the center of the sphere. This corresponds to the uni-
versal NOT gate of quantum theory, which is not an allowed
transformation since it is not completely positive.

The multipartite states of GNST are noteworthy in that
they include states that are more nonlocal than quantum
theory allows. For example, given a bipartite system of two
gbits, the following is a possible state.

XY = �11

12

21
� → P�a = 1,b = 1�XY� = P�a = 2,b = 2�XY� = 1/2,

�21�

XY = 22 → P�a = 1,b = 2�XY� = P�a = 2,b = 1�XY� = 1/2.

�22�

8A more general theory would include further types of system
with different numbers of outcomes for different fiducial measure-
ments. I ignore this possibility. I do not believe that it would change
much beyond introducing uninteresting complications into some of
the proofs.

(1,2)

v

(2,1) (2,2)

(1,1)

FIG. 1. The space of normalized states for a gbit in GNST
corresponds to the square. If the measurements X=1 and X=2 are
associated with spin measurements in the z and x directions, then
the space of states for a quantum-mechanical qubit corresponds to
the circle.

v

(2,1) (2,2)

(1,1) (1,2)

(1,1) (2,1)

(1,2) (2,2)

v

FIG. 2. An allowed transformation.

(1,2)

v

(1,1)

(2,1)

(2,2)

(1,2)

v

(2,1) (2,2)

(1,1)

FIG. 3. Another allowed transformation.
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The correlations obtained from fiducial measurements on this
state return a value of 4 for the left-hand side of the follow-
ing inequality:

P�a = b�11� + P�a = b�12� + P�a = b�21� + P�a � b�22� � 3

�23�

�this is the CHSH inequality �35� written in a slightly differ-
ent form than usual�. These correlations cannot be obtained
from measurements on any quantum state since by Tsirel-
son’s theorem �36�, quantum states can only reach a maxi-
mum of 2+�2.9

Information processing in GNST is discussed in Sec. VII.
The theory’s permissiveness with respect to states implies
that some things can be achieved that are impossible in quan-
tum theory. These include 1-2 oblivious transfer, van Dam’s
scheme for the easy solution of communication complexity
problems �25�, and a kind of superquantum memory. The
restricted nature of the dynamics, however, implies that there
is no teleportation or super-dense coding. The theorems of
Sec. VI give evidence that computation is no better than
classical.

D. Generalized local theory

Suppose that, as in GNST, for any pair n ,k�1, there is a
corresponding type of system, whose state can be defined
with n fiducial measurements with k outcomes. As in GNST,

all P� with entries between 0 and 1 satisfying Eq. �3� are
allowed states. The only multipartite states allowed, how-
ever, are those for which the fiducial measurements return
local �non-Bell-violating� correlations. This defines general-
ized local theory.

As in GNST, the pure states of single systems in this
theory are those that have a deterministic outcome for each
fiducial measurement. Since multipartite states are local with
respect to fiducial measurements, the pure states of a multi-
partite system are precisely those in which each subsystem is
in a deterministic pure state. An arbitrary state of a multipar-
tite system is a convex mixture of these. It follows that no
state in this theory can violate a Bell inequality, even if non-
fiducial measurements are performed. Hence the name.

GLT is more general than quantum theory in allowing
arbitrary single system states, but more restricted in not al-
lowing nonlocal states. As described in Sec. VII, GLT allows
1–2 oblivious transfer. Computation in GLT, however, is ef-
ficiently simulable by a classical computer.

E. Other possibilities

There are other possibilities that would be interesting to
investigate. For example,

�i� A theory that is essentially quantum theory but with
only separable states allowed.

�ii� A theory in which the state of a single system must be
a quantum state, but in which the state of a multipartite sys-
tem can be anything, as long as the no-signaling principle
and the restriction that the reduced states for the individual
subsystems must be quantum are satisfied. The latter idea has
been investigated in Ref. �37�, where it is shown, amongst
other things, that Tsirelson’s theorem still holds.

V. GENERIC PROPERTIES OF THEORIES

One of the reasons for introducing a framework encom-
passing many different theories is that it is interesting to
identify properties of theories that are generic, in the sense
that they are shared by all or most theories in the framework.
Some features, usually thought of as specifically quantum,
are present in all theories in our framework except theories
that are classical �in the sense of Sec. IV A�. Thus classical
theories are very special! These features include the fact that
mixed states do not always have a unique decomposition into
pure states, and a no-go theorem for universal cloning. More
exact statements of these claims are given in this section.
Proofs are in Appendix C. It is tedious to write always all
theories in the framework, so from hereon this is shortened
to all theories, taking the assumptions of Sec. II as read.

First, consider the following.
Theorem 4. Suppose that for each type of system in some

theory, every mixed state has a unique decomposition into

pure states and 0� . Then the theory is classical.
The next theorem concerns the disturbance of systems on

measurement and is due in part to Howard Barnum, Matthew
Leifer, and Alexander Wilce �38�. Say that a transformation

disturbs a state P� if there is no constant c such that M · P�

=cP� . This means that, conditioning on the outcome corre-

sponding to this transformation, the state is no longer P� . A
transformation is nondisturbing if no pure state is disturbed
and an operation �Mi is nondisturbing if all Mi are nondis-
turbing.

Theorem 5. For any system, let V be the vector space in
which states are defined, and let VS be the subspace spanned
by S. Then VS can be written as a direct sum, VS= � iVi,
where the Vi are subspaces of VS, such that

�i� Every pure state P� is contained in some Vi.

9These nonsignaling superquantum correlations were written
down by Khalfi and Tsirelson, �16� and were independently intro-
duced by Popescu and Rohrlich �17�. Other examples of superquan-
tum correlations, involving more measurements or parties, are given
in Ref. �18�. The latter are also allowed in GNST.

(1,2)

(2,1) (2,2)

(1,1) (1,2)

(1,1) (2,2)

(2,1)

FIG. 4. A forbidden transformation.
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�ii� A nondisturbing transformation is of the form M
= � ieiIi, where 0�ei�1, and Ii is the identity on Vi.

It follows that nondisturbing operations have the same out-
come probabilities for pure states in the same Vi, and thus
cannot distinguish them. For a classical system, each Vi con-
tains exactly one pure state. For a quantum system without
superselection rules, VS cannot be further decomposed into a
direct sum. Nondisturbing operations have the same outcome
probabilities for all pure states, each transformation being
proportional to the identity on VS. An example of such an
operation would be to toss a coin, without interacting with
the system at all, and to output the result. For a quantum
system with superselection rules, pure states from the same
sector are elements of the same Vi, and different sectors cor-
respond to different Vi.

Theorem 5 has implications for cloning. Cloning refers to
the following procedure:

�i� Begin with a system A in a pure state. Denote its state

P� .
�ii� Introduce a system B of the same type, prepared in a

standard state Q� . The state of the joint system is P� � Q� .
�iii� A joint transformation M acts on the pair of systems

such that the final state is M · �P� � Q� �
 P� � P� .

A deterministic universal cloning procedure always suc-
ceeds and works on all pure states. It implies the existence of

a normalization-preserving M and a state Q� such that

M · �P� � Q� �= P� � P� for all pure P� . A probabilistic universal
cloning procedure is allowed to output a fail outcome, but

conditioned on success, the final state must be P� � P� . There

must be a nonzero probability of success for all pure states P� .
This type of cloning implies the existence of a nonzero M

such that M · �P� � Q� �=cP� � P� for all pure P� , where c can

vary with P� , and 0�c�1.
Theorem 6. Suppose that in some theory, there is a proba-

bilistic universal cloning procedure for each type of system.
Then the theory is classical.

This of course implies that if every system has a deter-
ministic universal cloning procedure, then a theory is classi-
cal.

Theorems 4, 5, and 6 apply even to classical theories if
extended to mixed states. Thus there are mixed states with a
nonunique decomposition into mixed states. All transforma-
tions disturb at least one mixed state unless they are propor-
tional to the identity.10 And cloning of classical mixed states

is impossible.11 One possible interpretation of these remarks
is as further evidence that quantum pure states are more akin
to classical mixed states than classical pure states.

There are many other questions concerning properties that
are common to all theories, or all except classical theories. In
Ref. �39�, the quantum no-broadcasting theorem is general-
ized to arbitrary nonclassical theories within a framework
closely related to the present one. It can also be shown that
all theories in that framework have an infinite de Finetti
theorem, �40� and that polynomially sized computations in
any of these theories can be simulated classically in polyno-
mial space �41�. Features such as these can be regarded as
arising solely from the assumptions that were made in setting
up the framework.

VI. DYNAMICS IN GNST AND GLT

Part of the motivation of this work is to consider which
features of a theory, in particular those features related to
information processing, arise from which assumptions. It is
particularly interesting if significant features, such as the no-
cloning theorem above, arise from very minimal assumptions
and are thus shared by a broad class of theories. Another part
of the motivation is to investigate theories that are different
from those we already know about. These theories need not
even be empirically adequate; a compare and contrast exer-
cise will still be useful to learn more about those theories that
are empirically adequate. Thus the next two sections are de-
voted to a detailed investigation of GNST and GLT.

In Sec. IV C the dynamics of a gbit was briefly discussed.
There are four pure states of a gbit, corresponding to the four
ways of assigning definite outcomes to the two measure-
ments. The space of normalized states is a square, with a
normalization-preserving transformation being a linear trans-
formation of this square. Let us consider more general types
of system in GNST and GLT, but continue to focus on nor-
malized systems and normalization-preserving transforma-
tions, i.e., operations corresponding to a single matrix, �M.
For this section and the next, transformation means
normalization-preserving transformation, with the investiga-
tion of probabilistic transformations left for future work.

The space of normalized states of an �n ,k� system is a
polytope, the vertices corresponding to pure states. Pure
states are of the form

10This is not at all surprising if put into more prosaic terms. Con-
sider that a die is in a state such that the probability of each face
being uppermost is 1

6 . Suppose that the die is measured, to find out
which face is uppermost, and the value 1 found. Then, if it is as-
sumed that the measurement operation was done in the most obvi-
ous way, the state after measurement is not 1

6 �1,1 ,1 ,1 ,1 ,1�, but
�1,0,0,0,0,0�. Of course the measurement operation may be such
that the die is recast after the outcome is obtained, resulting in a

final state of 1
6 �1,1 ,1 ,1 ,1 ,1�. But then an initial state of

�1,0,0,0,0,0� would be disturbed.
11Suppose that Alice prepares a die in one of two ways, each

corresponding to a probability distribution over the different faces.
The first prepares, say, the state 1

12�6,2 ,1 ,1 ,1 ,1� and the second
the state 1

6 �1,1 ,1 ,1 ,1 ,1�. The die is given to Bob who is required
to perform a cloning operation. This means that Bob must prepare
another die such that if Alice used the first preparation, its state is
1

12�6,2 ,1 ,1 ,1 ,1�, and if she used the second, then 1
6 �1,1 ,1 ,1 ,1 ,1�.

Furthermore, if the dice are measured after Bob’s operation, the
results must not be correlated. This last clause prevents Bob from
using a device that simply reads the uppermost face of the die and
prepares another in the same state. It is easy to see that even if
Bob’s cloning procedure is allowed to be probabilistic, he cannot do
it.
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P� = �0 ¯ 1 ¯ 0�0 ¯ 1 ¯ 0� ¯ � .

Allowed transformations must take points in the polytope to
points in the polytope. This condition is so restrictive that the
following theorem holds.

Theorem 7. Normalization-preserving transformations of
single systems in GNST or GLT, thought of as active, corre-
spond to passive transformations that simply relabel fiducial
measurements and outcomes, or to convex combinations of
such. Equivalently, for a transformation of an �n ,k� system,
the matrix M representing the transformation can be written

M = � M11 ¯ M1n

] ]

Mn1 ¯ Mnn
� ,

where Mij is a k�k matrix, and where Mij =�ijSij, for Sij a
stochastic matrix, 0��ij �1, and 	 j�ij =1.

A useful pictorial representation of this theorem is given
in Fig. 5. A related result is as follows.

Theorem 8. The only measurements on single systems in
GNST or GLT are fiducial measurements, possibly with out-
comes relabeled, or correspond to convex combinations of
such.

Theorem 8 is illustrated pictorially in Fig. 6. The proofs
of Theorems 7 and 8 are contained in Appendix D.

In the case of GNST, the following theorem holds for a
bipartite system of two gbits, and suffices to characterize the
normalization-preserving transformations of such a system.

Theorem 9. Consider a system of two gbits in GNST, and
suppose that a normalization-preserving transformation is
performed. Suppose that this transformation is followed by
the fiducial measurements X ,Y on the two subsystems, with
outcomes a ,b. The joint probability of obtaining outcomes
a ,b is equal to that obtained from a convex combination of
procedures of the following kind. First, perform a fiducial
measurement X� on one of the gbits, where X� may depend
on X and Y. Denote the outcome a�. Then perform a fiducial
measurement Y� on the other gbit, where Y� may depend on
X ,Y and on a�. Denote the outcome b�. The final outcome
pair �a ,b� is a function of X, Y, a�, and b�.

Of course this theorem can also be expressed in terms of
a formal constraint on the transformation matrix M, but in
this case it is more complicated and less enlightening. Theo-
rem 9 may also be understood pictorially, as in Fig. 7.

Theorem 10. In GNST, the only measurements on bipar-
tite systems comprised of two gbits correspond to convex
combinations of procedures of the following kind. First, per-
form a fiducial measurement X on one of the gbits, obtaining
an outcome a�. Then perform a fiducial measurement Y on
the other gbit, where Y may be a function of a�, obtaining an
outcome b�. The final outcome is a function of a� and b�.

Theorem 10 is illustrated in Fig. 8. The proof of Theorem
9 is given in Appendix D, with the proof of Theorem 10
following in a similar manner to that of Theorem 8. It is an
open question whether similar theorems hold for transforma-
tions and measurements on arbitrary multipartite systems in
GNST. It can be shown that in GLT, there definitely do exist
possibilities for measurements and transformations on multi-

F2

S

X

X’

X

a

a’

F1

FIG. 5. Transformations of single systems in GNST and GLT
can always be represented as the appending of classical circuits as
shown here, or as convex combinations of transformations of this
type. If a fiducial measurement X is performed on the transformed
system, this can be thought of as performing fiducial measurement
X� on the original system, where X�=F1�X� for some function F1.
When measurement X� is performed on the original system, out-
come a� is obtained with some probability. The probability of ob-
taining outcome a for the measurement X on the transformed sys-
tem is equal to the probability of obtaining an outcome a� such that
a=F2�X ,a��, for some function F2.

S

X

a’

a

F1

FIG. 6. Measurements on single systems in GNST or GLT can
always be performed via a procedure of the type illustrated here, or
via a convex combination of such procedures. First, fiducial mea-
surement X is performed and outcome a� is obtained. The outcome
a of the complete measurement is then a=F1�a��. This result ap-
plies to measurements with an arbitrary number of outcomes.
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partite systems that do not reduce to one of the forms pre-
sented in this section.

The proofs in Appendix D also make clear the following.
The most fine-grained measurements on single systems in

GNST or GLT can be represented by a set of vectors R� i, such

that each R� i has one element between 0 and 1 and the rest 0.

Such an R� i is analogous to an effect in quantum theory that is

proportional to a one-dimensional projector. A set of R� i is
analogous to a nondegenerate projective measurement if

each R� i is a basis vector �one element 1 and the rest 0� and

	iR� i · P� =1∀ P� �S. The corresponding measurement is sim-

ply a fiducial measurement, with an R� i for each outcome. It is
then immediate that, at least with respect to these measure-
ments, there is no Kochen-Specker theorem for single sys-
tems in GNST or GLT. Not only is it possible to assign
definite outcomes to these measurements in a noncontextual
fashion, but each such assignment is in fact an allowed state
of the theory. Nonetheless, both GNST and GLT exhibit a
different kind of contextuality, introduced by Spekkens �42�
and termed preparation contextuality. Readers are referred to
Ref. �42� for discussion of preparation contextuality. Given
the definition, the proofs for GNST and GLT are obvious.

VII. INFORMATION PROCESSING

Using the results obtained for dynamics in GNST and
GLT, the information processing possibilities of each theory
can be investigated. Rather than attempt something like a
general theory of information, this section contains remarks
concerning some obvious tasks. Note that there has already

been some work investigating the information processing
properties of PR boxes, considered merely as abstract corre-
lations. van Dam has shown that they are very powerful for
communication complexity problems �25�, and this result has
recently been extended to noisy PR boxes in Ref. �26�. Oth-
ers have claimed to show how to do oblivious transfer �19�
and bit commitment �21� using PR boxes. However, as
pointed out in Ref. �20�, the fact that these latter works con-
sider PR boxes only as abstract correlations means that they
make assumptions that may not hold in any theory that al-
lows PR boxes.12 In general, a theory with well defined dy-
namics is needed before cryptography, or indeed other types
of information processing, such as computation, can be dis-
cussed. GNST is such a theory.

The first results concern teleportation and superdense cod-
ing �the quantum versions of these tasks were introduced in
Refs. �43,44��. The natural analog of a quantum-mechanical
singlet in the GNST is a state which, when fiducial measure-
ments are performed, produces the PR box correlations:

XY = �11

12

21
� → P�a = 1,b = 1�XY� = P�a = 2,b = 2�XY� = 1/2,

12One such assumption that as far as I know has not been pointed
out is that the shared boxes are trusted to behave like PR boxes by
both parties. But one may reasonably ask where did they come
from? By whom were they distributed?

F2

S1 S2

Y’

b’

X

a’

a’

a

F1

FIG. 8. In GNST, measurements on bipartite systems of two
gbits can always be carried out by a procedure like that illustrated
here, by a similar procedure inverted with respect to the two sub-
systems, or by a convex combination of such. For the procedure
shown here, this means that first, a fiducial measurement X is per-
formed on one subsystem, and outcome a� is obtained. Then fidu-
cial measurement Y� is performed on the other subsystem, where
Y�=F1�a��, and outcome b� is obtained. The outcome a of the
complete measurement is given by a=F2�a� ,b��. This result ap-
plies to measurements with an arbitrary number of outcomes.

F1

X’

a’

S1 S2 a’

b’

a b

X Y X Y

XY

F2

F3

Y’

FIG. 7. In GNST, transformations on bipartite systems com-
prised of two gbits can always be represented by the appending of
classical circuits as shown here, or by a similar construction in-
verted with respect to the two subsystems, or by a convex combi-
nation of such. For the construction shown here, this means that if
fiducial measurements X ,Y are performed on the transformed sys-
tem, one may think of this as first performing a fiducial measure-
ment X� on one half of the original system, where X�=F1�X ,Y�.
This gives an outcome a�. Then, perform a fiducial measurement Y�
on the other subsystem, where Y�=F2�X ,Y ,a��. The final outcome
pair �a ,b� is determined by a function F3 of X, Y, a� and b�.
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XY = 22 → P�a = 1,b = 2�XY� = P�a = 2,b = 1�XY� = 1/2.

It can be shown that these correlations represent a pure
state—that is a vertex of the polytope of normalized states
for two gbits. Further, all vertices of this polytope are either
local deterministic correlations �product pure states� or are
equivalent to the PR box under local transformations �18�.

Theorem 11. It is impossible to teleport an unknown gbit
using a single shared PR box.

Proof. This follows easily from Theorem 10. In order to
teleport an unknown gbit, Alice must perform some opera-
tion or sequence of operations on the gbit and her half of the
shared PR box. Without loss of generality, whatever she does
may be represented as a single joint measurement, with m
outcomes, on the two subsystems. But this measurement can
be represented as a convex combination of procedures like
that of Fig. 8. Such a procedure will always begin, either by
measuring X=1 or X=2 on the gbit, or by measuring the PR
box. In the former case, no information is gained about the
value for the other measurement on the gbit and teleportation
cannot possibly succeed on all pure states. In the latter case,
the shared PR box collapses into a product state which can-
not achieve teleportation. �

Theorem 12. A single shared PR box cannot be used for
superdense coding.

Proof. This follows from Theorems 7 and 10. Superdense
coding would require that there are four different operations
that Alice can perform on her gbit such that, when it is sent
to Bob, he can determine unambiguously which was per-
formed by a joint measurement on the two gbits now in his
possession. It is easy to see that this is not possible. �

A. Cryptography

Theorem 13. In GNST, key distribution is possible.
Proof. Key distribution can be achieved in GNST using an

Ekert-style protocol �45�, in which Alice and Bob first share
n pairs of gbits, with each pair in the PR box state. They then
test some of their shared systems, to make sure that they
really are PR box states, i.e., that they have not been dis-
turbed en route by an eavesdropper. Finally, they measure
each remaining gbit pair, using the fiducial measurements
X=1 and Y =1. Assuming that they share perfect PR box
states, their measurement outcomes will be perfectly corre-
lated and can be used as a secret key. This protocol is secure
because PR box states have a property of being monoga-
mous, much as the entanglement of a singlet is monogamous
in quantum theory. Thus consider a tripartite system shared
between Alice, Bob, and Eve. If Alice’s and Bob’s reduced

state is the PR box state P� PR
AB, then the global state must be of

the form P� PR
AB

� P� E. The outcome of any measurement per-
formed by Eve is uncorrelated with Alice’s and Bob’s out-
comes. The fact that the PR box correlations are monoga-
mous was shown in Ref. �18�. �

Recall Theorem 5, which implies that except in classical
theories, there are some types of system with pure states
�lying in the same subspace Vi� that cannot be distinguished
by nondisturbing operations. This motivates the following.

Conjecture 1. In any nonclassical theory, secure key dis-
tribution is possible.

The idea is that in any theory with two states that are
indistinguishable by nondisturbing operations, it may be pos-
sible to find a secure prepare-and-measure protocol �46� that
uses those states. Finally, we have the following.

Theorem 14. 1-2 oblivious transfer can be implemented
securely in both GNST and GLT.

Proof. In a 1-2 oblivious transfer �introduced in Ref.
�47��, Alice must submit 2 bits to Bob in such a manner that
Bob can choose to learn either one of the bits or the other,
but not both. There is also a security requirement against
Alice, who must not be able to learn which of the bits Bob
chose. That this task is impossible to implement securely in
quantum theory is shown in Ref. �48�. To implement this task
in GNST or GLT, Alice sends a gbit to Bob, in a pure state,
with the two bits encoded in the outcomes for the X=1 mea-
surement and the X=2 measurement. Theorem 8 ensures that
any strategy employed by Bob is equivalent to his measuring
either X=1 or X=2, or to measuring X=1 with some prob-
ability p and X=2 with probability 1− p. Thus the protocol is
secure against Bob. That it is secure against Alice follows
from the fact that, by the no-signaling principle, she cannot
determine which measurement Bob did. �

In classical cryptography, it is known that 1-2 oblivious
transfer is equivalent to oblivious transfer �49�, and that ei-
ther can be used to implement arbitrary secure distributed
computation �50�. In particular, either can be used to imple-
ment bit commitment, hence coin tossing. However, one can-
not assume that the standard reductions of classical cryptog-
raphy hold in a different theory such as GLT, GNST, or
quantum theory. Thus it is open whether other two-party
cryptographic tasks, such as oblivious transfer, bit commit-
ment or coin tossing, can be implemented securely in GNST
or GLT.

B. Computation

For any of the theories in the framework, a natural model
of computation may be defined, based on the classical and
quantum circuit models. I introduce this model only infor-
mally. A particular circuit is assumed to act on n systems,
each of the same type, initially prepared in a product state
corresponding to the problem input. Instead of k-bit or
k-qubit gates, there are transformations that act jointly on k
systems. At the end of the computation, the fiducial measure-
ment X=1 is performed on each system in order to obtain the
output. For a particular theory, it may not be the case that
bipartite and single system transformations together are uni-
versal, as they are in classical and quantum theory. Thus
transformations that act jointly on k systems for any k�2 are
allowed. But for any circuit family Cn, there must exist some
finite k such that all transformations act on k systems or
fewer. In addition, it may not be the case that any particular
type of system �such as a gbit� is universal for computation
in a given theory. So one should keep in mind that circuits
may act on other types of system. Finally, in order to define
a notion of polynomial time, say, the usual caveats must be
assumed. For example, it should be possible for a classical
Turing machine to output a description of the ith circuit in
time polynomial in i.

Theorem 15. In GLT, any computation can be simulated
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efficiently by a probabilistic classical computer.
Proof. In GLT, any allowed state of n systems can be

written as a convex combination of local deterministic, or
pure product, states, in which each system has a definite
outcome for each fiducial measurement. A classical simula-
tion of the GLT computation works by storing, at any given
time, a local deterministic state of the n systems. This re-
quires an amount of memory linear in n, rather than the
exponential amount needed to store a complete description
of an arbitrary convex combination. An allowed transforma-
tion T, acting on k systems, must take local deterministic
states of the k systems to other allowed states of GLT, which
in turn are convex combinations of local deterministic states:

T�P� LD� = 	
i

piP� i
LD,

where the superscript LD indicates a local deterministic state.
The classical computer simulating the GLT computation sim-

ply updates the stored state P� LD to P� i
LD with probability pi.

When the final X=1 measurements are performed, the stored
local deterministic state will determine the classical comput-
er’s output. �

The computational power of GNST is at present unclear.
But it is known that it is very powerful for communication
complexity problems.

Theorem 16. In GNST, bipartite communication complex-
ity problems require only constant communication, provided
the parties share sufficient PR boxes.

Recall that in a bipartite communication complexity sce-
nario, two separated parties each receive an input, and their
task is to compute some joint function of their inputs. Their
goal is to minimize the amount of communication. van Dam
has shown that if the two parties have a supply of shared PR
boxes, then any communication complexity problem can be
solved with only constant communication �25�. This result
has recently been strengthened: it continues to hold even if
the shared PR boxes are noisy, provided the amount of noise
is not too great �26�. Contrast the situation in quantum
theory, where the inner product problem is known to require
n bits of communication to be solved exactly, even with un-
limited shared singlets �51�.

Finally, we have the following.
Theorem 17. Superquantum memory. In GNST, it is pos-

sible to store a 2n-bit string in only n gbits. Although the
whole string cannot be recovered, it is possible to recover the
ith bit without error.

Proof. Suppose that the ith bit of the 2n-bit string we wish
to store is given by f�i1 , . . . , in�� �0,1, where i1¯ in is the
binary representation of i. Let X1 , . . . ,Xn� �0,1 be fiducial
measurements on the n gbits and a1 , . . . ,an� �0,1 the out-
comes. �It is easier for this proof to let Xj and aj take values
in �0,1 instead of in �1,2 as elsewhere.� To store the string,
prepare a state of n gbits such that

P�a1, . . . ,an�X1, . . . ,Xn�

= �1/2n−1 a1 � ¯ � an = f�X1, . . . ,Xn�
0 otherwise

� , �24�

where � represents addition mod 2. In order to recover the

ith bit of the stored string, simply perform the measurement
Xj = ij on each gbit and sum the outcomes mod 2. One may
check that the state of Eq. �24� is an allowed state, since it is
normalized and nonsignaling. Note that it is indeed impos-
sible to store a 2n-bit string in only n qubits such that any bit
may be recovered. Bounds on quantum memory are derived
in Ref. �52�. �

VIII. DISCUSSION

A. Framework

The framework introduced allows investigation of theo-
ries different from either quantum or classical theories. The
general idea is that quantum theory can be better understood
by viewing it in a context of different possibilities. More
specific motivations include the following:

�i� to understand the links between general physical prin-
ciples and information processing;

�ii� to stimulate the study of computation in models that
are more general than quantum theory;

�iii� to address Popescu’s and Rohrlich’s question of why
quantum theory does not allow the PR box correlations;

�iv� to shed light on the interpretive problems of quantum
theory by viewing those in a more general context;

�v� to stimulate research into axioms for quantum theory.

As regards single systems the framework is very general
indeed. It should be emphasized in particular that linearity of
transformations is not assumed, but is derived from the fact

that the vector P� is by definition a complete description of
the system.13 The most important requirements are that local
operations commute �Assumption 4�, and the global state
assumption �Assumption 5�, both involving the manner in
which separate systems combine to make joint systems.
These imply a tensor product rule.

One of the interesting things to emerge from the frame-
work is that certain features, usually thought of as specifi-
cally quantum, are possessed by all theories except classical
theories. These include the nonunique decomposition of
mixed states into pure states, the existence of sets of pure
states that cannot be distinguished with nondisturbing opera-
tions, and the impossibility of even probabilistic universal
cloning. Thus rather than regard quantum theory as special
for having these features, a better attitude may be to regard
classical theories as special for not having them.

13So what of nonlinear modifications of quantum mechanics?
These modifications are nonlinear in the sense that they involve a
nonlinear Schrödinger equation. In this case, the usual density ma-
trix is no longer a complete description of a quantum system, since
the evolution of a system will in general depend not only on the
density matrix, but on the particular decomposition into pure states
�assuming a proper mixture�. If the description of the state is ex-
panded until it is complete, then the action of the dynamics on this
new expanded state description will be linear. But such a theory will
in general violate one or more of the other assumptions. A list of
references on nonlinear quantum theories is given in Ref. �53�, and
computation in this context is considered in Ref. �3�.
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How reasonable are Assumptions 4 and 5? Commutativity
of local operations is arguably part of what it means to talk
about separate systems. In a theory where it fails, any mea-
surement or transformation is essentially a measurement or
transformation on all systems at once. It is no longer obvious
how to define a reasonable model of computation—how
should resources be counted? The case for assuming the
commutativity of local operations is also strengthened by the
fact that in a spacetime framework, it can be independently
motivated by special relativity. It is slightly more difficult to
regard the global state assumption as independently compel-
ling. Thus an interesting direction in which to extend this
work would be to generalize the framework further by drop-
ping this assumption.

B. Tensor product rule

It is interesting to compare the derivation of the tensor
product rule with that of Fuchs �15�. Without going into too
much detail, Fuchs assumes that local measurements on two
separate systems, A and B, are represented by positive
operator-valued measures on Hilbert spaces HA and HB. He
derives a Gleason-like theorem �54–56� which states that the
joint state of the two systems can be represented by an op-
erator on the tensor product Hilbert space HA � HB, with joint
probabilities for outcomes of local measurements given by
the standard trace rule.

As Fuchs acknowledges, the proof does not establish that
the operator describing the joint state has to be positive, but
only that it has to be positive with respect to local measure-
ments. A consistent theory that is not ruled out would allow
the state to be negative with respect to some joint measure-
ments �the Bell basis measurement, for example�, but would
not allow such measurements. Furthermore, the assumption
that local operations commute and the global state assump-
tion are both implicit in Fuchs’ analysis. Without the latter,
the possibility remains that there are extra degrees of free-
dom, not accessible via local measurements, that are not de-
scribed by an operator on the tensor product Hilbert space.

It follows that Fuchs’ conclusion is not stronger than the
tensor product rule derived in this paper. The latter may be
regarded as a generalization of Fuchs’ proof to the case in
which the subsystems A and B are not necessarily quantum.

C. Information theory, GNST and GLT

In addition to describing general properties of the frame-
work, I investigated in detail two particular theories, GNST
and GLT. I focussed on the information processing possibili-
ties in these theories. One of the most interesting things to
have emerged is that there is a tradeoff between the states of
a theory and the allowed dynamics. This arises for the simple
reason that an allowed transformation must take allowed
states into allowed states. Thus the dynamics of both GNST
and GLT is very simple for single systems. In GNST, a simi-
lar result holds for the simplest kind of bipartite system. The
surprising consequence is that GNST is less powerful than
quantum theory in many ways, despite including super-
quantum correlations. For example, teleportation and super-
dense coding are impossible. It is already clear that compu-

tation in GLT can be simulated efficiently classically, while
the computational power of GNST remains open. Another
open question is whether secure bit commitment is possible
in either theory. Despite these remarks, it is surprising how
many features of quantum theory have analogs in GNST.
These obviously include the generic features demonstrated in
Sec. V, along with entanglement and nonlocality. But they
also include things I have not discussed in detail, such as the
distinction between sharp and unsharp measurements, and
preparation contextuality. �Other authors have also found
features of quantum theory reproduced in other contexts.
Masanes et al. �13� show that various features, including a
no-cloning theorem, are present in all theories that are non-
local and nonsignaling. Spekkens has introduced a toy theory
that contains a remarkably wide range of quantum phenom-
ena �11�, although note that this theory is not contained in
our framework as it does not allow arbitrary convex combi-
nations of states.�

As mentioned above, one of the motivations of this work
is to stimulate the study of computation in models that are
more general than quantum theory. Some authors have al-
ready considered computation in nonstandard theories. How-
ever, these theories are often modifications of quantum
theory that appear to have both unphysical consequences and
immense computational power. It is suspected that quantum
theory with a nonlinear Schrödinger equation is very power-
ful, enabling the solution of NP-complete problems in poly-
nomial time, for example.14 Aaronson has considered various
modifications of quantum theory, including a model that as-
sumes the ability to postselect measurement outcomes, and a
hidden variable model in which the history of hidden states
can be read out by the observer �5,6�. Various authors have
considered classical and quantum computation in the pres-
ence of closed timelike curves �7,8�. Most recently, Aaronson
and Watrous �9� have shown that BQP �Bounded Quantum
Polynomial, the class of problems efficiently solvable by a
quantum computer�, in the presence of closed timelike
curves, is equivalent to PSPACE �Polynomial Space, the
class of problems solvable by a classical computer with poly-
nomial memory�. The framework introduced in this paper is
the natural place to investigate computation in theories that
are different from quantum theory, yet not obviously physi-
cally unreasonable or immensely powerful. I suggest that
NP-complete problems cannot be solved efficiently by any
theory in the framework. I also raise the following.

Conjecture 2. A quantum computer can simulate compu-
tation in any other theory in the framework with at most
polynomial overhead.

The intuition behind this is that quantum theory achieves
in some sense an optimal balance of allowed states and dy-
namics.

D. Interpretation

On the face of it, many theories that can be written down
in the present framework have similar interpretive issues as

14In Ref. �3�, it is claimed that nonlinear quantum theory can solve
NP-complete and even # P-complete problems efficiently. �See Ref.
�13� and references therein for a definition of the complexity class
# P.� Aaronson complains �4� that in this particular case it is difficult
to evaluate whether exponential precision is required.
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quantum theory, if one tries to understand them in a way that
goes beyond the purely operational. Consider a universe in
which some theory other than quantum or classical �GNST
perhaps� is verified in laboratory experiments. The denizens
of such a universe would be having debates in many ways
similar to the debates that surround quantum theory. Is a pure
state better understood as a complete description of indi-
vidual reality, as representing an ensemble, or as representing
the degrees of belief of some agent?

Suppose that the inhabitants of this universe attempt to
extend the theory to include a description of the measuring
apparatus, and of the interaction between system and appa-
ratus. This is always possible in classical and quantum
theory. In quantum theory, this fact is expressed in the idea
that the Heisenberg cut can be moved upwards indefinitely.
Are classical and quantum theories special in this regard, or
can this be done in any theory?

Even when the inhabitants succeed in constructing a mea-
surement theory along these lines, it is plausible that many
theories will have a measurement problem. In these theories,
the system and apparatus are typically in some entangled
state after interaction. Some inhabitants may suggest hidden
variables or some kind of collapse dynamics. Does any
theory admit an Everettian interpretation, or is there a special
feature of quantum theory that is necessary for this to work?

I will not discuss these issues any further. I have raised
them hoping that considering interpretive issues in a frame-
work more general than quantum theory might give a new
lease of life to the quantum debates.

E. Axioms

Aside from Hardy’s derivation �14�, what different ways
are there of uniquely identifying quantum theory from the
other theories in the framework by adding as few extra as-
sumptions as possible? Several have pushed the idea that a
quantum state is best understood as a summary of an agent’s
degrees of belief about the outcomes of future measurements
on a system �32,57,58�. From this standpoint, Fuchs has ar-
gued that the formalism of quantum theory should be under-
stood as a constraint on these degrees of belief, hopefully to
be derived via a small number of postulates, along with an
argument that any rational agent must accept �15�. Spekkens
has also argued for an epistemic constraint as a foundational
principle for quantum theory, although for Spekkens, beliefs
are about underlying ontic states of a system rather than fu-
ture measurement outcomes �11�.

Clifton, Bub, and Halvorson �CBH� have taken a different
approach and derived at least part of quantum theory from
the assumption of �i� a no-signaling principle, �ii� a no-
broadcasting principle, and �iii� the impossibility of secure
bit commitment �59�.15 CBH assume a C*-algebraic frame-
work, which is broad enough to include classical theories
and quantum theory, but is not as broad as the framework
presented here. An open question is whether something like

CBH’s proof would go through in the broader framework, or
whether there is some theory �GNST perhaps� that satisfies
�i�–�iii� and is clearly not quantum.

Note added. Related independent work has appeared re-
cently in Ref. �61�.
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APPENDIX A: PROOF OF LINEARITY
OF TRANSFORMATIONS

The proof in this appendix is adapted from that of Hardy
in Ref. �14�. It is included to keep this work self-contained.

A transformation is a map from allowed states of a system
to allowed states. The map satisfies Eq. �7�, reproduced here:

f
	
i

qiP� i� = 	
i

qif�P� i� ∀ Pi � S ,

for 0 � qi � 1, 	
i

qi = 1. �A1�

The map should also satisfy

f�0�� = 0� .

�This follows from the interpretation of unnormalized states.
Recall that if a particular outcome i of some operation occurs
with probability q�1, then we associate with that outcome

an unnormalized vector P� . Each entry of P� gives the joint
probability of obtaining outcome i for the original operation,
and outcome j for a fiducial measurement performed imme-
diately afterwards. Thus if q=0, it follows that the associated

P� =0� . By definition, an entry in the vector f�0�� represents the
joint probability of getting the following outcomes in se-
quence: outcome i for the original operation, then whatever
outcome it is that corresponds to the transformation f , and
then outcome j for a fiducial measurement. But these prob-
abilities must all be zero if the probability of outcome i is
zero.�

Writing the first of the above equations with i=1,2, and

setting P� 2=0� , gives

f�qP� � = qf�P� � ∀ P� � S, for 0 � q � 1.

Suppose that P� is a pure state �S. Pure states are by defini-

tion normalized. If r�1, then f�rP� � is initially undefined

because rP� �S, so we are free to stipulate that

f�rP� � = rf�P� � ∀ P� � S, r � 0.

Define S+ as the set of all vectors that can be written in the

form rP� with P� �S and r�0. It is a convex cone �60�.
Equation �A1� can be extended slightly:

15Whether they succeed in deriving the full structure of quantum
theory is debatable. But they do establish the existence of noncom-
muting measurements and of entanglement.
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f
	
i

riP� i� = 	
i

rif�P� i� ∀ Pi � S+ for ri � 0.

�A2�

Now suppose that

P� = 	
i

siP� i, �A3�

where P� , P� i�S+, and the si are real. Let i�A− if si�0 and
i�A+ if si�0. Rewrite Eq. �A3� as

P� + 	
i�A−

�si�P� i = 	
i�A+

siP� i.

Each side is a conic combination of vectors in S+, thus Eq.
�A2� applies, and rearranging we get

f�P� � = 	
i

sif�Pi
� � .

Finally, for any vector Q� �S+, f�Q� � can be defined uniquely

by linear extension if Q� lies in the subspace spanned by S.
The action of f on the rest of the vector space is arbitrary but
may be defined to be linear. �

APPENDIX B: DERIVATION OF TENSOR PRODUCT
RULE

As discussed in the main text, the state of a joint system
AB can be written

P� AB ��
P�a = 1,b = 1�X = 1,Y = 1�
P�a = 1,b = 2�X = 1,Y = 1�

]

P�a = 1,b = 1�X = 1,Y = 2�
P�a = 1,b = 2�X = 1,Y = 2�

]

]

� .

Proof of Theorem 1. This theorem is trivial. Let P� AB

�VAB, P� A�VA, and P� B�VB. Define the vector Q� ijkl
AB as the

vector with a 1 for the entry corresponding to the joint out-
come ij of the joint fiducial measurement kl, and 0s else-

where. Similarly Q� ik
A and Q� jl

B. Now identify Q� ijkl
AB with Q� ik

A

� Q� jl
B and extend linearly. �

Proof of Theorem 2. Consider a joint system AB. For each
of the fiducial measurements that define the state of system
B, there must be at least one operation on the joint system
AB that corresponds to performing that measurement. Let
this operation for the jth fiducial measurement be character-
ized by the set of matrices �Mij, where there is a value of i
for each outcome and j is fixed. When the transformation Mij
acts on AB, the resulting state is the unnormalized state

P� ij
AB�SAB. The corresponding reduced state for A is the un-

normalized state P� ij
A. By Constraint 2, P� ij

A �SA. If a fiducial

measurement is now performed on A, the state P� ij
A gives the

�unnormalized� probabilities for the different outcomes. It

follows that P� AB can be written in the form

P� AB = 	
ij

P� ij
A

� Q� ij
B , �B1�

with P� ij
A �SA and Q� ij

B as above. Now consider a vector U�

� W� �VAB, with W� �SB but U� �SA, where this means that U�

is orthogonal to all vectors in SA. From Eq. �B1� it follows

that �U� � W� � · P� AB=0. A similar result holds if W� �SB and

U� �SA. Thus P� AB lies in the subspace of VAB that is spanned
by vectors from SA � SB. Equation �19� follows. The vectors
on the right-hand side of this equation can be assumed nor-
malized, since any multiplying factor can be subsumed into
the corresponding ri. They can be assumed pure, since a
mixed state can always be expressed as a convex combina-

tion of pure states and 0� . But any term with 0� will not con-
tribute. Theorem 2 follows. �

Proof of Theorem 3. Consider a joint system AB and a
transformation TA of system A alone. TA corresponds to a

matrix MA such that P� A→P� �A=MA · P� A. The aim is to deter-

mine the effect of this transformation on the joint state P� AB.

From Sec. II A, this will correspond to a matrix M̃A such that

P� AB→P� �AB=M̃A · P� AB. But what is the relation between MA

and M̃A?
Consider the following procedure. First, the transforma-

tion TA is applied. Then fiducial measurements are performed
on systems A and B. The �unnormalized� joint probabilities
for the outcomes of these measurements are then the entries

of the vector P� �AB. However, by Assumption 4, the ordering
of operations on systems A and B does not matter. Thus the
following procedure is equivalent. First, a fiducial measure-
ment is performed on system B. Note that the reduced state
of system A conditioned on a particular outcome for this

measurement is defined by the vector P� AB. Next, the trans-
formation TA is performed on system A. Finally, a fiducial
measurement is performed on system A.

In the second procedure, we know how to apply the trans-
formation TA, since it is enough to consider its action on

system A alone, and we know that P� A→P� �A=MA · P� A. We
obtain

P� ijkl�AB = 	
i�k�

�MA�ik;i�k�P
�

i�jk�l
AB = 	

i�k�j�l�

�MA�ik;i�k�� j j��ll�P
�

i�j�k�l�
AB .

But

�MA
� IB�ijkl;i�j�k�l� = �MA�ik;i�k�� j j��ll�

thus

P� �AB = �MA
� I� ·P� AB.

This holds for all P� AB�SAB, and the action of TA on vectors

P� AB�SAB is arbitrary. It follows that we lose no generality in
identifying

M̃A = MA
� IB.

�
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APPENDIX C: GENERIC FEATURES

This appendix contains proofs of the results of Sec. V.
Proof of Theorem 4. Consider a particular type of system

in some theory. Suppose that the subspace spanned by al-
lowed states of the system has dimension d and that every
mixed state has a unique decomposition into pure states and

0� . The only convex set with this property is a simplex with

d+1 vertices. One of these vertices is the state 0� . It is always
possible to find an invertible linear transformation N such
that the other vertices are transformed into the vectors
�1,0,0,…,0�, �0,1,0,…,0�, and so on. Recall from Sec. III that
if this transformation acts on the set S, then the theory is not

changed, since R� T→R� T ·N−1 and M→N ·M ·N−1 for mea-
surements and transformations. If the state space for every
type of system, including multipartite systems, is of this
form, then the theory is classical. �

Proof of Theorem 5. Consider a system with a set of al-
lowed states S, spanning a subspace VS, and let d be the
dimension of VS. Choose a set of d distinct pure states

�P� 1 , . . . , P� d that are linearly independent and collectively
span VS. Suppose that a particular transformation is nondis-

turbing. Its action on each of the P� i is given by M · P� i=ciP� i

with 0�ci�1. If S is a simplex, then the set �P� 1 , . . . , P� d
must contain all the pure states. Since the P� i are linearly
independent, the ci can be chosen independently without
contradiction. For any other type of system, there are at least

d+1 pure states. Consider a pure state Q� that is not contained

in the set �P� 1 , . . . , P� d. If the transformation is nondisturbing,

then M ·Q� =eQ� with 0�e�1. Since �P� 1 , . . . , P� d is a basis

for VS, Q� has a unique decomposition of the form Q�

=	idiP� i, where at least two of the di are nonzero. If dj and dk
are nonzero, then cj =ck=e. Thus M acts as e times the iden-

tity on the subspace of VS spanned by P� j and P� k. By repeat-

ing this reasoning for every pure state Q� , the set �P� 1 , . . . , P� d
can be divided into subsets such that �i� if P� j and P� k are in
the same subset, then cj =ck for any nondisturbing transfor-

mation, and �ii� if P� j and P� k are in different subsets then

there is no pure state Q� such that both dj and dk are nonzero.
Each subset defines a subspace Vi of VS and the theorem
follows. �

Proof of Theorem 6. Theorem 6 is proven using Theorem
5. We show that if there is a probabilistic universal cloning

procedure, then for any two pure states P� 1 and P� 2, there is a

nondisturbing transformation M� such that �M� · P� 1�
� �M� · P� 2�. This in turn implies that S is a simplex. If S is a
simplex for every type of system, then the theory is classical.

Suppose that there is a standard state Q� and a transforma-

tion M such that for each pure state P� , M · �P� � Q� �=cP� � P� .

The number c may vary with P� but is �0 for all P� . Consider

a procedure in which a system is in the state P� 1 or P� 2, an

ancilla is added in the standard state Q� , and the cloning op-
eration �M ,F performed on the joint system. The transfor-
mation M corresponds to the success outcome and F to the

fail outcome. If P� 1 and P� 2 are different states there must be

some operation �N1 ,N2 such that �N1 · P� 1�� �N1 · P� 2�. If clon-
ing succeeded, perform this operation on the ancilla. Output
the result and throw away the ancilla.

This entire procedure may be regarded as an operation on
the system alone �see the remarks following Assumption 7�.
It can be written O�= �M1� ,M2� ,F�, where M1� corresponds to
successful cloning followed by the N1 outcome, M2� corre-
sponds to successful cloning followed by the N2 outcome,
and F� corresponds to failed cloning. By construction, each

of M1� and M2� is nondisturbing and �Mi� · P� 1�� �Mi� · P� 2� for at
least one of i=1,2. �

APPENDIX D: DYNAMICS IN GNST AND GLT

This appendix contains proofs of Theorems 7, 8, and 9, all
of which concern dynamics in GNST or GLT.

Proof of Theorem 7. This theorem concerns transforma-
tions of single systems in either GNST or GLT. A transfor-
mation of an �n ,k� system can be written

�
P��a = 1�X = 1�

]

P��a = k�X = 1�
]

P��a = 1�X = n�
]

P��a = k�X = n�

� = � M11 ¯ M1n

] ]

Mn1 ¯ Mnn
�

��
P�a = 1�X = 1�

]

P�a = k�X = 1�
]

P�a = 1�X = n�
]

P�a = k�X = n�

� .

�D1�

The transformation matrix is M, an nk�nk matrix. If the
fiducial measurement X=1 has k outcomes, then the top k
rows of this matrix determine the probabilities of outcomes
when the X=1 measurement is performed on the transformed

state P� �. Denote the k�nk submatrix consisting of these
rows M1. The next k rows are associated with the fiducial
measurement X=2, so denote the corresponding submatrix
by M2, and so on. The first k columns of Mi multiply into

those components of P� that correspond to the fiducial mea-
surement X=1 being performed. Denote the k�k subsubma-
trix consisting of these columns Mi1. Similarly Mi2, and so

on. Note that each row in M, considered as a vector R� , must
represent a possible measurement outcome. This is because

if the transformation acts on a state P� , then R� · P� gives the

corresponding entry in the transformed state P� �, which must

be between 0 and 1 for all P� �S. Furthermore, when the
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transformation is normalization-preserving, the rows R� j from

a particular Mi satisfy 	 jR� j · P� =1, whenever P� is normalized.
Hence the rows from a particular Mi correspond to a
multiple-outcome measurement. One way of performing this
measurement is simply to perform the transformation M first,
and then to perform fiducial measurement X= i.

There is some redundancy in a measurement vector R� , and

in the matrix M. If R� · P� =R� � · P� ∀ P� �S, then R� and R� � rep-

resent the same measurement outcome. In particular, if R� �

=R� +C� , where C� · P� =0∀ P� �S, then R� and R� � represent the

same measurement. An example of such a C� is

C� = �1, . . . ,1�− 1, . . . ,− 1�0, . . . ,0� . . . � ,

where C� · P� =0∀ P� �S is ensured by the normalization of P� .

The first step in the proof is to show that any R� is equivalent

in this sense to an R� � with all components �0.
For this, consider the set of allowed normalized states.

This is precisely the set of vectors satisfying the conditions

	
i

P�a = i�X = j� = 	
i

P�a = i�X = k� ∀ j,k , �D2�

P�a = i�X = j� � 0 ∀ i, j , �D3�

	
i

P�a = i�X = 1� = 1. �D4�

Define S+ as the set of vectors of the form rP� , with r�0 and

P� �S, and note that in the case of GNST or GLT, S+ is a
polyhedral cone �60�. It can also be defined as the set of
vectors satisfying conditions �D2� and �D3�. The defining

inequalities �D3� can each be written in the form C� i · P� �0,

where C� i is a constant vector with a 1 in the ith position and
0s elsewhere. The equalities �D2� can each be written as the

conjunction of two inequalities: D� j · P� �0 and D� j · P� �0 for

some constant Dj. Define R+ as the set of vectors R� such that

R� · P� �0∀ P� �S+. This is the set of unnormalized measure-
ments and is the dual cone to S+. It can be shown that if a

polyhedral cone is defined by �P� :A� i · P� �0∀ i, then the dual

cone is equal to the conic hull of the vectors A� i. Thus ele-
ments of R+ can be written

R� = 	
i

iC� i + 	
j

� jD� j , �D5�

where i�0 and � j can be positive or negative. Finally, the

vectors D� j all satisfy D� j · P� =0∀ P� �S+. Hence any R� of this

form is equivalent to an R� of the form

R� = 	
i

iC� i, �D6�

and without loss of generality, the components of R� can be

assumed �0. This applies both to R� considered as a mea-

surement outcome and to R� considered as a row of a trans-
formation matrix M.

Assume, then, that M is written in a form with all entries
�0. To conclude the proof, note that M acting on any prop-
erly normalized state �satisfying both Eqs. �D2� and �D4��
must result in a state that is also properly normalized. This
implies the following. Consider the matrix Mij. Denote the
sum of the elements in the first column by S1

ij, the sum of the
elements in the second column by S2

ij, and so on. Then S1
ij

=S2
ij = ¯ =Sk

ij and 	 jS1
ij =1. Hence the matrix Mij is of the

form �ij times a stochastic matrix, with 0��ij �1 and
	 j�ij =1. One may easily check that any transformation that
is equivalent to a procedure of the form of Fig. 5 is repre-
sented by a matrix of this form with �ik=1 for some k and
�ij =0 for j�k. Hence we have obtained the general result
that any allowed M is a convex combination of transforma-
tions of the form of Fig. 5. �

Proof of Theorem 8. Let an m-outcome measurement on

an �n ,k� system have outcomes corresponding to R� 1 , . . . ,R� m,
and construct the m�nk matrix

N = �R� 1
T

]

R� m
T � .

Denote the submatrix consisting of the first k columns of N
by N1, that consisting of the next k columns by N2, and so
on. The same arguments as in the proof of Theorem 7 can be
used to establish that N can be chosen such that all entries

are �0. Then use the fact that 	iR� i · P� =1 for normalized P� ,
and arguments similar to those in the proof of Theorem 7, to
establish that Ni=�iSi for 0��i�1, 	i�i=1, and Si stochas-
tic. The theorem follows. �

Proof of Theorem 9. Begin as before by showing that
without loss of generality, the matrix M can be taken to have
all entries �0. This part of the proof is identical, except that
to conditions �D2�–�D4�, one should add the no-signaling
constraints

	
j

P�a = i,b = j�X = k,Y = 1�

= 	
j

P�a = i,b = j�X = k,Y = 2� ∀ i,k �D7�

	
i

P�a = i,b = j�X = 1,Y = l�

= 	
i

P�a = i,b = j�X = 2,Y = l� ∀ j,l . �D8�

Like the conditions �D2�, these constraints can be written as

the conjunction D� j · P� �0 and D� j · P� �0, and R� can be written
in the form of Eq. �D5�, hence in the form of Eq. �D6�. Now

impose that P� �=M · P� is normalized for any allowed normal-

ized P� , that is any P� that satisfies conditions �D2�–�D4�,
�D7�, and �D8�. Proving that any such M represents a convex
combination of transformations of the form of Fig. 7 �or the
reversed form with respect to the two subsystems� is a te-
dious brute force exercise that is omitted. As with Theorem
8, the proof of Theorem 10 is a straightforward variation. �
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