
Macroscopic superposition and entanglement for displaced thermal fields
induced by a single atom

Shi-Biao Zheng*
Department of Electronic Science and Applied Physics, Fuzhou University, Fuzhou 350002, People’s Republic of China

�Received 17 November 2006; published 30 March 2007�

We show that a cavity field can evolve from an initial displaced mixed thermal state to a macroscopic
superpositions of displaced thermal states via resonant interaction with a two-level atom. As a macroscopic
system �meter� is really in a mixed state before coupling with the microscopic system at some temperature, our
result is important for studying the quantum measurement problem and decoherence under real conditions. For
the two-mode case, entanglement of displaced thermal states between the modes can be obtained.
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I. INTRODUCTION

The superposition principle is the most striking principle
in quantum mechanics. The macroscopic superposition
states, known as Schrödinger cat states �1�, are of signifi-
cance for exploring the boundary between quantum and clas-
sical worlds and understanding the decoherence effect in
quantum information. The macroscopic superposition states
also provide a test for quantum measurement theory. In the
measurement model, the coupling between a macroscopic
apparatus and a microscopic system results in their entangle-
ment and produces a quantum superposition state of the
whole system.

The Jaynes-Cummings model �JCM�, the simplest system
in quantum optics describing the interaction between light
and matter, is an ideal system for studying quantum interfer-
ence effects �2,3�. It has been shown that if the cavity field is
initially in a coherent state with a large average photon num-
ber superpositions of coherent states can be obtained in the
resonant JCM �4�. Recent advances in experiments involving
the passage of single Rydberg atoms through a superconduct-
ing cavity have turned the JCM from a theoretical curiosity
to a useful and testable enterprise �5�. Recently, mesoscopic
superpositions of two coherent states for a cavity field �6–8�
and the vibrational motion of a trapped ion �9� have been
experimentally demonstrated.

Previous researches on the macroscopic quantum-
interference states concentrate on superpositions of coherent
states with different phases or amplitudes since coherent
states are considered to be the quantum states close to clas-
sical ones. However, coherent states are not strictly classical
states since they are pure states. Before coupling with the
microscopic system, due to interaction with the environment
a macroscopic apparatus is in fact in a mixed state, instead of
a pure state �10�. On the other hand, thermal states, which do
not exhibit any nonclassical property, are real classical states.
In fact, thermal states are true representation of the state of a
field at a finite temperature. The problem naturally arises:
can a thermal state evolve to a macroscopic superposition?
Does such a mixed state superposition exhibit quantum in-
terference? How do we detect the coherence and decoher-

ence of this state? These questions are closely related with
the quantum measurement process and decoherence under
real conditions.

In this paper, we answer the above mentioned important
questions, showing that a cavity field can evolve to a mac-
roscopic superposition through interaction with a resonant
two-level atom even if it is initially in a thermal state. This is
remarkable since it is believed that in order to obtain a mac-
roscopic superposition state one should initially prepare the
cavity mode in a pure coherent state. The coherence of the
thermal state superposition can be revealed by the collapses
and induced revivals of the Rabi oscillation. Our study opens
a prospect for studying the quantum measurement problem
and exploring the quantum-classical transition at a finite tem-
perature. For the two-mode case, entanglement of thermal
states between two modes can be obtained. Our work is not
only important for studying how macroscopic quantum inter-
ference effects can persist at a finite temperature, but also
useful for quantum information processing with mixed
states.

The paper is organized as follows. In Sec. II, we show
that an initial displaced thermal state can evolve to superpo-
sitions of displaced thermal states correlated with the atomic
states via resonant atom-field interaction. In Sec. III, we dis-
cuss the problem of detecting the coherence between the dis-
placed thermal states. In Sec. IV, we generalize the idea to
the two-mode case and show that entanglement of displaced
thermal states between the modes can be obtained. A sum-
mary appears in Sec. V.

II. GENERATION OF SUPERPOSITIONS OF DISPLACED
THERMAL STATES

We consider a thermal field, whose state is described by
the density operator �th

�th =
1

�n̄th
� e−���2/n̄th������d2� , �1�

where n̄th=1/ �e��/kBT−1� is the mean photon-number of the
thermal field. We first displace the cavity field by an amount
�, leading to the density operator D����thD

+���, with D���
being the displacement operator. We here assume that � is a
real number. We let a two-level atom interact with the single-*Electronic mail: sbzheng@pub5.fz.fj.cn
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mode cavity field. In the rotating-wave approximation, the
Hamiltonian is �assuming �=1�

H = g�a†S− + aS†� , �2�

where S†= �e��g�, S−= �g��e�, with �e� and �g� being the ex-
cited and ground states of the atom, a+ and a are the creation
and annihilation operators for the cavity mode, and g is the
atom-cavity coupling strength.

The evolution of the system is given by

� = U�t�D�����a���a� � �thD
†���U†�t� , �3�

where

U�t� = e−iHt. �4�

We can rewrite Eq. �3� as

� = D���Ud�t���a���a� � �thUd
†�t�D†��� , �5�

where

Ud�t� = D†���U�t�D��� . �6�

Replacing Eq. �4� into �6� we obtain

Ud�t� = e−iHdt, �7�

where

Hd =
1

2
g��a† + �*�S− + �a + ��S†� . �8�

Define the new atomic basis �11�

� + � =
1
	2

��e� + �g��, �− � =
1
	2

��e� − �g�� . �9�

Then we can rewrite Hd as

Hd =
1

2
g�a†�2�z + �† − �−� + a�2�z + �− − �†�� + 2��z,

�10�

where �z= 1
2 ��+ ��+�− �−��−��, �†= �+ ��−�, �−= �−��+�, and �

=�g. We can rewrite the displaced evolution operator Ud�t�
as

Ud�t� = e−i2��zte−iHit, �11�

where

Hi =
1

2
g�a†�2�z + ei2�t�† − e−i2�t�−� + a�2�z + e−i2�t�−

− ei2�t�†�� . �12�

Assuming that �	g, i.e., �	1, we can neglect the terms
oscillating fast. Then Hi reduces to

Hi = g�a† + a��z =
g

2
�a† + a��S− + S†� . �13�

Equation �13� reveals the striking feature that, under the
large displacement condition, the dynamics of the normal
JCM in the displaced picture is described by the combination
of the JCM and anti-JCM.

The displacement transformation alters the JCM evolu-
tion, resulting in the competition of the excitation and deex-
citation of the atomic state accompanying the creation or
annihilation of a photon in the initial thermal field. After the
displacement transformation, the excitation number Ne
= �e��e�+a†a does not conserve since the displacement opera-
tor, involving the competition between the annihilation and
creation operators, does not commute with the excitation
number operator.

We now assume that the atom is initially in the state �g�.
�g� can be rewritten as

�g� =
1
	2

�� + � − �− �� . �14�

Using Eqs. �5� and �11�, we obtain evolution of the system
after an interaction time 


� = D������
�����
�� � �thD
†��� , �15�

���
�� =
1
	2

�e−i�D�− ��� + � − ei�D����− ��

=
1

2

�e−i�D�− �� + ei�D�����g�

+ �e−i�D�− �� − ei�D�����e�� , �16�

where

� = �
 ,

� = ig
/2. �17�

We can rewrite the density operator � as

� =
1

4
D����e−i�D�− �� + ei�D�����th�e−i�D�− ��

+ ei�D����D†��� � �g��g� +
1

4
D����e−i�D�− ��

− ei�D�����th�ei�D��� − e−i�D�− ���D†��� � �e��e�

+
1

4
D����e−i�D�− �� + ei�D�����th�ei�D���

− e−i�D�− ���D†��� � �g��e� +
1

4
D����e−i�D�− ��

− ei�D�����th�e−i�D�− �� + ei�D����D†��� � �e��g� .
�18�

The unnormalized states D����e−i�D�−��±ei�D����
�th�ei�D���±e−i�D�−���D+��� are superpositions of two
displaced thermal states. The coherence arises from the su-
perposition of two different displacement operators. The av-
erage photon-number of the displaced thermal state depends
upon the amount of the initial displacement: n=nth+ ���2. The
quantum superposition persists in the classical limit ���2
→�.

SHI-BIAO ZHENG PHYSICAL REVIEW A 75, 032114 �2007�

032114-2



III. DETECTION OF THE COHERENCE BETWEEN THE
DISPLACED THERMAL STATES

In order to detect the coherence between two displaced
thermal states we could use the echo method proposed by
Morigi et al. �12�. We divide the whole duration into two
parts. After an interaction time t, the evolution of the system
is given by the unitary operator U1=e−iHt. Then the atom
undergoes an instantaneous phase kick, corresponding to the
application of the inversion operator Sz= ��e��e�− �g��g��. For
the remaining time t�, the JCM evolution operator is U1

=e−iHt�. The whole evolution operator is

U = U2SzU1 = Sze
−iH�t−t��. �19�

We here have used the relation SzHSz=−H. Therefore, the
phase kick leads to the reversal of the unitary evolution of
the system. After the duration 2t, the system evolves back to
the initial state.

At the time 
 �
� t�, the probability for the atom in the
state �e� is given by

Pe = Tr
D����e−i�D�− �� − ei�D����

�th�ei�D��� − e−i�D�− ���D†����

=
1

2
�1 − e−�g
�2�n̄th+2�/4 cos�2�
�� . �20�

The oscillation arises from the interference between the two
displaced thermal states D���D�−��� fD���D+��� and
D���D���� fD�−��D+���. The distance between the two dis-
placed states increases with the interaction time. When
g
	nth+2/2�1, the two displaced states are approximately
orthogonal and thus the oscillation collapses. After the phase
kick, the evolution is reversed. At the time 2t, the two com-
ponents merge again into a single state and the atom returns
to the initial state �g�. Then the Rabi oscillation resumes. The
process can be interpreted in term of complementarity.
Due to the interaction with the cavity mode, there exist
two paths for the atom to reach a definite state, with
one path associated with the displaced thermal state
D���D�−��� fD���D†��� and the other associated with
D���D���� fD�−��D+���. In the case g
 /2�1, the differ-
ence between the two displaced thermal states is negligible
and thus no path information can be obtained. With the in-
crease of the interaction time, the two displaced thermal
states become distinguishable and the path information is
recorded on the cavity mode, destructing the interference.
After the phase kick, the distance between the two displaced
thermal states decreases. At time 2t, the two components are
recombined and the path information is erased, resulting the
reappearance of the interference. The contrast of the oscilla-
tion is independent of the value of �. Therefore, collapses
and revivals occur for the displaced thermal states even when
n→�.

With the decoherence being considered, the contrast of
the oscillation is reduced. The initial displaced thermal state
can be expressed in terms of the Fock states

D����thD
†��� = �

m,n=0

�

�m,n�m��n� , �21�

where

�m,n = �
�=0

�
n̄�

�1 + n̄��+1C�,mC�,n
* , �22�

C�,m = 	�!m!e−�2/2�
�=0

�
1

l!�� − l�!�m − l�!
�− ���−l�m−l,l � m .

�23�

Set ��g and �t�1, with � being the cavity decay rate. At
time T, due to the cavity decay the contrast of the oscillation
is reduced by

�
n=0

�

�	1 + 2n̄th�nn t

4
�2n − 1� +

sin�gt	n�
4g	n

−
sin�gt	n − 1�

4g	n − 1

−
1

4g
�	n�4n − 3�sin�gt	n�cos�gt	n − 1�

− 	n − 1�4n − 1�sin�gt	n − 1�cos�gt	n��� . �24�

IV. GENERATION OF ENTANGLEMENT BETWEEN TWO
THERMAL CAVITY MODES

We note the idea can also be generalized to generate en-
tanglement between two thermal cavity modes. We consider
two degenerate cavity modes initially in the thermal states
with the density operators �th,1 and �th,2. We first displace
each cavity mode by a large amount ���	1�, leading to the
density operator D1����th,1D1

†��� � D2����th,2D2
†���. The

two-level atom resonantly interact with the two modes. In
the interaction picture, the Hamiltonian is

H = ��g1a† + g2b†�S− + �g1a + g2b�S†� , �25�

where a and b are the annihilation operators for the two
modes, and g1 and g2 are the corresponding coupling
strengths. After the atom exits the cavity the whole system is
in the state

� = D��,�����
�����
�� � �th,1�th,2D†��,�� , �26�

where

���
�� =
1
	2

�e−2i�D�− �1,− �2�� + � − e2i�D��1,�2��− �� ,

�27�

D��1,�2� = D1��1�D2��2� , �28�

�1 = ig1
/2,

�2 = ig2
/2. �29�

We can rewrite the state as
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� =
1

4
D��,��D+�th,1 � �th,2D+D†��,�� � �g��g�

−
1

4
D��,��D−�th,1 � �th,2D−D†��,�� � �e��e�

−
1

4
D��,��D+�th,1 � �th,2D−D†��,�� � �g��e�

+
1

4
D��,��D−�th,1 � �th,2D+D†��,�� � �e��g� , �30�

where

D+ = e−2i�D�− �1,− �2� + e2i�D��1,�2� ,

D− = e−2i�D�− �1,− �2� − e2i�D��1,�2� . �31�

The states D�� ,��D±�th,1 � �th,2D±D+�� ,�� are entangled
displaced thermal states. The entanglement results from the
superposition of the two-mode displacement operators
D�−�1 ,−�2� and D��1 ,�2�. At the time 
, the probability for
the atom in the state �e� is given by

Pe =
1

2
�1 − e−��g1
�2+�g2
�2��n̄+2�/4 cos�4�
�� . �32�

The oscillation arises from the interference between the two
two-mode thermal states D�� ,��D�−�1 ,−�2��th,1

� �th,2D��1 ,�2�D†�� ,�� and D�� ,��D��1 ,�2��th,1

� �th,2D�−�1 ,−�2�D†�� ,��. The distance between the two
two-mode displacement operators does not decrease as the
average photon numbers of the displaced thermal states in-

creases. Therefore, the entanglement survives when the av-
erage photon numbers of the two fields approach infinity.
The idea opens promising prospects for entangling two mac-
roscopic mixed systems and investigate the decoherence. The
idea can be easily generalized to produce entanglement for
two or more thermal fields located in separated cavities.

V. SUMMARY

In conclusion, we show that the macroscopic thermal state
superposition can be induced by a resonant two-level atom.
The quantum coherence can be revealed by the collapses and
induced revivals of the Rabi oscillation. In contrast with pre-
vious studies concentrating on pure coherent states, our re-
search provides a way for investigating the quantum mea-
surement model and decoherence phenomena under real
conditions. For the two mode case, the quantum entangle-
ment between two thermal cavity modes can be obtained.
The entanglement survives even if the average photon-
numbers of the modes go to infinity. The required experi-
mental techniques for demonstrating the idea include the
passage of single Rydberg atoms through a high-quality cav-
ity, displacement, phase kick, and atomic state measurement.
All these techniques are presently available �6–8� and thus
the implementation of the idea appears experimentally fea-
sible.
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